Distribution and Transformation of Soil Phosphorus Forms under Different Land Use Patterns in an Urban Area of the Lower Yangtze River Basin, South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analytical Methods
2.3.1. The Determination of Soil pH and Grain Sizes
2.3.2. The Determination of Phosphorus Forms
2.4. Data Processing
3. Results
3.1. Grain Sizes and pH Values of Soils
3.2. The Profile Distribution of Phosphorus Forms
3.3. Correlations of Variables, including pH, Grain Size, and Phosphorus Forms
4. Discussion
4.1. The Effects of pH and Grain Sizes on Phosphorus Forms
4.2. The Transformation of Phosphorus Forms under Different Land Use Patterns
4.3. Implications for Local Soil P Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weatheimer, F.H. Why nature chose phosphates. Science 1987, 235, 1173–1178. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.; Yang, Y.; Yu, M.; Wang, C.; Yan, J. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant Soil 2019, 440, 523–537. [Google Scholar] [CrossRef]
- Yang, X.; Post, W.M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 2011, 8, 2907–2916. [Google Scholar] [CrossRef]
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Brenes-Arguedas, T.; Condit, R. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 2018, 555, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.M.; Yu, Y.; Hong, B.; Chen, J.J.; Zhang, Y.J. Factors influencing runoff P losses from farmlands of the Dianchi Lake watershed in Yunnan, China. Pedosphere 2004, 14, 259–262. [Google Scholar]
- Koh, H.S. Using algal biomass-phosphorus (P) relationships and nutrient limitation theory to evaluate the adequacy of P water quality criteria for regulated monsoon rivers and reservoirs. Chem. Ecol. 2019, 35, 408–430. [Google Scholar] [CrossRef]
- Cui, Y.; Xiao, R.; Xie, Y.; Zhang, M. Phosphorus fraction and phosphate sorption-release characteristics of the wetland sediments in the Yellow River Delta. Phys. Chem. Earth 2018, 103, 19–27. [Google Scholar] [CrossRef]
- Augusto, L.; Achat, D.L.; Jonard, M.; Vidal, D.; Ringeval, B. Soil parent material–A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Chang. Biol. 2017, 23, 3808–3824. [Google Scholar] [CrossRef]
- Hou, E.; Chen, C.; Luo, Y.; Zhou, G.; Kuang, Y.; Zhang, Y.; Heenan, M.; Lu, X.; Wen, D. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 3344–3356. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, L.; Lu, H.; Shao, Y.; Liu, S.; Fu, S. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Sci. Total Environ. 2020, 732, 139295. [Google Scholar] [CrossRef]
- Wilson, S.G.; Dahlgren, R.A.; Margenot, A.J.; Rasmussen, C.; O’Geen, A.T. Expanding the Paradigm: The influence of climate and lithology on soil phosphorus. Geoderma 2022, 421, 115809. [Google Scholar] [CrossRef]
- Saentho, A.; Wisawapipat, W.; Lawongsa, P.; Aramrak, S.; Prakongkep, N.; Klysubun, W.; Christl, I. Speciation and pH- and particle size-dependent solubility of phosphorus in tropical sandy soils. Geoderma 2022, 408, 115590. [Google Scholar] [CrossRef]
