Research on Evaluation Method of Wind Farm Wake Energy Efficiency Loss Based on SCADA Data Analysis
Abstract
:1. Introduction
- (1)
- A velocity deficit evaluation method based on SCADA data and a three-dimensional model is proposed, which takes into account the influence of the atmospheric boundary environment, the Gaussian shape distribution of wake velocity and the range of the wake radius on the velocity of downstream wind turbines. The evaluation of the target wind farm is realized by screening typical turbines, and the results are more realistic and reliable.
- (2)
- A method for evaluating the loss by calculating the output power is proposed. SCADA data and turbine characteristic parameters are combined to calculate the output power response of the wind farm. The conclusion can verify the evaluation results based on the selection of typical turbines, which improves the scientific accuracy of the method.
- (3)
- Comprehensive evaluation criteria are proposed to quantify the loss, which can provide a reference for the assessment of wind farms and other research work.
2. Methodology
2.1. Wake Loss Assessment Method
2.1.1. Assessment Method Process
2.1.2. Evaluation Method Based on Screening Typical Wind Turbines
2.1.3. Auxiliary Validation Evaluation Method Based on Output Power Calculation
2.2. Wake Model and Associated Parameters
2.3. Criteria for Evaluating Wake Loss
3. Case Analysis
3.1. Introduction of Target Wind Farm
3.2. Wind Resource Information
3.3. Assessment of Velocity Deficit Based on the Screening of Typical Wind Turbines
3.4. Auxiliary Assessment Based on Output Power Calculation
4. Conclusions
- The 3DJG wake model was introduced for the screening of typical turbines, which comprehensively considered the influence of the external environment and the relative position between turbines on wake velocity. The analysis of the target wind field shows that the percentage of turbines seriously affected by wake reaches 32.8%, and the results of wake velocity calculation also show that the distance in the perpendicular direction to the inflow wind direction affects the recovery of wake velocity.
- The auxiliary evaluation method for output power calculation based on the analysis of SCADA data was proposed, which enabled the validation of the results of the wake assessment. The analysis of the target wind farm shows that the output power loss is serious in the selected time periods. Compared to the theoretical output power, the actual output power is as low as 84.2%. The economic efficiency of the wind farm is higher in the spring months (March–May).
- The conclusion obtained from the calculation of the output power validated the results of the wake loss assessment from the screening of typical turbines. Under the studied operating conditions, the wake energy efficiency loss is serious and belongs to the ‘Large’ level. The results can provide theoretical support for wind farm layout optimization, wake energy efficiency loss assessment and operation control strategy development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
SCADA | Supervisory control and data acquisition |
3DJG | Three dimensional Jensen-Gaussian |
Inflow wind velocity (m/s) | |
Inflow wind velocity measured at the reference height (m/s) | |
Wake velocity (m/s) | |
Rotor radius (m) | |
Reference height (m) | |
Hub height (m) | |
Diameter of wind turbine (m) | |
Wind shear index | |
Initial wake radius (m) | |
Wake radius in vertical direction (m) | |
Wake radius in horizontal direction (m) | |
Standard deviation in vertical direction (m) | |
Standard deviation in horizontal direction (m) | |
Thrust coefficient | |
Wake expansion coefficient in horizontal direction | |
Wake expansion coefficient in vertical direction | |
Axial induction factor |
References
- Zhang, L.; Li, H.; Zhang, K.; Li, W.; Zuo, C.; Odunmbaku, G.O.; Chen, J.; Chen, C.; Zhang, L.; Li, R.; et al. Major strategies for improving the performance of perovskite solar cells. iEnergy 2023, 2, 172–199. [Google Scholar] [CrossRef]
