Trifluoroacetic Acid: Toxicity, Sources, Sinks and Future Prospects
Abstract
:1. Introduction
2. Physicochemical Properties
3. Toxicity
Species | Type of Organism | No Observed Effects Level or Concentration (NOEL or NOEC) | 50% Effect (TD50 or EC50) [mg L−1] | Ref. |
---|---|---|---|---|
Animals | ||||
Mice | Mammal | 5000 mg kg−1 | not reported | [71] |
Rats | Mammal | 237 mg kg−1 | not reported | [72] |
Danio Rerio | Fish | 1200 mg L−1 | >1200 | [59] |
Daphnia Magna | Aquatic invertebrate | 1200 mg L−1 | >1200 | [59] |
Aquatic Plants and Algae | ||||
Lemna gibba | Aquatic macrophyte | 300 mg L−1 | 1100 | [59] |
Lemna gibba | Aquatic macrophyte | not reported | 618.3–3000 | [61] |
Myriophyllum spicatum | Aquatic macrophyte | not reported | 312.9–10,000 | [61] |
Myriophyllum spicatum | Aquatic macrophyte | not reported | 340.7–10,000 | [61] |
Selenastrum capricornutum | Green alga | 0.12 and <0.36 mg L−1 | >1.2 and 4.8 | [59] |
Chlorella vulgaris | Green alga | 1200 mg L−1 | >1200 | [59] |
Scenedesmus subspicatus | Green alga | not reported | >120 | [59] |
Chlamydomonas reinhardtii | Green alga | 120 mg L−1 | >120 | [59] |
Dunaliella tertiolecta | Green alga | <124 mg L−1 | >125 | [59] |
Euglena gracilis | Green alga | 112 mg L−1 | >112 | [59] |
Phaeodactylum tricornutum | Diatom | 117 mg L−1 | >117 | [59] |
Navicula pelliculosa | Diatom | 600 mg L−1 | 1200 | [59] |
Skeletonema costatum | Diatom | 2400 mg L−1 | >2400 | [59] |
Anabaena Flos-Aquae | Blue-green alga | 600 mg L−1 | 2400 | [59] |
Microcytis aeruginosa | Blue-green alga | 117 mg L−1 | >117 | [59] |
Average NOEC for aquatic plants and algae: 520 mg L−1 a | ||||
Terrestrial Plants | ||||
Deschampsia elongata | Terrestrial plant | >1 mg L−1 b | not reported | [84] |
Lasthenia californica | Terrestrial plant | >1 mg L−1 b | not reported | [84] |
Oryza sativa (rice) | Terrestrial plant | >1 mg L−1 b | not reported | [84] |
Pinus ponderosa | Terrestrial plant | >10 mg L−1 c | not reported | [65] |
Phaseolus vulgaris (common bean) | Terrestrial plant | >2.5 mg L−1; LOEL = 10 mg L−1 b,d | not reported | [85] |
Vigna radiata (mung bean) | Terrestrial plant | 1 mg kg−1 of soil b | not reported | [29] e |
Zea mays (corn) | Terrestrial plant | >2.5 mg L−1; LOEL = 10 mg L−1 b,d | not reported | [85] |
Triticum aestivum (wheat) | Terrestrial plant | 1–32 mg L−1 b 5 mg L−1 c | not reported | [29] e |
Plantago major | Terrestrial plant | 32 mg L−1 b | not reported | [29] e |
Helianthus annus (sunflower) | Terrestrial plant | <1 mg kg−1 soil b; 100 mg L−1 c | not reported | [29] e |
Glycine max (soybean) | Terrestrial plant | 1 mg L−1 b; 10 mg L−1 c | not reported | [29] e |
Average NOEC for terrestrial plants: 7.2 mg L−1 b,f | ||||
Seedling Terrestrial Plants g | ||||
Tomato | seedling | <37.5 μL L−1 | not reported | [86] |
Wheat | seedling | <37.5 μL L−1 and <0.7 μL L−1 | not reported | [86] |
Sunflower | seedling | <0.7 μL L−1 | not reported | [86] |
Mung bean | seedling | <0.7 μL L−1 | not reported | [86] |
Soybean | seedling | <0.031 μL L−1 | not reported | [86] |
4. Sources and Removal
4.1. Anthropogenic Sources of TFA
4.2. Natural Sources of TFA
4.3. Atmospheric Fate of TFA
4.4. Removal of TFA from the Environment
5. Measurements
5.1. TFA in Air
5.2. TFA in Rainfall
Location | Date of Sample | Concentration [ng L−1] |
---|---|---|
California and Nevada, United States | 1994–1996 | 31–3779 [141] |
1996–1997 | 20.7–1530 [157] | |
Chile | 1999 | 6–87 [157] |
Malawi | 1999 | 4–15 [157] |
Canada | 1999 | <0.5–350 [140] |
Canada | 2002–2004 | 43–270 [140] (near urban) 4–220 [140] (remote) |
Tsukuba, Japan | 2007 | 64–76 [156] |
Kawaguchi, Japan | 2007 | 39–65 [156] |
Pearl river delta, China | 2007–2008 | 46–974 [142] |
Urban locations in China | 2016 | 8.8–1.8 × 103 [139] |
Germany a | 2018–2019 | 210 [158] |
Ohio–Wyoming region, United States b | 2019 | 50–1200, median 430 [155] 70–170, median 100 [155] 110–1100, median 340 [155] 60–1100, median 370 [155] 80–750, median 200 [155] 4–170, median 80 [155] 270–850, median 470 [155] |
5.3. TFA in Surface Water
5.4. TFA in Soils and Vegetation
5.5. TFA in Ice and Snow
5.6. TFA in Dust and Sediment
5.7. TFA in Drinking Water and Other Consumables
Consumable | Type of Sample | Location | Date of Sampling | Concentration |
---|---|---|---|---|
Drinking water | Water treatment | Beijing | 2002 | Not detectable [25] |
2012 | 155 ng L−1 [143] | |||
2019 | <7.53–78.7 g L−1 [25] | |||
Water treatment | Germany | 2020 | 0.9–12.4 μg L−1 [175] | |
Tap water | Netherlands | 2021 | 33.56–1104.6 ng L−1 [176] | |
Tap water | Indiana, USA | 2020 | median 79 ng L−1 [82] | |
Beer | Commercial beer | Germany, UK, Netherlands, Greece, USA, New Zealand, Spain, Denmark, Norway, Italy, Belgium, Austria, Sweden, Japan, France, Estonia, Ireland, Portugal, Mexico, Namibia, Australia, Faroe Islands | - | <51 μg L−1, median 6.1 [178] |
Tea/herbal infusion | Commercial samples | Not specified | - | 2.4 μg L−1 [178] |
Wheat | Grain | Agricultural fields, Germany | - | 50–180 μg kg−1 [136] |
Maize | Leaves | Agricultural fields, Germany | - | 250–500 μg kg−1 [136] |
Beijing, Tianjin and Hebei, Northern China | 2016–2017 | >767 ng g−1 [70] | ||
Straw | 2016–2017 | 11.8–149 ng g−1 [70] | ||
Grain | Agricultural fields, Germany | - | 50–180 μg kg−1 [136] | |
Beijing, Tianjin and Hebei, Northern China | 2016–2017 | 15.8–102 ng g−1 [70] | ||
Jerusalem Artichoke | Root | Agricultural fields, Germany | - | 150–200 μg kg−1 [136] |
Ryegrass | Grain | Agricultural fields, Germany | - | 120–180 μg kg−1 [136] |
Locusta migratoria manilens | Insect | Beijing, Tianjin and Hebei, Northern China | 2016–2017 | 14.2–105 ng g−1 [70] |
6. Future Prospects
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPTFE | chloropolytrifluoroethylene |
EC50 | half-maximal effective concentration |
ECTFE | ethylene-chlorotrifluoroethylene |
FOSA | perfluorooctane sulfonamide |
GWP | Global-warming potential |
HCFC | hydrochlorofluorocarbon |
HFC | hydrofluorocarbon |
HFO | hydrofluoroolefins |
NOEC | no observed effect concentration |
NOEL | no observed effect level |
PFAS | per- and polyfluoroalkyl substance |
PFCA | perfluorinated carboxylic acid |
