Analyzing the Shelter Site Selection Criteria for Disaster Preparedness Using Best–Worst Method under Interval Type-2 Fuzzy Sets
Abstract
:1. Introduction and Background
2. Literature Review of Shelter Site Selection Criteria
2.1. Favorability of Terrain (FT) (C1)
2.2. Electrical Infrastructure (EI) (C2)
2.3. Hygiene and Sanitary System (HSS) (C3)
2.4. Safety and Security (SS) (C4)
2.5. Transport–Distribution Capacity (TDC) (C5)
2.6. Proximity (P) (C6)
3. Experts’ Information
4. Methodology
IT2F-BWM
5. Application
5.1. Mathematical Model of IT2F-BWM
5.2. Results and Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Xu, W.; Qin, L.; Zhao, X. Site Selection Models in Natural Disaster Shelters: A Review. Sustainability 2019, 11, 399. [Google Scholar] [CrossRef]
- Melo, M.T.; Nickel, S.; Saldanha-Da-Gama, F. Facility location and supply chain management—A review. Eur. J. Oper. Res. 2009, 196, 401–412. [Google Scholar] [CrossRef]
- Balcik, B.; Beamon, B.M. Facility location in humanitarian relief. Int. J. Logist. Res. Appl. 2008, 11, 101–121. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, W.; Qin, L.; Zhao, X.; Du, J. Emergency shelters location-allocation problem concerning uncertainty and limited resources: A multi-objective optimization with a case study in the Central area of Beijing, China. Geomat. Nat. Hazards Risk 2019, 10, 1242–1266. [Google Scholar] [CrossRef]
- Turğut, B.T.; Taş, G.; Herekoğlu, A.; Tozan, H.; Vayvay, O. A fuzzy AHP based decision support system for disaster center location selection and a case study for Istanbul. Disaster Prev. Manag. 2011, 20, 499–520. [Google Scholar] [CrossRef]
- Omidvar, B.; Baradaran-Shoraka, M.; Nojavan, M. Temporary site selection and decision-making methods: A case study of Tehran, Iran. Disasters 2013, 37, 536–553. [Google Scholar] [CrossRef]
- Nappi, M.M.L.; Souza, J.C. Disaster management: Hierarchical structuring criteria for selection and location of temporary shelters. Nat. Hazards 2015, 75, 2421–2436. [Google Scholar] [CrossRef]
- Hosseini, S.A.; de la Fuente, A.; Pons, O. Multi-criteria decision-making method for assessing the sustainability of post-disaster temporary housing units technologies: A case study in Bam, 2003. Sustain. Cities Soc. 2016, 20, 38–51. [Google Scholar] [CrossRef]
- Çetinkaya, C.; Özceylan, E.; Erbaş, M.; Kabak, M. GIS-based fuzzy MCDA approach for siting refugee camp: A case study for southeastern Turkey. Int. J. Disaster Risk Reduct. 2016, 18, 218–231. [Google Scholar] [CrossRef]
- Celik, E. A cause and effect relationship model for location of temporary shelters in disaster operations management. Int. J. Disaster Risk Reduct. 2017, 22, 257–268. [Google Scholar] [CrossRef]
- Soltani, A.; Ardalan, A.; Boloorani, A.D.; Haghdoost, A.; Hosseinzadeh-Attar, M.J. Criteria for Site Selection of Temporary Shelters after Earthquakes: A Delphi Panel. PLoS Curr. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zhou, H.; Song, W. Sustainable shelter-site selection under uncertainty: A rough QUALIFLEX method. Comput. Ind. Eng. 2019, 128, 371–386. [Google Scholar] [CrossRef]
- Geng, S.; Hou, H.; Zhang, S. Multi-Criteria Location Model of Emergency Shelters in Humanitarian Logistics. Sustainability 2020, 12, 1759. [Google Scholar] [CrossRef]
- Yılmaz, H.; Kabak, Ö. Prioritizing distribution centers in humanitarian logistics using type-2 fuzzy MCDM approach. J. Enterp. Inf. Manag. 2020, 33, 1199–1232. [Google Scholar] [CrossRef]
- Wu, H.; Ren, P.; Xu, Z. Addressing site selection for earthquake shelters with hesitant multiplicative linguistic preference relation. Inf. Sci. 2020, 516, 370–387. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Farahzadi, L.; Pons, O. Assessing the sustainability index of different post-disaster temporary housing unit configuration types. J. Build. Eng. 2021, 42, 102806. [Google Scholar] [CrossRef]