- Kou, X.; Wang, R.; Du, S.; Xu, Z.; Zhu, X. Heat pump assists in energy transition: Challenges and approaches. DeCarbon 2024, 3, 100033. [Google Scholar] [CrossRef]
- Zhang, H.; Park, N.-G. Progress and issues in p-i-n type perovskite solar cells. DeCarbon 2024, 3, 100025. [Google Scholar] [CrossRef]
- Hegazy, A.; Blondel, F.; Cathelain, M.; Aubrun, S. LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models. Renew. Energy 2022, 181, 457–471. [Google Scholar] [CrossRef]
- Stevens, R.J.; Meneveau, C. Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 2017, 49, 311–339. [Google Scholar] [CrossRef]
- Cai, W.; Hu, Y.; Fang, F.; Yao, L.; Liu, J. Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines. Appl. Energy 2023, 339, 121000. [Google Scholar] [CrossRef]
- Archer, C.L.; Vasel-Be-Hagh, A.; Yan, C.; Wu, S.; Pan, Y.; Brodie, J.F.; Maguire, A.E. Review and evaluation of wake loss models for wind energy applications. Appl. Energy 2018, 226, 1187–1207. [Google Scholar] [CrossRef]
- Howland, M.F.; Quesada, J.B.; Martínez, J.J.P.; Larrañaga, F.P.; Yadav, N.; Chawla, J.S.; Sivaram, V.; Dabiri, J.O. Collective wind farm operation based on a predictive model increases utility-scale energy production. Nat. Energy 2022, 7, 818–827. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Hansen, K.; Frandsen, S.T.; Rathmann, O.; Schepers, J.G.; Schlez, W.; Phillips, J.; Rados, K.; Zervos, A.; Politis, E.S.; et al. Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy 2009, 12, 431–444. [Google Scholar] [CrossRef]
- Shaler, K.; Kecskemety, K.M.; McNamara, J.J. Benchmarking of a free vortex wake model for prediction of wake interactions. Renew. Energy 2019, 136, 607–620. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lin, L.; Koo, P. Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. J. Wind Eng. Ind. Aerodyn. 2015, 139, 89–99. [Google Scholar] [CrossRef]
- Li, L.; Hearst, R.J.; Ferreira, M.A.; Ganapathisubramani, B. The near-field of a lab-scale wind turbine in tailored turbulent shear flows. Renew. Energy 2020, 149, 735–748. [Google Scholar] [CrossRef]
- Bangga, G.; Lutz, T. Aerodynamic modeling of wind turbine loads exposed to turbulent inflow and validation with experimental data. Energy 2021, 223, 120076. [Google Scholar] [CrossRef]
- Sun, H.; Yang, H. Study on an innovative three-dimensional wind turbine wake model. Appl. Energy 2018, 226, 483–493. [Google Scholar] [CrossRef]
- McKay, P.; Carriveau, R.; Ting, D.S. Wake impacts on downstream wind turbine performance and yaw alignment. Wind Energy 2013, 16, 221–234. [Google Scholar] [CrossRef]
- Christiansen, M.B.; Hasager, C.B. Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens. Environ. 2005, 98, 251–268. [Google Scholar] [CrossRef]
- Adaramola, M.S.; Krogstad, P. Experimental investigation of wake effects on wind turbine performance. Renew. Energy 2011, 36, 2078–2086. [Google Scholar] [CrossRef]
- Kumer, V.M.; Reuder, J.; Svardal, B.; Saetre, C.; Eecen, P.J. Characterisation of single wind turbine wakes with static and scanning WINTWEX-W LiDAR data. Energy Procedia 2015, 80, 245–254. [Google Scholar] [CrossRef]
- Uchida, T.; Taniyama, Y.; Fukatani, Y.; Nakano, M.; Bai, Z.; Yoshida, T.; Inui, M. A new wind turbine CFD modeling method based on a porous disk approach for practical wind farm design. Energies 2020, 13, 3197. [Google Scholar] [CrossRef]
- Ge, M.; Wu, Y.; Liu, Y.; Li, Q. A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes. Appl. Energy 2019, 233-234, 975–984. [Google Scholar] [CrossRef]
- Tang, H.; Lam, K.-M.; Shum, K.-M.; Li, Y. Wake effect of a horizontal axis wind turbine on the performance of a downstream turbine. Energies 2019, 12, 2395. [Google Scholar] [CrossRef]
- Bartl, J.; Pierella, F.; Sætran, L. Wake measurements behind an array of two model wind turbines. Energy Procedia 2012, 24, 305–312. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Y.; Xu, S.; Zhang, S.; Gao, X.; Sun, H.; Wang, Y.; Zhao, F.; Lv, T. Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification. Energy 2023, 270, 126907. [Google Scholar] [CrossRef]
- Sorensen, N.N. CFD modelling of laminar-turbulent transition for airfoils and rotors using the γ-(Re)over-tildeθ model. Wind. Energy 2009, 12, 715–733. [Google Scholar] [CrossRef]