PFEPE | polytetrafluoroethylene-co-tetrafluoroethylene-perfluoropropylether |
PTFE | polytetrafluoroethylene |
TD50 | median lethal dose |
TFA | trifluoroacetic acid |
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Herzke, D.; Nikiforov, V.; Yeung, L.W.Y.; Moe, B.; Routti, H.; Nygård, T.; Gabrielsen, G.W.; Hanssen, L. Targeted PFAS analyses and extractable organofluorine—Enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife. Environ. Int. 2023, 171, 107640. [Google Scholar] [CrossRef]
- Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366–394. [Google Scholar] [CrossRef]
- Letcher, R.J.; Bustnes, J.O.; Dietz, R.; Jenssen, B.M.; Jorgensen, E.H.; Sonne, C.; Verreault, J.; Vijayan, M.M.; Gabrielsen, G.W. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci. Total Environ. 2010, 408, 2995–3043. [Google Scholar] [CrossRef]
- Blevin, P.; Tartu, S.; Ellis, H.I.; Chastel, O.; Bustamante, P.; Parenteau, C.; Herzke, D.; Angelier, F.; Gabrielsen, G.W. Contaminants and energy expenditure in an Arctic seabird: Organochlorine pesticides and perfluoroalkyl substances are associated with metabolic rate in a contrasted manner. Environ. Res. 2017, 157, 118–126. [Google Scholar] [CrossRef]
- Briels, N.; Ciesielski, T.M.; Herzke, D.; Jaspers, V.L.B. Developmental Toxicity of Perfluorooctanesulfonate (PFOS) and Its Chlorinated Polyfluoroalkyl Ether Sulfonate Alternative F-53B in the Domestic Chicken. Environ. Sci. Technol. 2018, 52, 12859–12867. [Google Scholar] [CrossRef]
- Routti, H.; Berg, M.K.; Lille-Langoy, R.; Oygarden, L.; Harju, M.; Dietz, R.; Sonne, C.; Goksoyr, A. Environmental contaminants modulate the transcriptional activity of polar bear (Ursus maritimus) and human peroxisome proliferator-activated receptor alpha (PPARA). Sci. Rep. 2019, 9, 6918. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef] [PubMed]
- Tomy, G.T.; Budakowski, W.; Halldorson, T.; Helm, P.A.; Stern, G.A.; Friesen, K.; Pepper, K.; Tittlemier, S.A.; Fisk, A.T. Fluorinated organic compounds in an eastern Arctic marine food web. Environ. Sci. Technol. 2004, 38, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Conder, J.M.; Hoke, R.A.; De Wolf, W.; Russell, M.H.; Buck, R.C. Are PFCAs bioaccumulative? A critical review and comparison with regulatory lipophilic compounds. Environ. Sci. Technol. 2008, 42, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Giesy, J.P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef]
- Haukas, M.; Berger, U.; Hop, H.; Gulliksen, B.; Gabrielsen, G.W. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ. Pollut. 2007, 148, 360–371. [Google Scholar] [CrossRef]
- Kannan, K.; Koistinen, J.; Beckmen, K.; Evans, T.; Gorzelany, J.F.; Hansen, K.J.; Jones, P.D.; Helle, E.; Nyman, M.; Giesy, J.P. Accumulation of perfluorooctane sulfonate in marine mammals. Environ. Sci. Technol. 2001, 35, 1593–1598. [Google Scholar] [CrossRef]
- Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Surridge, B.; Hoover, D.; Grace, R.; Gobas, F.A.P.C. Perfluoroalkyl Contaminants in an Arctic Marine Food Web: Trophic Magnification and Wildlife Exposure. Environ. Sci. Technol. 2009, 43, 4037–4043. [Google Scholar] [CrossRef] [PubMed]
- Verreault, J.; Houde, M.; Gabrielsen, G.W.; Berger, U.; Haukas, M.; Letcher, R.J.; Muir, D.C.G. Perfluorinated alkyl substances in plasma, liver, brain, and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. Environ. Sci. Technol. 2005, 39, 7439–7445. [Google Scholar] [CrossRef]
- US EPA. PFAS Master List of PFAS Substances (Version 2); U.S. Environmental Protection Agency: Washington, DC, USA, 2021. [Google Scholar]
- OECD Global PFAS List. Toward a New Comprehensive Global Database of Per-and Polyfluoroalkyl Substances (PFASs); OECD: Paris, France, 2018. [Google Scholar]
- Land, M.; De Wit, C.A.; Bignert, A.; Cousins, I.T.; Herzke, D.; Johansson, J.H.; Martin, J.W. What is the effect of phasing out long-chain per-and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environ. Evid. 2018, 7, 4. [Google Scholar] [CrossRef]
- Tyrrell, N.D. A Proposal That Would Ban Manufacture, Supply, and Use of All Fluoropolymers and Most Fluorinated Reagents within the Entire EU. Org. Process Res. Dev. 2023, 27, 1422–1426. [Google Scholar] [CrossRef]
- Madronich, S.; Sulzberger, B.; Longstreth, J.D.; Schikowski, T.; Andersen, M.P.S.; Solomon, K.R.; Wilson, S.R. Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate. Photoch. Photobio. Sci. 2023, 22, 1129–1176. [Google Scholar] [CrossRef]
- Wallington, T.J.; Andersen, M.P.S.; Nielsen, O.J. The case for a more precise definition of regulated PFAS. Environ. Sci.-Proc. Imp. 2021, 23, 1834–1838. [Google Scholar] [CrossRef]
- Harris, K.J.; Munoz, G.; Woo, V.; Sauve, S.; Rand, A.A. Targeted and Suspect Screening of Per- and Polyfluoroalkyl Substances in Cosmetics and Personal Care Products. Environ. Sci. Technol. 2022, 56, 14594–14604. [Google Scholar] [CrossRef] [PubMed]
- Gomis, M.I.; Vestergren, R.; Borg, D.; Cousins, I.T. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ. Int. 2018, 113, 1–9. [Google Scholar] [CrossRef]
- Bjornsdotter, M.K.; Yeung, L.W.Y.; Karrman, A.; Jogsten, I.E. Ultra-Short-Chain Perfluoroalkyl Acids Including Trifluoromethane Sulfonic Acid in Water Connected to Known and Suspected Point Sources in Sweden. Environ. Sci. Technol. 2019, 53, 11093–11101. [Google Scholar] [CrossRef]
- Jiao, E.M.; Zhu, Z.L.; Yin, D.Q.; Qiu, Y.L.; Karrman, A.; Yeung, L.W.Y. A pilot study on extractable organofluorine and per- and polyfluoroalkyl substances (PFAS) in water from drinking water treatment plants around Taihu Lake, China: What is missed by target PFAS analysis? Environ. Sci. Process. Impacts 2022, 24, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; Vestergren, R.; Wang, Z.Y.; Scheringer, M.; McLachlan, M.S. The precautionary principle and chemicals management: The example of perfluoroalkyl acids in groundwater. Environ. Int. 2016, 94, 331–340. [Google Scholar] [CrossRef]
- European Fluorocarbons Technical Comittee (EFCTC). Special Review on … Understanding TFA. Available online: https://www.fluorocarbons.org/wp-content/uploads/2016/09/EFCTC-Special-Review-on-TFA-2017_07_11F.pdf (accessed on 23 August 2023).