- Yang, J.; Xin, X.L.; Zhang, X.F.; Zhong, X.Y.; Yang, W.L.; Ren, G.C.; Zhu, A.N. Effects of soil physical and chemical properties on phosphorus adsorption-desorption in fluvo-aquic soil under conservation tillage. Soil Tillage Res. 2023, 234, 105840. [Google Scholar] [CrossRef]
- An, R.; Wang, X.; Zhang, X.; Chen, C.; Liu, X.; Cai, S. Quantitative characterization of drying-induced cracks and permeability of granite residual soil using micron-sized X-ray computed tomography. Sci. Total Environ. 2023, 876, 163213. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.P.; Mwamila, L.B.; Kergoat, K. The pH dependence of phosphate sorption and desorption in Swedish agricultural soils. Geoderma 2012, 189–190, 304–311. [Google Scholar] [CrossRef]
- Simonsson, M.; Östlund, A.; Renfjäll, L.; Sigtryggsson, C.; Börjesson, G.; Kätterer, T. Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma 2018, 315, 208–219. [Google Scholar] [CrossRef]
- Gérard, F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma 2016, 262, 213–226. [Google Scholar] [CrossRef]
- Jian, Z.J.; Lei, L.; Ni, Y.Y.; Xu, J.; Xiao, W.F.; Zeng, L.X. Soil clay is a key factor affecting soil phosphorus availability in the distribution area of Masson pine plantations across subtropical China. Ecol. Indic. 2022, 144, 109482. [Google Scholar] [CrossRef]
- Cao, L.; Ji, F.Y. Phosphorus distribution characteristics in dry-wet alternation sediment of fluctuation zone in Three Gorges Reservoir area. Earth Environ. 2013, 41, 126–131. (In Chinese) [Google Scholar]
- Fang, B.; Wang, C.; Wang, C.; Zhou, X.M.; Fang, F.; Guo, J.S.; Li, Z. Characterizations of phosphorus fractions in the soil at different altitudes of water-level-fluctuation zone, Three Gorges Reservoir. J. Chongqing Univ. 2018, 41, 20–28. (In Chinese) [Google Scholar]
- Solomon, D.; Lehmann, J.; Mamo, T.; Fritzsche, F.; Zech, W. Phosphorus forms and dynamics as influenced by land use changes in sub-humid Ethiopian highland. Geoderma 2002, 105, 21–48. [Google Scholar] [CrossRef]
- Yang, W.J.; Cheng, H.G.; Hao, F.H.; Ouyang, W.; Liu, S.Q.; Lin, C.Y. The influence of land-use change on the forms of phosphorus in soil profiles from the Sanjiang Plain of China. Geoderma 2012, 189–190, 207–214. [Google Scholar] [CrossRef]
- Li, T.; Zheng, W.W.; Zhou, Z.J.; Zhang, S.R.; Xu, X.X.; Pu, Y.L.; Li, H. Soil phosphorus variation regulated by changes in land use spatial patterns during urbanization in western Chengdu, China. Glob. Ecol. Conserv. 2021, 27, e01576. [Google Scholar] [CrossRef]
- Fu, D.G.; Xu, Z.X.; Wu, X.N.; Zhao, L.Q.; Zhu, A.Q.; Duan, C.Q.; Chadwick, D.R.; Jones, D.L. Land use effects on soil phosphorus behavior characteristics in the eutrophic aquatic-terrestrial ecotone of Dianchi Lake, China. Soil Tillage Res. 2021, 205, 104793. [Google Scholar] [CrossRef]