- Choukolaei, H.A.; Ghasemi, P.; Goodarzian, F. Evaluating the efficiency of relief centers in disaster and epidemic conditions using multi-criteria decision-making methods and GIS: A case study. Int. J. Disaster Risk Reduct. 2023, 85, 103512. [Google Scholar] [CrossRef]
- Félix, D.; Branco, J.M.; Feio, A. Temporary housing after disasters: A state of the art survey. Habitat Int. 2013, 40, 136–141. [Google Scholar] [CrossRef]
- Abrahams, D. The barriers to environmental sustainability in post-disaster settings: A case study of transitional shelter implementation in Haiti. Disasters 2014, 38, 25–49. [Google Scholar] [CrossRef]
- Potangaroa, R. Sustainability by Design: The Challenge of Shelter in Post Disaster Reconstruction. Procedia Soc. Behav. Sci. 2015, 179, 212–221. [Google Scholar] [CrossRef]
- Hosseini, S.M.A.; de la Fuente, A.; Pons, O. Multicriteria Decision-Making Method for Sustainable Site Location of Post-Disaster Temporary Housing in Urban Areas. J. Constr. Eng. Manag. 2016, 142, 04016036. [Google Scholar] [CrossRef]
- Pomponi, F.; Moghayedi, A.; Alshawawreh, L.; D’amico, B.; Windapo, A. Sustainability of post-disaster and post-conflict sheltering in Africa: What matters? Sustain. Prod. Consum. 2019, 20, 140–150. [Google Scholar] [CrossRef]
- Ghomi, S.G.; Wedawatta, G.; Ginige, K.; Ingirige, B. Living-transforming disaster relief shelter: A conceptual approach for sustainable post-disaster housing. Built Environ. Proj. Asset Manag. 2021, 11, 687–704. [Google Scholar] [CrossRef]
- Hosseini Sabzevari, S.A.; Mottaki, Z.; Hassani, A.; Zandiyeh, S.; Aslani, F. Temporary housing site selection in Soffeh mountain, district 5 of Isfahan, Iran. Int. J. Disaster Resil. Built Environ. 2023, 14, 611–627. [Google Scholar] [CrossRef]
- Atanassov, K.; Sotirova, E.; Andonov, V. Generalized net model of multicriteria decision making procedure using intercriteria analysis. In Advances in Fuzzy Logic and Technology 2017, Proceedings of the EUSFLAT-2017—The 10th Conference of the European Society for Fuzzy Logic and Technology, Warsaw, Poland, 11–15 September 2017, IWIFSGN’2017—The Sixteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, Warsaw, Poland, 13–15 September 2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 641, pp. 99–111. [Google Scholar]
- Türkşen, I. Type 2 representation and reasoning for CWW. Fuzzy Sets Syst. 2002, 127, 17–36. [Google Scholar] [CrossRef]
- Dereli, T.; Altun, K. Technology evaluation through the use of interval type-2 fuzzy sets and systems. Comput. Ind. Eng. 2013, 65, 624–633. [Google Scholar] [CrossRef]
- Trivedi, A. A multi-criteria decision approach based on DEMATEL to assess determinants of shelter site selection in disaster response. Int. J. Disaster Risk Reduct. 2018, 31, 722–728. [Google Scholar] [CrossRef]
- Trivedi, A.; Singh, A. Prioritizing emergency shelter areas using hybrid multi-criteria decision approach: A case study. J. Multi-Criteria Decis. Anal. 2017, 24, 133–145. [Google Scholar] [CrossRef]
- Fekete, A.; Bross, L.; Krause, S.; Neisser, F.; Tzavella, K. Bridging Gaps in Minimum Humanitarian Standards and Shelter Planning by Critical Infrastructures. Sustainability 2021, 13, 849. [Google Scholar] [CrossRef]
- Kılcı, F.; Kara, B.Y.; Bozkaya, B. Locating temporary shelter areas after an earthquake: A case for Turkey. Eur. J. Oper. Res. 2015, 243, 323–332. [Google Scholar] [CrossRef]
- Turkish Red Crescent. Report on Humanitarian Operations in Van. Available online: http://afetyonetimi.kizilay.org.tr/Operasyonlar.aspx?Id=4 (accessed on 10 June 2013).