- Russell, M.H.; Hoogeweg, G.; Webster, E.M.; Ellis, D.A.; Waterland, R.L.; Hoke, R.A. TFA from HFO-1234yf: Accumulation and aquatic risk in terminal water bodies. Environ. Toxicol. Chem. 2012, 31, 1957–1965. [Google Scholar] [CrossRef]
- Boutonnet, J.C.; Bingham, P.; Calamari, D.; de Rooij, C.; Franklin, J.; Kawano, T.; Libre, J.M.; McCulloch, A.; Malinverno, G.; Odom, J.M.; et al. Environmental risk assessment of trifluoroacetic acid. Hum. Ecol. Risk Assess. 1999, 5, 59–124. [Google Scholar] [CrossRef]
- Solomon, K.R.; Velders, G.J.M.; Wilson, S.R.; Madronich, S.; Longstreth, J.; Aucamp, P.J.; Bornman, J.F. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols. J. Toxicol. Env. Heal. B 2016, 19, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Lindley, A.; McCulloch, A.; Vink, T. Contribution of hydrofluorocarbons (HFCs) and hydrofluoro-olefins (HFOs) atmospheric breakdown products to acidification (“Acid Rain”) in the EU at present and in the future. Open J. Air Pollut. 2019, 8, 81–95. [Google Scholar] [CrossRef]
- Key, B.D.; Howell, R.D.; Criddle, C.S. Fluorinated organics in the biosphere. Environ. Sci. Technol. 1997, 31, 2445–2454. [Google Scholar] [CrossRef]
- Ellis, D.A.; Hanson, M.L.; Sibley, P.K.; Shahid, T.; Fineberg, N.A.; Solomon, K.R.; Muir, D.C.G.; Mabury, S.A. The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters. Chemosphere 2001, 42, 309–318. [Google Scholar] [CrossRef]
- Scott, B.F.; Mactavish, D.; Spencer, C.; Strachan, W.M.J.; Muir, D.C.G. Haloacetic acids in Canadian lake waters and precipitation. Environ. Sci. Technol. 2000, 34, 4266–4272. [Google Scholar] [CrossRef]
- Rompp, A.; Klemm, O.; Fricke, W.; Frank, H. Haloacetates in fog and rain. Environ. Sci. Technol. 2001, 35, 1294–1298. [Google Scholar] [CrossRef]
- Wujcik, C.E.; Cahill, T.M.; Seiber, J.N. Determination of trifluoroacetic acid in 1996–1997 precipitation and surface waters in California and Nevada. Environ. Sci. Technol. 1999, 33, 1747–1751. [Google Scholar] [CrossRef]
- Scott, B.F.; Spencer, C.; Marvin, C.H.; MacTavish, D.C.; Muir, D.C.G. Distribution of haloacetic acids in the water columns of the Laurentian Great Lakes and Lake Malawi. Environ. Sci. Technol. 2002, 36, 1893–1898. [Google Scholar] [CrossRef]
- Frank, H.; Christoph, E.H.; Holm-Hansen, O.; Bullister, J.L. Trifluoroacetate in ocean waters. Environ. Sci. Technol. 2002, 36, 12–15. [Google Scholar] [CrossRef]
- Berg, M.; Muller, S.R.; Muhlemann, J.; Wiedmer, A.; Schwarzenbach, R.P. Concentrations and mass fluxes of chloroacetic acids and trifluoroacetic acid in rain and natural waters in Switzerland. Environ. Sci. Technol. 2000, 34, 2675–2683. [Google Scholar] [CrossRef]
- Von Sydow, L.M.; Grimvall, A.B.; Boren, H.B.; Laniewski, K.; Nielsen, A.T. Natural background levels of trifluoroacetate in rain and snow. Environ. Sci. Technol. 2000, 34, 3115–3118. [Google Scholar] [CrossRef]
- Brunn, H.; Arnold, G.; Korner, W.; Rippen, G.; Steinhauser, K.G.; Valentin, I. PFAS: Forever chemicals-persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environ. Sci. Eur. 2023, 35, 20. [Google Scholar] [CrossRef]
- Freeling, F.; Bjornsdotter, M.K. Assessing the environmental occurrence of the anthropogenic contaminant trifluoroacetic acid (TFA). Curr. Opin. Green Sustain. Chem. 2023, 41, 100807. [Google Scholar] [CrossRef]
- Pickard, H.M.; Criscitiello, A.S.; Persaud, D.; Spencer, C.; Muir, D.C.G.; Lehnherr, I.; Sharp, M.J.; De Silva, A.O.; Young, C.J. Ice Core Record of Persistent Short-Chain Fluorinated Alkyl Acids: Evidence of the Impact From Global Environmental Regulations. Geophys. Res. Lett. 2020, 47, e2020GL087535. [Google Scholar] [CrossRef]
- Freeling, F.; Scheurer, M.; Koschorreck, J.; Hoffmann, G.; Ternes, T.A.; Nodler, K. Levels and Temporal Trends of Trifluoroacetate (TFA) in Archived Plants: Evidence for Increasing Emissions of Gaseous TFA Precursors over the Last Decades. Environ. Sci. Tech. Let. 2022, 9, 400–405. [Google Scholar] [CrossRef]
- O’Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; RSC Publishing: Cambridge, UK, 2013. [Google Scholar]
- Kutsuna, S.; Hori, H. Experimental determination of Henry’s law constants of trifluoroacetic acid at 278–298 K. Atmos. Environ. 2008, 42, 1399–1412. [Google Scholar] [CrossRef]
- Andersen, M.P.S.; Axson, J.L.; Michelsen, R.R.H.; Nielsen, O.J.; Iraci, L.T. Solubility of Acetic Acid and Trifluoroacetic Acid in Low-Temperature (207–245 K) Sulfuric Acid Solutions: Implications for the Upper Troposphere and Lower Stratosphere. J. Phys. Chem. A 2011, 115, 4388–4396. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, J. Dictionary of Organic Compounds; CRC Press: Boca Raton, FL, USA, 1996; Volume 1. [Google Scholar]
- Bowden, D.J.; Clegg, S.L.; Brimblecombe, P. The Henry’s law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere. Chemosphere 1996, 32, 405–420. [Google Scholar] [CrossRef]
- Namazian, M.; Zakery, M.; Noorbala, M.R.; Coote, M.L. Accurate calculation of the pK(a) of trifluoroacetic acid using high-level ab initio calculations. Chem. Phys. Lett. 2008, 451, 163–168. [Google Scholar] [CrossRef]
- Rayne, S.; Forest, K. Theoretical studies on the pK(a) values of perfluoroalkyl carboxylic acids. J. Mol. Struc.-Theochem. 2010, 949, 60–69. [Google Scholar] [CrossRef]
- Ellis, D.A.; Mabury, S.A.; Martin, J.W.; Muir, D.C. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 2001, 412, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Luecken, D.J.; Waterland, R.L.; Papasavva, S.; Taddonio, K.N.; Hutzell, W.T.; Rugh, J.P.; Andersen, S.O. Ozone and TFA Impacts in North America from Degradation of 2,3,3,3-Tetrafluoropropene (HFO-1234yf), A Potential Greenhouse Gas Replacement. Environ. Sci. Technol. 2010, 44, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Kazil, J.; McKeen, S.; Kim, S.W.; Ahmadov, R.; Grell, G.; Talukdar, R.; Ravishankara, A. Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFO-1234yf. J. Geophys. Res. Atmos. 2014, 119, 14059–14079. [Google Scholar] [CrossRef]
- Tao, Y.; VandenBoer, T.C.; Ye, R.X.; Young, C.J. Exploring controls on perfluorocarboxylic acid (PFCA) gas-particle partitioning using a model with observational constraints. Environ. Sci. Process. Impacts 2023, 25, 264–276. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, L.; Ning, A.; Yang, G.; Liu, Y.; Kurtén, T.; Vehkamäki, H.; Zhang, X.; Wang, L. Atmospheric Sulfuric Acid-Dimethylamine Nucleation Enhanced by Trifluoroacetic Acid. Geophys. Res. Lett. 2020, 47, e2019GL085627. [Google Scholar] [CrossRef]