- Azene, B.; Qiu, P.; Zhu, R.H.; Pan, K.W.; Sun, X.M.; Nigussie, Y.; Yigez, B.; Gruba, P.; Wu, X.G.; Zhang, L. Response of soil phosphorus fractions to land use change in the subalpine ecosystems of Southeast margin of Qinghai-Tibet Plateau, Southwest China. Ecol. Indic. 2022, 144, 109432. [Google Scholar] [CrossRef]
- Yan, X.; Wei, Z.Q.; Hong, Q.Q.; Lu, Z.H.; Wu, J.F. Phosphorus fractions and sorption characteristics in a subtropical paddy soil as influenced by fertilizer sources. Geoderma 2017, 295, 280–285. [Google Scholar] [CrossRef]
- Maranguit, D.; Guillaume, T.; Kuzyakov, Y. Land-use change affects phosphorus fraction in highly weathered tropical soils. Catena 2017, 149, 385–393. [Google Scholar] [CrossRef]
- Fu, D.G.; Wu, X.N.; Duan, C.Q.; Chadwick, D.R.; Jone, D.L. Response of soil phosphorus fractions and fluxes to different vegetation restoration types in a subtropical mountain ecosystem. Catena 2020, 193, 104663. [Google Scholar] [CrossRef]
- Zhao, L.H.; Wang, P.; Ouyang, X.Z.; Wu, Z.W. An analysis of the spatio-temporal variation in fractional vegetation cover and its relationship with non-climate factors in Nanchang City, China. Acta Ecol. Sin. 2016, 36, 3723–3733. (In Chinese) [Google Scholar]
- Xiong, S.; Lu, B.H.; Cheng, Z.H.; Wang, H.F.; Hu, Y. Study and forecasting change characteristics of main climatic factors in Nanchang City. Water Resour. Power 2017, 35, 15–19. (In Chinese) [Google Scholar]
- Rao, W.B.; Mao, C.P.; Wang, Y.G.; Su, J.B.; Balsam, W.; Ji, J.F. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China. Mar. Geol. 2015, 359, 35–49. [Google Scholar] [CrossRef]
- Ruttenberg, K.C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 1992, 37, 1460–1482. [Google Scholar] [CrossRef]
- Ni, J.Y.; Lin, P.; Zhen, Y.; Yao, X.Y. Distribution, source and chemical speciation of phosphorus in surface sediments of the central Pacific Ocean. Deep Sea Res. Part I 2015, 105, 74–82. [Google Scholar] [CrossRef]
- Shepard, F.P. Nomenclature based on sand-silt-clay ratios. J. Sediment. Res. 1954, 24, 151–158. [Google Scholar]
- Zheng, F.W.; Rao, W.B.; Chu, X.D.; Bai, H.; Jiang, S.Y. Chemical and sulfur isotopic characteristics of precipitation in a representative urban site, South China: Implication for anthropogenic influences. Air Qual. Atmos. Health 2020, 13, 349–359. [Google Scholar] [CrossRef]
- Abd-Alla, M.H. Use of organic phosphorus by rhizobium leguminosarum biovar viceae phosphatases. Biol. Fertil. Soils 1994, 18, 216–218. [Google Scholar] [CrossRef]
- Dinkelaker, B.; Marschnir, H. In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 1992, 144, 199–205. [Google Scholar] [CrossRef]
- Samuel, A.D.; Brejea, R.; Domuta, C.; Bungau, S.; Cenusa, N.; Tit, D.M. Enzymatic indicators of soil quality. J. Environ. Prot. Ecol. 2017, 18, 871–878. [Google Scholar]
- Samuel, A.D.; Tit, D.M.; Melinte, C.E.; Iovan, C.; Purza, L.; Gitea, M.; Bungau, S. Enzymological and physicochemical evaluation of the effects of soil management practices. Rev. Chim. 2017, 68, 2243–2247. [Google Scholar] [CrossRef]