- QSAND: Quantifying Sustainability in the Aftermath of Natural Disasters. BRE Global Limited in Conjunction with The International Federation of the Red Cross and Red Crescent Societies (IFRC). 2014. Available online: https://www.qsand.org (accessed on 27 December 2023).
- Aman, D.D.; Aytac, G. Multi-criteria decision making for city-scale infrastructure of post-earthquake assembly areas: Case study of Istanbul. Int. J. Disaster Risk Reduct. 2022, 67, 102668. [Google Scholar] [CrossRef]
- Şenik, B.; Uzun, O. An assessment on size and site selection of emergency assembly points and temporary shelter areas in Düzce. Nat. Hazards 2021, 105, 1587–1602. [Google Scholar] [CrossRef]
- Cetin, M.; Kaya, A.Y.; Elmastas, N.; Adiguzel, F.; Siyavus, A.E.; Kocan, N. Assessment of emergency gathering points and temporary shelter areas for disaster resilience in Elazıg, Turkey. Nat. Hazards 2023, 120, 1925–1949. [Google Scholar] [CrossRef]
- Sphere. Humanitarian Charter and Minimum Standards in Disaster Response. In The Sphere Handbook; Sphere: London, UK, 2018. [Google Scholar]
- Güler, E.; Avcı, S.; Aladağ, Z. Evaluation of criteria effecting the selection of temporary shelter areas by DEMATEL-SWARA methods (In Turkish). Uluslararası Batı Karadeniz Mühendislik Fen Bilim. Derg. 2022, 4, 57–74. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci. 1975, 8, 301–357. [Google Scholar] [CrossRef]
- Karnik, N.N.; Mendel, J.M. Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 2001, 122, 327–348. [Google Scholar] [CrossRef]
- Mendel, J.M. Advances in type-2 fuzzy sets and systems. Inf. Sci. 2007, 177, 84–110. [Google Scholar] [CrossRef]
- Celik, E.; Gul, M.; Aydin, N.; Gumus, A.T.; Guneri, A.F. A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowl. Based Syst. 2015, 85, 329–341. [Google Scholar] [CrossRef]
- Altay, B.C.; Boztas, A.E.; Okumuş, A.; Gul, M.; Çelik, E. How Will Autonomous Vehicles Decide in Case of an Accident? An Interval Type-2 Fuzzy Best–Worst Method for Weighting the Criteria from Moral Values Point of View. Sustainability 2023, 15, 8916. [Google Scholar] [CrossRef]
- Altay, B.C.; Celik, E.; Okumus, A.; Balin, A.; Gul, M. An integrated interval type-2 fuzzy BWM-MARCOS model for location selection of e-scooter sharing stations: The case of a university campus. Eng. Appl. Artif. Intell. 2023, 122, 106095. [Google Scholar] [CrossRef]
- Castillo, O.; Melin, P. Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review. Inf. Sci. 2012, 205, 1–19. [Google Scholar] [CrossRef]
- Mendel, J.M.; John, R.I.; Liu, F. Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Trans. Fuzzy Syst. 2006, 14, 808–821. [Google Scholar] [CrossRef]