- Holland, R.; Khan, M.A.H.; Driscoll, I.; Chhantyal-Pun, R.; Derwent, R.G.; Taatjes, C.A.; Orr-Ewing, A.J.; Percival, C.J.; Shallcross, D.E. Investigation of the Production of Trifluoroacetic Acid from Two Halocarbons, HFC-134a and HFO-1234yf and Its Fates Using a Global Three-Dimensional Chemical Transport Model. ACS Earth Space Chem. 2021, 5, 849–857. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef]
- Berends, A.G.; Boutonnet, J.C.; de Rooij, C.G.; Thompson, R.S. Toxicity of trifluoroacetate to aquatic organisms. Environ. Toxicol. Chem. 1999, 18, 1053–1059. [Google Scholar] [CrossRef]
- Hanson, M.L.; Sibley, P.K.; Ellis, D.A.; Fineberg, N.A.; Mabury, S.A.; Solomon, K.R.; Muir, D.C. Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions. Aquat. Toxicol. 2002, 56, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.L.; Solomon, K.R. Haloacetic acids in the aquatic environment. Part I: Macrophyte toxicity. Environ. Pollut. 2004, 130, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Wang, Y.H.; Li, J.F.; Henne, S.; Zhang, B.Y.; Hu, J.X.; Zhang, J.B. Impacts of the Degradation of 2,3,3,3-Tetrafluoropropene into Trifluoroacetic Acid from Its Application in Automobile Air Conditioners in China, the United States, and Europe. Environ. Sci. Technol. 2018, 52, 2819–2826. [Google Scholar] [CrossRef]
- Seiber, J.N.; Cahill, T.M. Trifluoroacetic Acid from CFC Replacements: An Atmopsheric Toxicant Becomes a Terrestrial Problem. In Pesticides, Organic Contaminants, and Pathogens in Air: Chemodynamics, Health Effects, Sampling, and Analysis; Taylor & Francis: Abingdon-on-Thames, UK, 2022. [Google Scholar]
- Zhang, L.; Sun, H.W.; Wang, Q.; Chen, H.; Yao, Y.M.; Zhao, Z.; Alder, A.C. Uptake mechanisms of perfluoroalkyl acids with different carbon chain lengths (C2–C8) by wheat (Triticum acstivnm L.). Sci. Total Environ. 2019, 654, 19–27. [Google Scholar] [CrossRef]
- Benesch, J.A.; Gustin, M.S. Uptake of trifluoroacetate by Pinus ponderosa via atmospheric pathway. Atmos. Environ. 2002, 36, 1233–1235. [Google Scholar] [CrossRef]
- Chen, H.; Yao, Y.M.; Zhao, Z.; Wang, Y.; Wang, Q.; Ren, C.; Wang, B.; Sun, H.W.; Alder, A.C.; Kannan, K. Multimedia Distribution and Transfer of Per- and Polyfluoroalkyl Substances (PFASs) Surrounding Two Fluorochemical Manufacturing Facilities in Fuxin, China. Environ. Sci. Technol. 2018, 52, 8263–8271. [Google Scholar] [CrossRef]
- Tian, Y.; Yao, Y.M.; Chang, S.; Zhao, Z.; Zhao, Y.Y.; Yuan, X.J.; Wu, F.C.; Sun, H.W. Occurrence and Phase Distribution of Neutral and Ionizable Per- and Polyfluoroalkyl Substances (PFASs) in the Atmosphere and Plant Leaves around Landfills: A Case Study in Tianjin, China. Environ. Sci. Technol. 2018, 52, 1301–1310. [Google Scholar] [CrossRef]
- Rollins, A.; Barber, J.; Elliott, R.; Wood, B. Xenobiotic monitoring in plants by 19F and 1H nuclear magnetic resonance imaging and spectroscopy: Uptake of trifluoroacetic acid in Lycopersicon esculentum. Plant Physiol. 1989, 91, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Cahill, T.M.; Thomas, C.M.; Schwarzbach, S.E.; Seiber, J.N. Accumulation of trifluoroacetate in seasonal wetlands in California. Environ. Sci. Technol. 2001, 35, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.H.; Yao, Y.M.; Xu, J.Y.; Chen, H.; Ren, C.; Fang, X.G.; Zhang, K.; Jin, L.T.; Hua, X.; Alder, A.C.; et al. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts. Environ. Pollut. 2020, 263, 114487. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.; Barry, J.; Cascorbi, H. A note on the effect of trifluoroacetate on the growth of rat liver. Naunyn Schmiedebergs Arch. Pharmacol. 1969, 265, 474–475. [Google Scholar] [CrossRef]
- Fraser, J.M.; Kaminsky, L.S. 2, 2, 2-Trifluoroethanol intestinal and bone marrow toxicity: The role of its metabolism to 2, 2, 2-trifluoroacetaldehyde and trifluoroacetic acid. Toxicol. Appl. Pharmacol. 1988, 94, 84–92. [Google Scholar] [CrossRef]
- Hanson, M.L.; Solomon, K.R. Haloacetic acids in the aquatic environment. Part II: Ecological risk assessment. Environ. Pollut. 2004, 130, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Dekant, W.; Dekant, R. Mammalian toxicity of trifluoroacetate and assessment of human health risks due to environmental exposures. Arch. Toxicol. 2023, 97, 1069–1077. [Google Scholar] [CrossRef]
- Wark, H.; Earl, J.; Chau, D.D.; Overton, J. Halothane Metabolism in Children. Br. J. Anaesth. 1990, 64, 474–481. [Google Scholar] [CrossRef]
- Sutton, T.S.; Koblin, D.D.; Gruenke, L.D.; Weiskopf, R.B.; Rampil, I.J.; Waskell, L.; Eger, E.I. Fluoride Metabolites after Prolonged Exposure of Volunteers and Patients to Desflurane. Anesth. Analg. 1991, 73, 180–185. [Google Scholar] [CrossRef]
- Duan, Y.S.; Sun, H.W.; Yao, Y.M.; Meng, Y.; Li, Y.C. Distribution of novel and legacy per-/polyfluoroalkyl substances in serum and its associations with two glycemic biomarkers among Chinese adult men and women with normal blood glucose levels. Environ. Int. 2020, 134, 105295. [Google Scholar] [CrossRef]
- Neale, R.E.; Barnes, P.W.; Robson, T.M.; Neale, P.J.; Williamson, C.E.; Zepp, R.G.; Wilson, S.R.; Madronich, S.; Andrady, A.L.; Heikkila, A.M.; et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem. Photobiol. Sci. 2021, 20, 1–67. [Google Scholar] [CrossRef]
- Ghantous, H.; Parnerud, I.; Danielsson, B.R.G.; Dencker, L. Distribution of Halothane and the Metabolites Trifluoroacetic-Acid and Bromide in the Conceptus after Halothane Inhalation by Pregnant Mice. Acta Pharmacol. Toxicol. 1986, 59, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Cappon, G.D.; Keller, D.A.; Brock, W.J.; Slauter, R.W.; Hurtt, M.E. Effects of HCFC-123 exposure to maternal and infant rhesus monkeys on hepatic biochemistry, lactational parameters and postnatal growth. Drug Chem. Toxicol. 2002, 25, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.C.; Cheng, Z.P.; Zhu, H.K.; Chen, H.; Yao, Y.M.; Baqar, M.; Yu, H.; Qiao, B.T.; Sun, H.W. Electronic-waste-associated pollution of per- and polyfluoroalkyl substances: Environmental occurrence and human exposure. J. Hazard. Mater. 2023, 451, 131204. [Google Scholar] [CrossRef]