- Eriksson, A.K.; Gustafsson, J.P.; Hesterberg, D. Phosphorus speciation of clay fractions from long-term fertility experiments in Sweden. Geoderma 2015, 241–242, 68–74. [Google Scholar] [CrossRef]
- Mitran, T.; Mani, P.K.; Bandyopadhyay, P.K.; Basak, N. Effects of organic amendments on soil physical attributes and aggregate-associated phosphorus under long-term rice-wheat cropping. Pedosphere 2018, 28, 823–832. [Google Scholar] [CrossRef]
- Song, D.; Bai, X.H. Distribution of phosphorus and nitrogen in the sediments of the North Bay in Dianchi Lake. Environ. Eng. Sci. 2016, 33, 563–570. [Google Scholar]
- Zhang, T.Q.; Mackenzie, A.F.; Liang, B.C.; Drury, C.F. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Sci. Soc. Am. J. 2004, 68, 519–528. [Google Scholar]
- Spohn, M. Phosphorus and carbon in soil particle size fractions: A synthesis. Biogeochemistry 2020, 147, 225–242. [Google Scholar] [CrossRef]
- Huang, J.; Hartemink, A.E. Soil and environmental issues in sandy soils. Earth Sci. Rev. 2020, 208, 103295. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Yang, J.; Abdi, D.; Cade-Menun, B.J. Investigation of soil legacy phosphorus transformation in long-term agricultural fields using sequential fractionation, P K-edge XANES and solution P NMR spectroscopy. Environ. Sci. Technol. 2015, 49, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.P.; Li, T.N.; Rao, W.B.; Tang, Z.; Song, Y.X.; Wang, S. Chemical speciation of phosphorus in surface sediments from the Jiangsu Coast, East China: Influences, provenances and bioavailabilities. Mar. Pollut. Bull. 2021, 163, 111961. [Google Scholar] [CrossRef]
- Sun, S.J.; Huang, S.L.; Sun, X.M.; Wen, W. Phosphorus fractions and its release in the sediments of Haihe River, China. J. Environ. Sci. 2009, 21, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Lu, S.Y.; Zhao, Y.K.; Wang, W.; Huang, M.S. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment. J. Environ. Sci. 2011, 23, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.S.; Panigrahi, M.K.; Kurian, J.; Gupta, A.K.; Tripathy, S. Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea. Cont. Shelf Res. 2016, 115, 65–75. [Google Scholar] [CrossRef]
- McGill, W.B.; Cole, C.V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 1981, 26, 267–286. [Google Scholar] [CrossRef]
- Kaiserli, A.; Voutsa, D.; Samara, C. Phosphorus fractionation in lake sediments–Lakes Volvi and Koronia, N. Greece. Chemosphere 2002, 46, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.F.; Jin, J.Y.; Shi, Y.L. Research advance on soil phosphorous forms and their availability to crops in soil. Soil Fertil. Sci. China 2011, 2, 1–9. (In Chinese) [Google Scholar]
- Kraal, P.; Burton, E.D.; Rose, A.L.; Kocar, B.D.; Lockhart, R.S.; Grice, K.; Bush, R.T.; Tan, E.; Webb, S.M. Sedimentary iron—Phosphorus cycling under contrasting redox conditions in a eutrophic estuary. Chem. Geol. 2015, 392, 19–31. [Google Scholar] [CrossRef]