- Soner, O.; Celik, E.; Akyuz, E. Application of AHP and VIKOR methods under interval type 2 fuzzy environment in maritime transportation. Ocean Eng. 2017, 129, 107–116. [Google Scholar] [CrossRef]
- Celik, E.; Gumus, A.T. An outranking approach based on interval type-2 fuzzy sets to evaluate preparedness and response ability of non-governmental humanitarian relief organizations. Comput. Ind. Eng. 2016, 101, 21–34. [Google Scholar] [CrossRef]
- Celik, E.; Gumus, A.T. An assessment approach for non-governmental organizations in humanitarian relief logistics and an application in Turkey. Technol. Econ. Dev. Econ. 2018, 24, 1–26. [Google Scholar] [CrossRef]
- Kahraman, C.; Öztayşi, B.; Sarı, U.; Turanoğlu, E. Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl. Based Syst. 2014, 59, 48–57. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega 2016, 64, 126–130. [Google Scholar] [CrossRef]
- Mi, X.; Tang, M.; Liao, H.; Shen, W.; Lev, B. The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what’s next? Omega 2019, 87, 205–225. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, L.; Chen, Y.; Chen, H. An integrated approach to green supplier selection based on the interval type-2 fuzzy best-worst and extended VIKOR methods. Inf. Sci. 2019, 502, 394–417. [Google Scholar] [CrossRef]
- Alshawawreh, L.; Pomponi, F.; D’amico, B.; Snaddon, S.; Guthrie, P. Qualifying the Sustainability of Novel Designs and Existing Solutions for Post-Disaster and Post-Conflict Sheltering. Sustainability 2020, 12, 890. [Google Scholar] [CrossRef]
Main Criteria | Sub Criteria |
---|---|
Favorability of terrain (FT) (C1) | Topography (C11) |
Slope (C12) | |
Presence of trees (C13) | |
Ownership status (C14) | |
Population density (area per capita) (C15) | |
Suitable for disabled and elderly transportation (C16) | |
Electrical infrastructure (EI) (C2) | Available electricity (C21) |
Electric lighting (C22) | |
Telecommunication facility (C23) | |
Hygiene and sanitary system (HSS) (C3) | Drinking water (C31) |
Drainage system and sewer infrastructure (C32) | |
Solid waste disposal (C33) | |
Safety and security (SS) (C4) | Landslides, flooding, etc. (C41) |
Warning systems (sound systems) (C42) | |
Access to livelihoods (C43) | |
Fire safety (C44) | |
Transport–distribution capacity (TDC) (C5) | Optimum distribution condition (C51) |
Distribution center capacity (C52) | |
Adequate distribution logistics personnel (C53) | |
Proximity (P) (C6) | Distance to settlement (accessibility) (C61) |
Distance to disaster debris storage areas (C62) | |
Distance to market/warehouses (C63) | |
Distance from major roads (C64) | |
Distance to health facility (C65) | |
Distance from transport centers (C66) |