- Zheng, G.M.; Eick, S.M.; Salamova, A. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 15782–15793. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jeong, Y.; Belova, L.; Roggeman, M.; Fernandez, S.F.; Poma, G.; Remy, S.; Verheyen, V.J.; Schoeters, G.; van Nuijs, A.L.N.; et al. Comprehensive investigation of persistent and mobile chemicals and per-and polyfluoroalkyl substances in urine of flemish adolescents using a suspect screening approach. Environ. Pollut. 2022, 312, 119972. [Google Scholar] [CrossRef]
- Benesch, J.A.; Gustin, M.S.; Cramer, G.R.; Cahill, T.M. Investigation of effects of trifluoroacetate on vernal pool ecosystems. Environ. Toxicol. Chem. 2002, 21, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Smit, M.F.; van Heerden, P.D.R.; Pienaar, J.J.; Weissflog, L.; Strasser, R.J.; Krüger, G.H.J. Effect of trifluoroacetate, a persistent degradation product of fluorinated hydrocarbons, on Phaseolus vulgaris and Zea mays. Plant Physiol. Biochem. 2009, 47, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Oehrle, N.W.; Green, L.S.; Karr, D.B.; Emerich, D.W. The HFC/HCFC breakdown product trifluoroacetic acid (TFA) and its effects on the symbiosis between Bradyrhizobium japonicum and soybean (Glycine max). Soil Biol. Biochem. 2004, 36, 333–342. [Google Scholar] [CrossRef]
- Henne, S.; Shallcross, D.E.; Reimann, S.; Xiao, P.; Boulos, S.; Gerecke, A.C.; Brunner, D. Environmental Impacts of HFO-1234yf and Other HFOs. In Ashrae/Nist Refrigerants Conference; ASHRAE: Peachtree Corners, GA, USA, 2012; pp. 182–194. [Google Scholar]
- David, L.M.; Barth, M.; Hoglund-Isaksson, L.; Purohit, P.; Velders, G.J.M.; Glaser, S.; Ravishankara, A.R. Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East. Atmos. Chem. Phys. 2021, 21, 14833–14849. [Google Scholar] [CrossRef]
- Xie, G.Y.; Cui, J.N.; Zhai, Z.H.; Zhang, J.B. Distribution characteristics of trifluoroacetic acid in the environments surrounding fluorochemical production plants in Jinan, China. Environ. Sci. Pollut. Res. 2020, 27, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Lopez, S.E.; Salazar, J. Trifluoroacetic acid: Uses and recent applications in organic synthesis. J. Fluor. Chem. 2013, 156, 73–100. [Google Scholar] [CrossRef]
- Scheurer, M.; Nodler, K.; Freeling, F.; Janda, J.; Happel, O.; Riegel, M.; Muller, U.; Storck, F.R.; Fleig, M.; Lange, F.T.; et al. Small, mobile, persistent: Trifluoroacetate in the water cycle—Overlooked sources, pathways, and consequences for drinking water supply. Water Res. 2017, 126, 460–471. [Google Scholar] [CrossRef]
- Lv, K.; Gao, W.; Meng, L.Y.; Xue, Q.; Tian, H.T.; Wang, Y.W.; Jiang, G.B. Phototransformation of perfluorooctane sulfonamide on natural clay minerals: A likely source of short chain perfluorocarboxylic acids. J. Hazard. Mater. 2020, 392, 122354. [Google Scholar] [CrossRef]
- Adlunger, K.; Anke, J.M.; Bachem, G.; Banning, H.; Biegel-Engler, A.; Blondzik, K.; Braun, U.; Eckhardt, A.; Gildemeister, D.; Hilliges, F.; et al. Reducing the Input of Chemicals Into Waters: Trifluoroacetate (TFA) as a Persistent and Mobile Substance with Many Sources; German Environment Agency: Dessau-Roßlau, Germany, 2022. [Google Scholar]
- Behringer, D.; Heydel, F.; Gschrey, B. Persistent Degradation Products of Halogenated Refrigerants and Blowing Agents in the Environment. Type, Environmental Concentrations, and Fate with Particular Regard to New Halogenated Substitutes with Low Global Warming Potential; Final Report; Umweltbundesamt (UBA): Dessau-Roßlau, Germany, 2021. [Google Scholar]
- Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current Contributions of Organofluorine Compounds to the Agrochemical Industry. Iscience 2020, 23, 101467. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Cui, J.N.; Guo, J.Y.; Zhai, Z.H.; Zuo, P.; Zhang, J.B. Fluorochemicals biodegradation as a potential source of trifluoroacetic acid (TFA) to the environment. Chemosphere 2020, 254, 126894. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.N.; Guo, J.Y.; Zhai, Z.H.; Zhang, J.B. The contribution of fluoropolymer thermolysis to trifluoroacetic acid (TFA) in environmental media. Chemosphere 2019, 222, 637–644. [Google Scholar] [CrossRef]
- Adi, M.A.; Altarawneh, M. Formation of perfluorocarboxylic acids (PFCAs) from thermolysis of Teflon model compound. Environ. Sci. Pollut. Res. 2023, 30, 21360–21367. [Google Scholar] [CrossRef]
- Wang, B.; Yao, Y.; Chen, H.; Chang, S.; Tian, Y.; Sun, H. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2–C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities. Sci. Total Environ. 2020, 705, 135832. [Google Scholar] [CrossRef]
- Khan, M.Y.; Song, J.O.; Narimani, M.; da Silva, G. Thermal decomposition mechanism and kinetics of perfluorooctanoic acid (PFOA) and other perfluorinated carboxylic acids: A theoretical study. Environ. Sci.-Proc. Impacts 2022, 24, 2475–2487. [Google Scholar] [CrossRef] [PubMed]
- Alinezhad, A.; Shao, H.; Litvanova, K.; Sun, R.Z.; Kubatova, A.; Zhang, W.; Li, Y.; Xiao, F. Mechanistic Investigations of Thermal Decomposition of Perfluoroalkyl Ether Carboxylic Acids and Short-Chain Perfluoroalkyl Carboxylic Acids. Environ. Sci. Technol. 2023, 57, 8796–8807. [Google Scholar] [CrossRef]
- Berasategui, M.; Argüello, G.A.; Paci, M.A.B. Gas-Phase Reaction between CFO and CFC(O)OH: Characterization of CFC(O)OC(O)F. J. Phys. Chem. 2019, 123, 4671–4678. [Google Scholar] [CrossRef]
- Qu, R.J.; Liu, J.Q.; Li, C.G.; Wang, L.S.; Wang, Z.Y.; Wu, J.C. Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids. Water Res. 2016, 104, 34–43. [Google Scholar] [CrossRef]
- Liu, J.Q.; Xiang, W.R.; Li, C.G.; Van Hoomissen, D.J.; Qi, Y.M.; Wu, N.N.; Al-Basher, G.; Qu, R.J.; Wang, Z.Y. Kinetics and mechanism analysis for the photodegradation of PFOA on different solid particles. Chem. Eng. J. 2020, 383, 123115. [Google Scholar] [CrossRef]
- Singh, R.K.; Fernando, S.; Baygi, S.F.; Multari, N.; Thagard, S.M.; Holsen, T.M. Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process. Environ. Sci. Technol. 2019, 53, 2731–2738. [Google Scholar] [CrossRef] [PubMed]
- Lutze, H.V.; Brekenfeld, J.; Naumov, S.; von Sonntag, C.; Schmidt, T.C. Degradation of perfluorinated compounds by sulfate radicals—New mechanistic aspects and economical considerations. Water Res. 2018, 129, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Trang, B.; Li, Y.L.; Xue, X.S.; Ateia, M.; Houk, K.N.; Dichtel, W.R. Low-temperature mineralization of perfluorocarboxylic acids. Science 2022, 377, 839–845. [Google Scholar] [CrossRef]