- Liu, K.; Ni, Z.K.; Wang, S.R.; Ni, C.Y. Distribution characteristics of phosphorus in sediments at different altitudes of Poyang Lake. China Environ. Sci. 2015, 35, 856–861. (In Chinese) [Google Scholar]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 28, 30528–30550. [Google Scholar] [CrossRef]
- Jilbert, T.; Slomp, C.P. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea. Geochim. Cosmochim. Acta 2013, 107, 155–169. [Google Scholar] [CrossRef]
- Chen, M.H.; Lu, Y.; Wang, C.Z.; Walter, M.T. An investigation of the effects of humic acid on soil erosion and loss of phosphorus from soil to runoff: Experiment and modeling. Geoderma 2022, 427, 116121. [Google Scholar] [CrossRef]
- Zhu, N.; Yan, Y.C.; Bai, K.Y.; Zhang, J.M.; Wang, C.; Wang, X.; Xu, D.W.; Liu, J.H.; Xin, X.P.; Chen, J.Q. Conversion of croplands to shrublands does not improve soil organic carbon and nitrogen but reduces soil phosphorus in a temperate grassland of northern China. Geoderma 2023, 432, 116407. [Google Scholar] [CrossRef]
- Chen, X.B.; Hu, Y.J.; Xia, Y.H.; Zheng, S.M.; Su, Y.R. Contrasting pathways of carbon sequestration in paddy and upland soils. Glob. Change Biol. 2021, 27, 2478–2490. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Campbell, A.N.; Nico, P.S.; Pett-Ridge, J.; Silver, W.L. Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil. J. Geophys. Res. Biogeosci. 2018, 123, 3016–3027. [Google Scholar]
- Lou, H.Z.; Yang, S.T.; Zhao, C.S.; Zhou, Q.W.; Bai, J.; Hao, F.H.; Wu, L.N. Phosphorus risk in an intensive agricultural area in a mid-high latitude region of China. Catena 2022, 127, 46–55. [Google Scholar] [CrossRef]
- Qin, L.; Jiang, M.; Freeman, C.; Zou, Y.C.; Gao, C.Y.; Tian, W.; Wang, G.D. Agricultural land use regulates the fate of soil phosphorus fractions following the reclamation of wetlands. Sci. Total Environ. 2023, 863, 160891. [Google Scholar] [CrossRef]
Sites | Parameter | Sand (%) | Silt (%) | Clay (%) | Median Grain Size (μm) | pH |
---|---|---|---|---|---|---|
Youkou wasteland | Max | 49.6 | 67.7 | 11.0 | 19.8 | 6.45 |
Min | 21.3 | 45.7 | 4.46 | 10.1 | 5.75 | |
Ave | 34.9 | 57.1 | 7.14 | 14.3 | 6.21 | |
SD | 8.86 | 7.15 | 2.32 | 3.23 | 0.20 | |
Luojiaji paddy field | Max | 42.4 | 68.0 | 14.1 | 16.9 | 6.27 |
Min | 18.9 | 49.7 | 6.33 | 9.58 | 5.22 | |
Ave | 28.7 | 60.8 | 10.2 | 11.9 | 5.94 | |
SD | 6.71 | 5.32 | 2.54 | 2.13 | 0.29 | |
Huiren Avenue dryland | Max | 52.8 | 82.3 | 13.6 | 26.8 | 5.74 |
Min | 4.14 | 37.4 | 6.72 | 5.62 | 5.24 | |
Ave | 25.8 | 63.9 | 9.70 | 11.8 | 5.50 | |
SD | 15.2 | 14.4 | 2.05 | 6.39 | 0.16 |
Variable | pH | Sand | Silt | Clay | MGS | Ex-P | Fe-P | Au-P | De-P | OP | IP |
---|---|---|---|---|---|---|---|---|---|---|---|
Sand | 0.61 * | ||||||||||
Silt | −0.64 * | −0.95 ** | Youkou wasteland | ||||||||
Clay | −0.64 * | −0.94 ** | 0.82 ** | ||||||||
MGS | 0.57 | 0.981 ** | −0.97 ** | −0.88 ** | |||||||
Ex-P | −0.43 | −0.23 | 0.38 | 0.23 | −0.26 | ||||||
Fe-P | −0.85 ** | −0.64 * | 0.67 * | 0.58 * | −0.62 * | 0.20 | |||||
Au-P | −0.61 * | −0.11 | 0.21 | 0.04 | −0.10 | 0.26 | 0.69 * | ||||