- Bastankhah, M.; Abkar, M. Multirotor wind turbine wakes. Phys. Fluids 2019, 31, 085106. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Liao, T.-L.; Chen, C.-K.; Lin, C.-Y.; Chen, P.-W. Power output efficiency in large wind farms with different hub heights and configurations. Renew. Energy 2019, 132, 941–949. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, C.; Chang, T. Effects of inflow turbulence intensity and turbine arrangements on the power generation efficiency of large wind farms. Wind Energy 2020, 23, 1640–1655. [Google Scholar] [CrossRef]
- Husien, W.; El-Osta, W.; Dekam, E. Effect of the wake behind wind rotor on optimum energy output of wind farms. Renew. Energy 2013, 49, 128–132. [Google Scholar] [CrossRef]
- Mahmoodi, E.; Khezri, M.; Ebrahimi, A.; Ritschel, U.; Chamorro, L.P.; Khanjari, A. A simple model for wake-induced aerodynamic interaction of wind turbines. Energies 2023, 16, 5710. [Google Scholar] [CrossRef]
- Liu, H.-X.; Tian, Y.-N.; Liu, W.-Q.; Jin, Y.-Q.; Kong, F.-K.; Chen, H.-L.; Zhong, Y.-G. Aerodynamic interference characteristics of multiple unit wind turbine based on vortex filament wake model. Energy 2023, 268, 126663. [Google Scholar] [CrossRef]
- Shin, J.-H.; Lee, J.-H.; Chang, S.-M. A Simplified Numerical Model for the Prediction of Wake Interaction in Multiple Wind Turbines. Energies 2019, 12, 4122. [Google Scholar] [CrossRef]
- Wang, T.; Cai, C.; Wang, X.; Wang, Z.; Chen, Y.; Song, J.; Xu, J.; Zhang, Y.; Li, Q. A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow. Energy 2023, 271, 127089. [Google Scholar] [CrossRef]
- Jensen, N.O. A Note on Wind Generator Interaction; Risoe National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Højstrup, J.; Thøgersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 2006, 9, 39–53. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, W.; Shen, W.; Zhao, N.; Shen, Z. Development and validation of a new two-dimensional wake model for wind turbine wakes. J. Wind Eng. Ind. Aerodyn. 2015, 137, 90–99. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, M.; Zhang, Z.; Xu, J. A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory. Appl. Energy 2019, 239, 96–106. [Google Scholar] [CrossRef]
- Brogna, R.; Feng, J.; Sørensen, J.N.; Shen, W.Z.; Porté-Agel, F. A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain. Appl. Energy 2020, 259, 114189. [Google Scholar] [CrossRef]
- Gao, X.X.; Yang, H.X.; Lu, L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model. Appl. Energy 2016, 174, 192–200. [Google Scholar] [CrossRef]
- Ishihara, T.; Qian, G.-W. A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects. J. Wind Eng. Ind. Aerodyn. 2018, 177, 275–292. [Google Scholar] [CrossRef]
- Lopes, A.M.; Vicente, A.H.; Sánchez, O.H.; Daus, R.; Koch, H. Operation assessment of analytical wind turbine wake models. J. Wind Eng. Ind. Aerodyn. 2022, 220, 104840. [Google Scholar] [CrossRef]
- Kim, S.-H.; Shin, H.-K.; Joo, Y.-C.; Kim, K.-H. A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm. Renew. Energy 2015, 74, 536–543. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Frandsen, S.T.; Nielsen, M.N.; Pryor, S.C.; Rethore, P.E.; Jørgensen, H.E. Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm. Wind Energy 2007, 10, 517–528. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Jensen, L.E. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 2010, 13, 573–586. [Google Scholar] [CrossRef]
- Hansen, K.S.; Barthelmie, R.J.; Jensen, L.E.; Sommer, A. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy 2012, 15, 183–196. [Google Scholar] [CrossRef]
- El-Asha, S.; Zhan, L.; Iungo, G.V. Quantification of power losses due to wind turbine wake interactions through SCADA, meteorological and wind LiDAR data. Wind Energy 2017, 20, 1823–1839. [Google Scholar] [CrossRef]
- Tian, W.; Ozbay, A.; Wang, X.D.; Hu, H. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds. Acta Mech. Sin. 2017, 33, 742–753. [Google Scholar] [CrossRef]