Occupation | Education Level | Department | Expertise Area | Experience (Years) | Disaster Worked as Officer | |
---|---|---|---|---|---|---|
Expert 1 | Business Administration | Undergraduate | Planning and Mitigation (Manager) | Temporary shelter location selection | 29 | 24.01.2020 Sivrice (Elazığ) Mw 6.8, 06.02.2023 Pazarcık and Elbistan (Kahramanmaras) Mw 7.8 and 7.5 |
Expert 2 | Civil Engineer | Graduate (MSc) | Improvement | Temporary shelter location selection | 9 | |
Expert 3 | Chemistry Engineer | Graduate (MSc) | Disaster and Emergency Management Center | Camp manager | 9 | Syrian refugee camps (Nizip container city) |
Expert 4 | Mechanical Engineer | Undergraduate | Disaster and Emergency Management Center | Technician | 6 | 24.01.2020 Sivrice (Elazığ) Mw 6.8, 06.02.2023 Pazarcık and Elbistan (Kahramanmaras) Mw 7.8 and 7.5 |
Expert 5 | Topographical Engineer | Undergraduate | Improvement | Temporary shelter location selection | 8 | |
Expert 6 | Civil Engineer | Undergraduate | Improvement | Temporary shelter location selection | 9 | |
Expert 7 | Civil Engineer | Undergraduate | Improvement | Temporary shelter location selection | 9 | |
Expert 8 | Geophysics Engineer | Undergraduate | Improvement | Location service | 6 | |
Expert 9 | Industrial Engineer | Graduate (PhD) | Information System (Manager) | Location service Information system | 10 |
Linguistic Variable | Interval Type-2 Fuzzy Sets |
---|---|
Equally Important (EI) | ((1;1;1;1;1;1), (1;1;1;1;0.9;0.9)) |
IV2 | ((1;2;2;3;1;1), (1.5;2;2;2.5;0.9;0.9)) |
Moderately More Important (MMI) | ((2;3;3;4;1;1), (2.5;3;3;3.5;0.9;0.9)) |
IV4 | ((3;4;4;5;1;1), (3.5;4;4;4.5;0.9;0.9)) |
Strongly More Important (SMI) | ((4;5;5;6;1;1), (4.5;5;5;5.5;0.9;0.9)) |
IV6 | ((5;6;6;7;1;1), (5.5;6;6;6.5;0.9;0.9)) |
Very Strongly More Important (VSMI) | ((6;7;7;8;1;1), (6.5;7;7;7.5;0.9;0.9)) |
IV8 | ((7;8;8;9;1;1), (7.5;8;8;8.5;0.9;0.9)) |
Extremely More Important (EMI) | ((8;9;9;10;1;1), (8.5;9;9;9.5;0.9;0.9)) |
Main Criteria | BO | C1 | C2 | C3 | C4 | C5 | C6 |
C6 | VSMI | EMI | SMI | MMI | VSMI | EI | |
OW | C1 | C2 | C3 | C4 | C5 | C6 | |
C2 | MMI | EI | IV4 | MMI | IV6 | EMI | |
FT | BO | C11 | C12 | C13 | C14 | C15 | C16 |
C14 | MMI | SMI | EMI | EI | VSMI | SMI | |
OW | C11 | C12 | C13 | C14 | C15 | C16 | |
C13 | VSMI | SMI | EI | EMI | MMI | SMI | |
EI | BO | C21 | C22 | C23 | |||
C22 | SMI | EI | EMI | ||||
OW | C21 | C22 | C23 | ||||
C23 | SMI | EMI | EI | ||||
HSS | BO | C31 | C32 | C33 | |||
C32 | SMI | EI | EMI | ||||
OW | C31 | C32 | C33 | ||||
C33 | SMI | EMI | EI | ||||
SS | BO | C41 | C42 | C43 | C44 | ||
C41 | EI | EMI | MMI | SMI | |||
OW | C41 | C42 | C43 | C44 | |||
C42 | EMI | EI | MMI | SMI | |||