De-P | −0.53 | −0.53 | 0.51 | 0.59 * | −0.47 | 0.27 | 0.47 | 0.29 | |||
OP | −0.58 * | −0.62 * | 0.52 | 0.66 * | −0.55 | 0.04 | 0.55 | 0.24 | 0.75 ** | ||
IP | −0.85 ** | −0.61 * | 0.66 * | 0.60 * | −0.58 * | 0.36 | 0.90 ** | 0.72 ** | 0.79 ** | 0.68 * | |
TP | −0.85 ** | −0.66 * | 0.67 * | 0.67 * | −0.62 * | 0.28 | 0.85 ** | 0.62 * | 0.83 ** | 0.83 ** | 0.97 ** |
Sand | 0.24 | ||||||||||
Silt | −0.32 | −0.94 ** | Luojiaji paddy field | ||||||||
Clay | −0.10 | −0.78 ** | 0.54 | ||||||||
MGS | 0.23 | 0.96 ** | −0.87 ** | −0.85 ** | |||||||
Ex-P | 0.38 | 0.45 | −0.35 | −0.46 | 0.41 | ||||||
Fe-P | −0.29 | 0.17 | −0.11 | −0.18 | 0.19 | −0.08 | |||||
Au-P | −0.61 * | 0.07 | −0.03 | −0.05 | 0.04 | 0.10 | 0.28 | ||||
De-P | −0.10 | −0.26 | 0.30 | −0.02 | −0.12 | −0.47 | 0.35 | 0.06 | |||
OP | 0.60 * | 0.02 | 0.03 | −0.24 | 0.13 | 0.07 | 0.18 | −0.40 | 0.67 * | ||
IP | −0.30 | −0.05 | 0.14 | −0.17 | 0.05 | −0.18 | 0.64 * | 0.49 | 0.84 ** | 0.47 | |
TP | 0.10 | −0.02 | 0.10 | −0.23 | 0.10 | −0.09 | 0.51 | 0.12 | 0.89 ** | 0.81 ** | 0.90 ** |
Sand | −0.55 | ||||||||||
Silt | 0.54 | −0.99 ** | Huiren Avenue dryland | ||||||||
Clay | 0.31 | −0.88 ** | 0.84 ** | ||||||||
MGS | −0.43 | 0.93 ** | −0.96 ** | −0.77 ** | |||||||
Ex-P | −0.20 | 0.64 * | −0.64 * | −0.67 * | 0.60 * | ||||||
Fe-P | 0.47 | −0.49 | 0.54 | 0.22 | −0.54 | −0.34 | |||||
Au-P | 0.15 | −0.55 | 0.53 | 0.67 * | −0.54 | −0.35 | 0.35 | ||||
De-P | 0.36 | −0.35 | 0.41 | −0.07 | −0.48 | −0.06 | 0.44 | −0.29 | |||
OP | 0.26 | −0.05 | 0.10 | −0.33 | −0.08 | −0.02 | 0.27 | −0.57 | 0.71 * | ||
IP | 0.45 | −0.69 * | 0.72 ** | 0.47 | −0.76 ** | −0.33 | 0.84 ** | 0.70 * | 0.40 | 0.01 | |
TP | 0.50 | −0.67 * | 0.71 ** | 0.36 | −0.75 ** | −0.32 | 0.88 ** | 0.50 | 0.59 * | 0.30 | 0.96 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Rao, W.; Zheng, F.; Wang, Y.; Zhang, C.; Li, T. Distribution and Transformation of Soil Phosphorus Forms under Different Land Use Patterns in an Urban Area of the Lower Yangtze River Basin, South China. Sustainability 2024, 16, 2142. https://doi.org/10.3390/su16052142
Yan W, Rao W, Zheng F, Wang Y, Zhang C, Li T. Distribution and Transformation of Soil Phosphorus Forms under Different Land Use Patterns in an Urban Area of the Lower Yangtze River Basin, South China. Sustainability. 2024; 16(5):2142. https://doi.org/10.3390/su16052142
Chicago/Turabian StyleYan, Weibing, Wenbo Rao, Fangwen Zheng, Yaning Wang, Chi Zhang, and Tianning Li. 2024. "Distribution and Transformation of Soil Phosphorus Forms under Different Land Use Patterns in an Urban Area of the Lower Yangtze River Basin, South China" Sustainability 16, no. 5: 2142. https://doi.org/10.3390/su16052142
APA StyleYan, W., Rao, W., Zheng, F., Wang, Y., Zhang, C., & Li, T. (2024). Distribution and Transformation of Soil Phosphorus Forms under Different Land Use Patterns in an Urban Area of the Lower Yangtze River Basin, South China. Sustainability, 16(5), 2142. https://doi.org/10.3390/su16052142