- Böhme, G.S.; Fadigas, E.A.; Gimenes, A.L.; Tassinari, C.E. Wake effect measurement in complex terrain—A case study in Brazilian wind farms. Energy 2018, 161, 277–283. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-turbine and Wind-farm flows: A review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, B.; Wang, T.; Sun, H.; Yang, H.; Li, Y.; Wang, Y.; Zhao, F. Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements. Appl. Energy 2020, 260, 114272. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Larsen, G.C.; Frandsen, S.T.; Folkerts, L.; Rados, K.; Pryor, S.C.; Lange, B.; Schepers, G. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar. J. Atmos. Ocean. Technol. 2006, 23, 888–901. [Google Scholar] [CrossRef]
- Cao, L.; Ge, M.; Gao, X.; Du, B.; Li, B.; Huang, Z.; Liu, Y. Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines. Appl. Energy 2022, 323, 119599. [Google Scholar] [CrossRef]
Evaluating Indicator | Evaluation Criterion | Less | Little | Normal | Large |
---|---|---|---|---|---|
Degree of velocity deficit | <5% | 5–10% | 10–20% | >20% |
Evaluating Indicator | Evaluation Criterion | Less | Little | Normal | Large |
---|---|---|---|---|---|
Output power response | >98% | 95–98% | 90–95% | <90% |
Parameter | Value |
---|---|
Rated power (kW) | 1500 |
Cut-in wind speed (m/s) | 3.0 |
Cut-out wind speed (m/s) | 20 |
Rated wind speed (m/s) | 12.5 |
Average wind speed (m/s) | 8.5 |
Rotor diameter (m) | 77.42 |
Blade length (m) | 37.5 |
Hub height (m) | 65 |
Number | Latitude and Longitude | Altitude/m | Sensor Height/m | Terrain | Data Integrity Rate/% |
---|---|---|---|---|---|
8003# | 41°46′28.14″ N 112°35′5.76″ E | 1436 | Wind velocity: 70/60/30/10 Wind direction: 70/10 | Terrain is flat and consistent with the wind farm | 96.68 |
8004# | 41°46′23.10″ N 112°37′50.64″ E | 1428 | 96.72 | ||
8005# | 41°42′14.88″ N 112°35′4.86″ E | 1437 | 98.73 |
8003# | |||
---|---|---|---|
Height | 50 m | 60 m | 70 m |
10 m | 0.137 | 0.136 | 0.141 |
50 m | — | 0.126 | 0.156 |
60 m | — | — | 0.192 |
8004# | |||
Height | 50 m | 60 m | 70 m |
10 m | 0.117 | 0.139 | 0.116 |
50 m | — | 0.333 | 0.110 |
60 m | — | — | −0.154 |
8005# | |||
Height | 50 m | 60 m | 70 m |
10 m | 0.147 | 0.137 | 0.147 |
50 m | — | 0.047 | 0.147 |
60 m | — | — | 0.265 |
Number | Turbulence Intensity | Height/m | |||
---|---|---|---|---|---|
10 | 30 | 60 | 70 | ||
8003# | It-15 | 0.104 | 0.073 | 0.066 | 0.061 |
Repre-It-15 | 0.134 | 0.113 | 0.108 | 0.101 | |
8004# | It-15 | 0.108 | 0.073 | 0.067 | 0.035 |
Repre-It-15 | 0.137 | 0.112 | 0.110 | 0.110 | |
8005# | It-15 | 0.105 | 0.078 | 0.074 | 0.067 |
Repre-It-15 | 0.130 | 0.114 | 0.111 | 0.105 |
Number | Height/m | Wind Velocity (m/s) | Wind Energy Density (W/m2) |
---|---|---|---|
8003# | 70 | 7.1 | 437.95 |
8003# | 65 | 6.97 | 433.73 |
8003# | 60 | 6.89 | 419.81 |
8003# | 50 | 6.74 | 379.39 |
8003# | 10 | 5.4 | 230.07 |
8004# | 70 | 6.52 | 357.94 |
8004# | 65 | 6.74 | 387.21 |
8004# | 60 | 6.67 | 376.06 |
8004# | 50 | 6.28 | 320.55 |
8004# | 10 | 5.2 | 199.64 |
8005# | 70 | 7.14 | 405.5 |
8005# | 65 | 6.93 | 377.22 |
8005# | 60 | 6.85 | 364.69 |
8005# | 50 | 6.79 | 358.3 |
8005# | 10 | 5.36 | 199.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.; Zhang, H.; Gao, X.; Wang, X.; Nian, H.; Fan, W. Research on Evaluation Method of Wind Farm Wake Energy Efficiency Loss Based on SCADA Data Analysis. Sustainability 2024, 16, 1813. https://doi.org/10.3390/su16051813
Ma K, Zhang H, Gao X, Wang X, Nian H, Fan W. Research on Evaluation Method of Wind Farm Wake Energy Efficiency Loss Based on SCADA Data Analysis. Sustainability. 2024; 16(5):1813. https://doi.org/10.3390/su16051813
Chicago/Turabian StyleMa, Kuichao, Huanqiang Zhang, Xiaoxia Gao, Xiaodong Wang, Heng Nian, and Wei Fan. 2024. "Research on Evaluation Method of Wind Farm Wake Energy Efficiency Loss Based on SCADA Data Analysis" Sustainability 16, no. 5: 1813. https://doi.org/10.3390/su16051813
APA StyleMa, K., Zhang, H., Gao, X., Wang, X., Nian, H., & Fan, W. (2024). Research on Evaluation Method of Wind Farm Wake Energy Efficiency Loss Based on SCADA Data Analysis. Sustainability, 16(5), 1813. https://doi.org/10.3390/su16051813