TDC | BO | C51 | C52 | C53 | |||
C52 | EMI | EI | SMI | ||||
OW | C51 | C52 | C53 | ||||
C51 | EI | EMI | SMI | ||||
P | BO | C61 | C62 | C63 | C64 | C65 | C66 |
C64 | MMI | EMI | MMI | EI | MMI | MMI | |
OW | C61 | C62 | C63 | C64 | C65 | C66 | |
C62 | MMI | EI | MMI | EMI | MMI | MMI |
Expert 1 | Expert 2 | Expert 3 | Expert 4 | Expert 5 | Expert 6 | Expert 7 | Expert 8 | Expert 9 | Overall | |
---|---|---|---|---|---|---|---|---|---|---|
Main Criteria | 2.04% | 0.54% | 1.63% | 0.54% | 1.63% | 2.18% | 1.96% | 1.46% | 5.15% | 1.90% |
C1 | 5.47% | 3.77% | 5.64% | 0.54% | 5.64% | 5.64% | 1.63% | 2.18% | 1.63% | 3.57% |
C2 | 2.47% | 2.47% | 2.47% | 2.47% | 2.47% | 3.65% | 3.65% | 0.89% | 0.89% | 2.38% |
C3 | 2.47% | 2.47% | 2.47% | 3.65% | 2.47% | 0.89% | 3.65% | 3.65% | 3.65% | 2.82% |
C4 | 1.96% | 0.73% | 2.11% | 0.73% | 2.11% | 2.83% | 0.73% | 2.11% | 2.11% | 1.71% |
C5 | 2.47% | 0.89% | 2.47% | 3.65% | 2.47% | 2.47% | 2.47% | 3.65% | 2.47% | 2.56% |
C6 | 0.99% | 2.06% | 3.39% | 1.68% | 1.68% | 1.21% | 3.39% | 1.63% | 4.49% | 2.28% |
Expert 1 | Expert 2 | Expert 3 | Expert 4 | Expert 5 | Expert 6 | Expert 7 | Expert 8 | Expert 9 | Local Weights | Global Weights | |
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.0876 | 0.1327 | 0.0365 | 0.1327 | 0.1134 | 0.0332 | 0.1548 | 0.1528 | 0.0667 | 0.1011 | |
C2 | 0.0365 | 0.1327 | 0.1582 | 0.1327 | 0.1134 | 0.1726 | 0.1548 | 0.1019 | 0.1100 | 0.1236 | |
C3 | 0.1168 | 0.1327 | 0.1055 | 0.0442 | 0.1134 | 0.1150 | 0.1548 | 0.0370 | 0.0055 | 0.0917 | |
C4 | 0.1752 | 0.1327 | 0.4625 | 0.4252 | 0.0412 | 0.0863 | 0.0298 | 0.1019 | 0.1467 | 0.1779 | |
C5 | 0.0876 | 0.4252 | 0.0791 | 0.1327 | 0.1134 | 0.4779 | 0.4286 | 0.1528 | 0.2200 | 0.2352 | |
C6 | 0.4964 | 0.0442 | 0.1582 | 0.1327 | 0.5052 | 0.1150 | 0.0774 | 0.4537 | 0.4511 | 0.2704 | |
C11 | 0.1670 | 0.1327 | 0.1134 | 0.1327 | 0.5052 | 0.5052 | 0.5052 | 0.1150 | 0.1134 | 0.2544 | 0.02573 |
C12 | 0.1113 | 0.1327 | 0.1134 | 0.1327 | 0.1134 | 0.1134 | 0.1134 | 0.1150 | 0.1134 | 0.1176 | 0.01190 |
C13 | 0.0385 | 0.0442 | 0.0412 | 0.1327 | 0.1134 | 0.1134 | 0.1134 | 0.0863 | 0.1134 | 0.0885 | 0.00895 |
C14 | 0.4882 | 0.1327 | 0.1134 | 0.0442 | 0.0412 | 0.0412 | 0.0412 | 0.1726 | 0.1134 | 0.1320 | 0.01335 |
C15 | 0.0835 | 0.4252 | 0.5052 | 0.1327 | 0.1134 | 0.1134 | 0.1134 | 0.4779 | 0.5052 | 0.2744 | 0.02775 |
C16 | 0.1113 | 0.1327 | 0.1134 | 0.4252 | 0.1134 | 0.1134 | 0.1134 | 0.0332 | 0.0412 | 0.1330 | 0.01345 |
C21 | 0.1719 | 0.7656 | 0.7656 | 0.7656 | 0.7656 | 0.8000 | 0.8000 | 0.7062 | 0.7062 | 0.6941 | 0.08581 |
C22 | 0.7656 | 0.0625 | 0.1719 | 0.1719 | 0.0625 | 0.0556 | 0.0556 | 0.2203 | 0.2203 | 0.1985 | 0.02453 |