- Ellis, D.A.; Martin, J.W.; De Silva, A.O.; Mabury, S.A.; Hurley, M.D.; Sulbaek Andersen, M.P.; Wallington, T.J. Degradation of Fluorotelomer Alcohols: A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environ. Sci. Technol. 2004, 38, 3316–3321. [Google Scholar] [CrossRef]
- Metz, B. Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons; IPCC/TEAP Special Report; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Papadimitriou, V.C.; Talukdar, R.K.; Portmann, R.W.; Ravishankara, A.R.; Burkholder, J.B. CF3CF=CH2 and (Z)-CF3CF=CHF: Temperature dependent OH rate coefficients and global warming potentials. Phys. Chem. Chem. Phys. 2008, 10, 808–820. [Google Scholar] [CrossRef]
- Hurley, M.; Wallington, T.; Javadi, M.; Nielsen, O. Atmospheric chemistry of CF3CF=CH2: Products and mechanisms of Cl atom and OH radical initiated oxidation. Chem. Phys. Lett. 2008, 450, 263–267. [Google Scholar] [CrossRef]
- Orkin, V.L.; Martynova, L.E.; Ilichev, A.N. High-Accuracy Measurements of OH Reaction Rate Constants and IR Absorption Spectra: CH2=CF−CF3 and trans-CHF=CH−CF3. J. Phys. Chem. A 2010, 114, 5967–5979. [Google Scholar] [CrossRef]
- Tokuhashi, K.; Takizawa, K.; Kondo, S. Rate constants for the reactions of OH radicals with CF3 CX=CY2 (X=H, F, CF3, Y=H, F, Cl). Environ. Sci. Pollut. Res. 2018, 25, 15204–15215. [Google Scholar] [CrossRef]
- Harnisch, J.; Frische, M.; Borchers, R.; Eisenhauer, A.; Jordan, A. Natural fluorinated organics in fluorite and rocks. Geophys. Res. Lett. 2000, 27, 1883–1886. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Liu, T.Q.; Zhu, L.Y.; Yang, L.P.; Zong, Y.; Zhao, H.T.; Hu, L.H.; Zhan, J.J. Formation of perfluorocarboxylic acids (PFCAs) during the exposure of earthworms to 6:2 fluorotelomer sulfonic acid (6:2 FTSA). Sci. Total Environ. 2021, 760, 143356. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.F.; Macdonald, R.W.; Kannan, K.; Fisk, A.; Witter, A.; Yamashita, N.; Durham, L.; Spencer, C.; Muir, D.C.G. Trifluoroacetate Profiles in the Arctic, Atlantic, and Pacific Oceans. Environ. Sci. Technol. 2005, 39, 6555–6560. [Google Scholar] [CrossRef]
- Lindley, A.A. An inventory of fluorspar production, industrial use, and emissions of trifluoroacetic acid (TFA) in the period 1930 to 1999. J. Geosci. Environ. Prot. 2023, 11, 1–16. [Google Scholar] [CrossRef]
- Rudels, B.; Quadfasel, D. Arctic Ocean Component in the Greenland-Scotland Overflow; International Council for the Exploration of the Sea: København, Denmark, 1991. [Google Scholar]
- Nielsen, O.J.; Scott, B.F.; Spencer, C.; Wallington, T.J.; Ball, J.C. Trifluoroacetic acid in ancient freshwater. Atmos. Environ. 2001, 35, 2799–2801. [Google Scholar] [CrossRef]
- Joudan, S.; De Silva, A.O.; Young, C.J. Insufficient evidence for the existence of natural trifluoroacetic acid. Environ. Sci. Process. Impacts 2021, 23, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.; Moody, C.; Mabury, S. The Handbook of Environmental Chemistry Vol. 3, Part N Organofluorines; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Mogelberg, T.E.; Nielsen, O.J.; Sehested, J.; Wallington, T.J.; Hurley, M.D. Atmospheric Chemistry of Cf3cooh—Kinetics of the Reaction with Oh Radicals. Chem. Phys. Lett. 1994, 226, 171–177. [Google Scholar] [CrossRef]
- Carr, S.; Treacy, J.J.; Sidebottom, H.W.; Connell, R.K.; Canosamas, C.E.; Wayne, R.P.; Franklin, J. Kinetics and Mechanisms for the Reaction of Hydroxyl Radicals with Trifluoroacetic-Acid under Atmospheric Conditions. Chem. Phys. Lett. 1994, 227, 39–44. [Google Scholar] [CrossRef]
- Hurley, M.D.; Andersen, M.P.S.; Wallington, T.J.; Ellis, D.A.; Martin, J.W.; Mabury, S.A. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes. J. Phys. Chem. A 2004, 108, 615–620. [Google Scholar] [CrossRef]
- Tromp, T.K.; Ko, M.K.W.; Rodriguez, J.M.; Sze, N.D. Potential Accumulation of a Cfc-Replacement Degradation Product in Seasonal Wetlands. Nature 1995, 376, 327–330. [Google Scholar] [CrossRef]
- Kotamarthi, V.R.; Rodriguez, J.M.; Ko, M.K.W.; Tromp, T.K.; Sze, N.D.; Prather, M.J. Trifluoroacetic acid from degradation of HCFCs and HFCs: A three-dimensional modeling study. J. Geophys. Res. Atmos. 1998, 103, 5747–5758. [Google Scholar] [CrossRef]
- Chhantyal-Pun, R.; McGillen, M.R.; Beames, J.M.; Khan, M.A.H.; Percival, C.J.; Shallcross, D.E.; Orr-Ewing, A.J. Temperature-Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates. Angew. Chem. Int. Ed. 2017, 56, 9044–9047. [Google Scholar] [CrossRef] [PubMed]
- Lifongo, L.L.; Bowden, D.J.; Brimblecombe, P. Photodegradation of haloacetic acids in water. Chemosphere 2004, 55, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Suidan, M.T.; Wallington, T.J.; Du, X. Biodegradability of trifluoroacetic acid. Environ. Eng. Sci. 2000, 17, 337–342. [Google Scholar] [CrossRef]
- Zoumpouli, G.A.; Scheurer, M.; Brauch, H.-J.; Kasprzyk-Hordern, B.; Wenk, J.; Happel, O. COMBI, continuous ozonation merged with biofiltration to study oxidative and microbial transformation of trace organic contaminants. Environ. Sci. Water Res. Technol. 2019, 5, 552–563. [Google Scholar] [CrossRef]
- Visscher, P.T.; Culbertson, C.W.; Oremland, R.S. Degradation of trifluoroacetate in oxic and anoxic sediments. Nature 1994, 369, 729–731. [Google Scholar] [CrossRef]
- Emptage, M.; Tabinowski, J.; Odom, J.M. Effect of fluoroacetates on methanogenesis in samples from selected methanogenic environments. Environ. Sci. Technol. 1997, 31, 732–734. [Google Scholar] [CrossRef]
- Hori, H.; Takano, Y.; Koike, K.; Takeuchi, K.; Einaga, H. Decomposition of environmentally persistent trifluoroacetic acid to fluoride ions by a homogeneous photocatalyst in water. Environ. Sci. Technol. 2003, 37, 418–422. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Saeidi, N.; Wick, L.Y.; Xie, Y.L.; Kopinke, F.D.; Georgi, A. Efficient removal of trifluoroacetic acid from water using surface-modified activated carbon and electro-assisted desorption. J. Hazard. Mater. 2022, 436, 129051. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Cao, Y.; Ma, S.; Wang, M.; Niu, H.; Jiang, W.; Teng, Q.; Jia, N. Waste organic acid treatment with polyethyleneimine grafted polystyrene resin. J. Appl. Polym. Sci. 2023, 140, e53433. [Google Scholar] [CrossRef]