C23 | 0.0625 | 0.1719 | 0.0625 | 0.0625 | 0.1719 | 0.1444 | 0.1444 | 0.0734 | 0.0734 | 0.1074 | 0.01328 |
C31 | 0.1719 | 0.7656 | 0.1719 | 0.8000 | 0.1719 | 0.2203 | 0.8000 | 0.1444 | 0.1444 | 0.3767 | 0.03453 |
C32 | 0.7656 | 0.1719 | 0.7656 | 0.1444 | 0.7656 | 0.7062 | 0.1444 | 0.8000 | 0.8000 | 0.5627 | 0.05157 |
C33 | 0.0625 | 0.0625 | 0.0625 | 0.0556 | 0.0625 | 0.0734 | 0.0556 | 0.0556 | 0.0556 | 0.0606 | 0.00556 |
C41 | 0.6087 | 0.5787 | 0.1467 | 0.1806 | 0.1467 | 0.6207 | 0.5787 | 0.1467 | 0.6533 | 0.4067 | 0.07237 |
C42 | 0.0497 | 0.1806 | 0.0533 | 0.0602 | 0.0533 | 0.0431 | 0.0602 | 0.0533 | 0.0533 | 0.0675 | 0.01200 |
C43 | 0.2050 | 0.0602 | 0.6533 | 0.5787 | 0.6533 | 0.1121 | 0.1806 | 0.6533 | 0.1467 | 0.3603 | 0.06411 |
C44 | 0.1366 | 0.1806 | 0.1467 | 0.1806 | 0.1467 | 0.2241 | 0.1806 | 0.1467 | 0.1467 | 0.1655 | 0.02944 |
C51 | 0.0625 | 0.0734 | 0.0625 | 0.0556 | 0.0625 | 0.1719 | 0.0625 | 0.0556 | 0.0625 | 0.0743 | 0.01748 |
C52 | 0.7656 | 0.7062 | 0.1719 | 0.1444 | 0.7656 | 0.0625 | 0.1719 | 0.8000 | 0.7656 | 0.4838 | 0.11380 |
C53 | 0.1719 | 0.2203 | 0.7656 | 0.8000 | 0.1719 | 0.7656 | 0.7656 | 0.1444 | 0.1719 | 0.4419 | 0.10396 |
C61 | 0.1110 | 0.0314 | 0.4399 | 0.0934 | 0.0934 | 0.4086 | 0.4399 | 0.5052 | 0.4445 | 0.2852 | 0.07714 |
C62 | 0.0483 | 0.0816 | 0.0543 | 0.0540 | 0.0540 | 0.0463 | 0.0543 | 0.1134 | 0.0572 | 0.0626 | 0.01693 |
C63 | 0.1401 | 0.1088 | 0.1264 | 0.4567 | 0.1320 | 0.1363 | 0.1264 | 0.1134 | 0.1428 | 0.1648 | 0.04456 |
C64 | 0.4204 | 0.1632 | 0.1264 | 0.1320 | 0.4567 | 0.1363 | 0.1264 | 0.1134 | 0.1063 | 0.1979 | 0.05351 |
C65 | 0.1401 | 0.4519 | 0.1264 | 0.1320 | 0.1320 | 0.1363 | 0.1264 | 0.1134 | 0.1428 | 0.1668 | 0.04511 |
C66 | 0.1401 | 0.1632 | 0.1264 | 0.1320 | 0.1320 | 0.1363 | 0.1264 | 0.0412 | 0.1063 | 0.1227 | 0.03317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celik, E. Analyzing the Shelter Site Selection Criteria for Disaster Preparedness Using Best–Worst Method under Interval Type-2 Fuzzy Sets. Sustainability 2024, 16, 2127. https://doi.org/10.3390/su16052127
Celik E. Analyzing the Shelter Site Selection Criteria for Disaster Preparedness Using Best–Worst Method under Interval Type-2 Fuzzy Sets. Sustainability. 2024; 16(5):2127. https://doi.org/10.3390/su16052127
Chicago/Turabian StyleCelik, Erkan. 2024. "Analyzing the Shelter Site Selection Criteria for Disaster Preparedness Using Best–Worst Method under Interval Type-2 Fuzzy Sets" Sustainability 16, no. 5: 2127. https://doi.org/10.3390/su16052127
APA StyleCelik, E. (2024). Analyzing the Shelter Site Selection Criteria for Disaster Preparedness Using Best–Worst Method under Interval Type-2 Fuzzy Sets. Sustainability, 16(5), 2127. https://doi.org/10.3390/su16052127