- Lesmeister, L.; Lange, F.T.; Breuer, J.; Biegel-Engler, A.; Giese, E.; Scheurer, M. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants—A review. Sci. Total Environ. 2021, 766, 142640. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Martin, J.W.; Zhai, Z.H.; Lu, K.D.; Li, L.; Fang, X.K.; Jin, H.B.; Hu, J.X.; Zhang, J.B. Airborne Trifluoroacetic Acid and Its Fraction from the Degradation of HFC-134a in Beijing, China. Environ. Sci. Technol. 2014, 48, 3675–3681. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wu, J.; Zhai, Z.H.; Zhang, B.Y.; Zhang, J.B. Determination of Gaseous and Particulate Trifluoroacetic Acid in Atmosphere Environmental Samples by Gas Chromatography-Mass Spectrometry. Chin. J. Anal. Chem. 2013, 41, 1140–1146. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Li, M.Q.; Yao, Y.M.; Zhao, Z.; Munoz, G.; Sun, H.W. Per- and polyfluoroalkyl substances (PFASs) in precipitation from mainland China: Contributions of unknown precursors and short-chain (C2–C3) perfluoroalkyl carboxylic acids. Water Res. 2019, 153, 169–177. [Google Scholar] [CrossRef]
- Scott, B.F.; Spencer, C.; Mabury, S.A.; Muir, D.C.G. Poly and perfluorinated carboxylates in north American precipitation. Environ. Sci. Technol. 2006, 40, 7167–7174. [Google Scholar] [CrossRef]
- Wujcik, C.E.; Zehavi, D.; Seiber, J.N. Trifluoroacetic acid levels in 1994–1996 fog, rain, snow and surface waters from California and Nevada. Chemosphere 1998, 36, 1233–1245. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Wang, X.M.; Ding, X. Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: Levels, wet deposition fluxes and source implication. Sci. Total Environ. 2014, 468, 272–279. [Google Scholar] [CrossRef]
- Zhai, Z.H.; Wu, J.; Hu, X.; Li, L.; Guo, J.Y.; Zhang, B.Y.; Hu, J.X.; Zhang, J.B. A 17-fold increase of trifluoroacetic acid in landscape waters of Beijing, China during the last decade. Chemosphere 2015, 129, 110–117. [Google Scholar] [CrossRef]
- Zhang, J.B.; Zhang, Y.; Li, J.L.; Hu, J.X.; Ye, P.; Zeng, Z. Monitoring of trifluoroacetic acid concentration in environmental waters in China. Water Res. 2005, 39, 1331–1339. [Google Scholar] [CrossRef]
- Bjornsdotter, M.K.; Yeung, L.W.Y.; Karrman, A.; Jogsten, I.E. Challenges in the analytical determination of ultra-short-chain perfluoroalkyl acids and implications for environmental and human health. Anal. Bioanal. Chem. 2020, 412, 4785–4796. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhai, Z.; Wang, L.; Wang, Z.; Wu, J.; Zhang, B.; Zhang, J. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter. Environ. Pollut. 2017, 225, 175–183. [Google Scholar] [CrossRef]
- Lin, H.J.; Taniyasu, S.; Yamazaki, E.; Wu, R.B.; Lam, P.K.S.; Eun, H.; Yamashita, N. Fluorine mass balance analysis and per- and polyfluoroalkyl substances in the atmosphere. J. Hazard. Mater. 2022, 435, 129025. [Google Scholar] [CrossRef]
- Frank, H.; Klein, A.; Renschen, D. Environmental trifluoroacetate. Nature 1996, 382, 34. [Google Scholar] [CrossRef]
- Jordan, A.; Frank, H. Trifluoroacetate in the environment. Evidence for sources other than HFC/HCFCs. Environ. Sci. Technol. 1999, 33, 522–527. [Google Scholar] [CrossRef]
- Martin, J.W.; Mabury, S.A.; Wong, C.S.; Noventa, F.; Solomon, K.R.; Alaee, M.; Muir, D.C.G. Airborne haloacetic acids. Environ. Sci. Technol. 2003, 37, 2889–2897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Y.; Zhai, Z.H.; Zhang, J.B. Distribution of trifluoroacetic acid in gas and particulate phases in Beijing from 2013 to 2016. Sci. Total Environ. 2018, 634, 471–477. [Google Scholar] [CrossRef]
- Lu, K.; Hofzumahaus, A.; Holland, F.; Bohn, B.; Brauers, T.; Fuchs, H.; Hu, M.; Häseler, R.; Kita, K.; Kondo, Y. Missing OH source in a suburban environment near Beijing: Observed and modelled OH and HO2 concentrations in summer 2006. Atmos. Chem. Phys. 2013, 13, 1057–1080. [Google Scholar] [CrossRef]
- Kanaya, Y.; Cao, R.; Akimoto, H.; Fukuda, M.; Komazaki, Y.; Yokouchi, Y.; Koike, M.; Tanimoto, H.; Takegawa, N.; Kondo, Y. Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO2 radical concentrations during the winter and summer of 2004. J. Geophys. Res. Atmos. 2007, 112, D21. [Google Scholar] [CrossRef]
- Fang, X.G.; Wang, Q.; Zhao, Z.; Tang, J.H.; Tian, C.G.; Yao, Y.M.; Yu, J.C.; Sun, H.W. Distribution and dry deposition of alternative and legacy perfluoroalkyl and polyfluoroalkyl substances in the air above the Bohai and Yellow Seas, China. Atmos. Environ. 2018, 192, 128–135. [Google Scholar] [CrossRef]
- Pike, K.A.; Edmiston, P.L.; Morrison, J.J.; Faust, J.A. Correlation Analysis of Perfluoroalkyl Substances in Regional US Precipitation Events. Water Res. 2021, 190, 116685. [Google Scholar] [CrossRef]
- Taniyasu, S.; Kannan, K.; Yeung, L.W.Y.; Kwok, K.Y.; Lam, P.K.S.; Yamashita, N. Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2–C4) in precipitation by liquid chromatography-tandem mass spectrometry: Comparison to patterns of long-chain perfluorinated acids (C5–C18). Anal. Chim. Acta 2008, 619, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.F.; Spencer, C.; Martin, J.W.; Barra, R.; Bootsma, H.A.; Jones, K.C.; Johnston, A.E.; Muir, D.C.G. Comparison of haloacetic acids in the environment of the northern and southern hemispheres. Environ. Sci. Technol. 2005, 39, 8664–8670. [Google Scholar] [CrossRef]
- Freeling, F.; Behringer, D.; Heydel, F.; Scheurer, M.; Ternes, T.A.; Nodler, K. Trifluoroacetate in Precipitation: Deriving a Benchmark Data Set. Environ. Sci. Technol. 2020, 54, 11210–11219. [Google Scholar] [CrossRef]
- Hartz, W.F.; Bjornsdotter, M.K.; Yeung, L.W.Y.; Hodson, A.; Thomas, E.R.; Humby, J.D.; Day, C.; Jogsten, I.E.; Karrman, A.; Kallenborn, R. Levels and distribution profiles of Per- and Polyfluoroalkyl Substances (PFAS) in a high Arctic Svalbard ice core. Sci. Total Environ. 2023, 871, 161830. [Google Scholar] [CrossRef]
- Cahill, T.M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environ. Sci. Technol. 2022, 56, 9428–9434. [Google Scholar] [CrossRef]
- Cahill, T.M.; Seiber, J.N. Regional distribution of trifluoroacetate in surface waters downwind of urban areas in Northern California, USA. Environ. Sci. Technol. 2000, 34, 2909–2912. [Google Scholar] [CrossRef]
- Bjornsdotter, M.K.; Yeung, L.W.Y.; Karrman, A.; Jogsten, I.E. Mass Balance of Perfluoroalkyl Acids, Including Trifluoroacetic Acid, in a Freshwater Lake. Environ. Sci. Technol. 2022, 56, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Nanusha, M.Y.; Frokjaer, E.E.; Liigand, J.; Christensen, M.R.; Hansen, H.R.; Hansen, M. Unravelling the occurrence of trace contaminants in surface waters using semi-quantitative suspected non-target screening analyses. Environ. Poll. 2022, 315, 120346. [Google Scholar] [CrossRef]
- Richey, D.; Driscoll, C.; Likens, G. Soil retention of trifluoroacetate. Environ. Sci. Technol. 1997, 31, 1723–1727. [Google Scholar] [CrossRef]
- Xiang, X.; Zheng, G.; Sheng, Z.; Wu, P. Multiphase mass transfer model on the accumulation of TFA in regional environments. Res. Environ. Sci. 2009, 22, 1108–1112. [Google Scholar]
- Zhao, M.S.; Yao, Y.M.; Dong, X.Y.; Baqar, M.; Fang, B.; Chen, H.; Sun, H.W. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. Environ. Sci. Technol. 2023, 57, 20194–20205. [Google Scholar] [CrossRef]
- Fismes, J.; Perrin-Ganier, C.; Empereur-Bissonnet, P.; Morel, J.L. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J. Environ. Qual. 2002, 31, 1649–1656. [Google Scholar] [CrossRef]
- Zhao, H.T.; Yang, L.P.; Yang, X.J.; Zhao, S.Y. Behaviors of 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) in wheat seedlings: Bioaccumulation, biotransformation and ecotoxicity. Ecotoxicol. Environ. Saf. 2022, 238, 113585. [Google Scholar] [CrossRef] [PubMed]
- Bjornsdotter, M.K.; Hartz, W.F.; Kallenborn, R.; Jogsten, I.E.; Humby, J.D.; Karrman, A.; Yeung, L.W.Y. Levels and Seasonal Trends of C-1-C-4 Perfluoroalkyl Acids and the Discovery of Trifluoromethane Sulfonic Acid in Surface Snow in the Arctic. Environ. Sci. Technol. 2021, 55, 15853–15861. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yao, Y.; Wang, Y.; Chen, H.; Sun, H. Per- and Polyfluoroalkyl Substances in Outdoor and Indoor Dust from Mainland China: Contributions of Unknown Precursors and Implications for Human Exposure. Environ. Sci. Technol. 2022, 56, 6036–6045. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.Y.; Guo, H.W.; Yang, J.P.; Jin, L.; Wang, X.B.; Shi, W.; Zhang, X.W.; Yu, H.X.; Wei, S. Non-Target and Suspect Screening of Per- and Polyfluoroalkyl Substances in Airborne Particulate Matter in China. Environ. Sci. Technol. 2018, 52, 8205–8214. [Google Scholar] [CrossRef] [PubMed]
- Goosey, E.; Harrad, S. Perfluoroalkyl substances in UK indoor and outdoor air: Spatial and seasonal variation, and implications for human exposure. Environ. Int. 2012, 45, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Karaskova, P.; Codling, G.; Melymuk, L.; Klanova, J. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances. Atmos. Environ. 2018, 185, 186–195. [Google Scholar] [CrossRef]
- Guckert, M.; Scheurer, M.; Schaffer, M.; Reemtsma, T.; Nodler, K. Combining target analysis with sum parameters-a comprehensive approach to determine sediment contamination with PFAS and further fluorinated substances. Environ. Sci. Pollut. Res. 2022, 29, 85802–85814. [Google Scholar] [CrossRef]
- Neuwald, I.J.; Hubner, D.; Wiegand, H.L.; Valkov, V.; Borchers, U.; Nodler, K.; Scheurer, M.; Hale, S.E.; Arp, H.P.H.; Zahn, D. Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022, 56, 6380–6390. [Google Scholar] [CrossRef] [PubMed]
- Sadia, M.; Nollen, I.; Helmus, R.; ter Laak, T.L.; Been, F.; Praetorius, A.; van Wezel, A.P. Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water. Environ. Sci. Technol. 2023, 57, 3062–3074. [Google Scholar] [CrossRef] [PubMed]
- UBA. Ableitung Eines Gesundheitlichen Leitwertes für Trifluoressigsäure (TFA). Available online: https://www.umweltbundesamt.de/sites/default/files/medien/421/dokumente/ableitung_eines_gesundheitlichen_leitwertes_fuer_trifluoressigsaeure_fuer_uba-homepage.pdf (accessed on 22 November 2023).
- Scheurer, M.; Nodler, K. Ultrashort-chain perfluoroalkyl substance trifluoroacetate (TFA) in beer and tea—An unintended aqueous extraction. Food Chem. 2021, 351, 129304. [Google Scholar] [CrossRef] [PubMed]
- Likens, G.; Tartowski, S.; Berger, T.; Richey, D.; Driscoll, C.; Frank, H.; Klein, A. Transport and fate of trifluoroacetate in upland forest and wetland ecosystems. Proc. Natl. Acad. Sci. USA 1997, 94, 4499–4503. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Boiling point | 72–74 °C [30] |
Vapour pressure | 11–13 kPa [30] |
pKa | 0.2–0.5 [30,45,46,48,49,50,51] |
Density | 1.49 g cm−3 (at 25 °C) [45] |
Melting point | −15.4 °C [45] |
Air–water partition coefficient | 4.75 × 10−6 [52] |
Location | Date of Sample | Concentration [pg m−3] |
---|---|---|
Zurich, Switzerland | 1995 | 65 [148] |
Freiburg, Germany | 1995 | 44 [149] |
Bavaria, Germany | 1995 | 20–40 [148] |
Mamelodi, South Africa | 1996 | 40 [148] |
Guelph and Toronto, Canada | 2000 | 760 [150] |
Beijing, China | 2012 | 501–747 [138] |
2012–2013 | 1580 ± 558 [137] | |
2013–2014 | 1459 ± 223 [146] | |
Japan | 2020 | 1570 ± 275 [147] |
Location | Type of Water Body | Date of Sample | Concentration [ng/L] |
---|---|---|---|
Metropolitan areas in Northern California, USA | Surface water | 1998 | 98.5–453 [160] a |
resampled in 2021 | 23.1–2790 [160] a | ||
Remote sites in Alaska, USA | Surface water | 1998 | <9.5–63.0, median 1.7 [160] |
Resampled in 2021 | 101–187, median 134 [160] | ||
Yukon, Canada, and Alaska, USA | Surface water | 1998 | 8–40, median 21.1 [161] |
British Columbia, Canada | Surface water | 1998 | 21–63 [161] |
Jinan, China | Tuhai River Yellow River Xiaoqing River | 2016 2016 2016 | 932 ± 56 1014 ± 79 588 ± 72 median 884 ± 180 [89] |
Baotu Spring Daming Lake | 2016 2016 | 1842 ± 436 2688 ± 117 median 2265 ± 277 [89] | |
Tap water | 2016 | 384 ± 7 [89] | |
Well water | 2016 | 319 ± 8 [89] | |
Sweden | surface water from streams | 2019 | 30–820 [162] |
Lake Vättern | 2019 | 34 ± 5.2 [162] | |
Denmark | Surface water from river systems | 2021 | 2–10 [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garavagno, M.d.l.A.; Holland, R.; Khan, M.A.H.; Orr-Ewing, A.J.; Shallcross, D.E. Trifluoroacetic Acid: Toxicity, Sources, Sinks and Future Prospects. Sustainability 2024, 16, 2382. https://doi.org/10.3390/su16062382
Garavagno MdlA, Holland R, Khan MAH, Orr-Ewing AJ, Shallcross DE. Trifluoroacetic Acid: Toxicity, Sources, Sinks and Future Prospects. Sustainability. 2024; 16(6):2382. https://doi.org/10.3390/su16062382
Chicago/Turabian StyleGaravagno, Maria de los Angeles, Rayne Holland, Md Anwar Hossain Khan, Andrew J. Orr-Ewing, and Dudley E. Shallcross. 2024. "Trifluoroacetic Acid: Toxicity, Sources, Sinks and Future Prospects" Sustainability 16, no. 6: 2382. https://doi.org/10.3390/su16062382
APA StyleGaravagno, M. d. l. A., Holland, R., Khan, M. A. H., Orr-Ewing, A. J., & Shallcross, D. E. (2024). Trifluoroacetic Acid: Toxicity, Sources, Sinks and Future Prospects. Sustainability, 16(6), 2382. https://doi.org/10.3390/su16062382