Structured Equations to Assess the Socioeconomic and Business Factors Influencing the Financial Sustainability of Traditional Amazonian Chakra in the Ecuadorian Amazon
Abstract
:1. Introduction
1.1. Context of the Traditional Agroforestry System: The Amazonian Chakra
1.2. Conceptual Framework: The SAFA Approach
2. Materials and Methods
2.1. Study Area
2.2. Research Design
2.3. Sustainability Indicators Survey
2.4. Hypothesis Approach
2.5. Statistical Analysis
3. Results
3.1. Causal Effects on Financial-Economic Sustainability
3.2. Dynamics in the Patterns of Financial and Economic Sustainability
4. Discussion
Policy Implications for Sustainability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description of Constructs and Indicators in the Structural Model
Constructs and Indicators | Mean Values | |
---|---|---|
n = 330 | ||
Environmental Resilience (ER) | ||
Greenhouse gas emission reduction objective | 3.48 | |
Water conservation practices | 3.26 | |
Water pollution prevention practices | 4.14 | |
Ecosystem improvement practices | 3.91 | |
Land Use and Land Cover Change (LULCC) | 3.78 | |
Seed and breed savings | 3.83 | |
Land conservation and rehabilitation | 3.86 | |
Material consumption practices | 3.78 | |
Renewable and recycled materials | 3.08 | |
Energy-saving practices | 2.39 | |
Waste reduction practices | 3.50 | |
Food loss and waste reduction practices | 3.69 | |
Biodiversity Conservation (BC) | ||
Ecosystem connectivity | 3.96 | |
Species diversity/abundance | 3.94 | |
Productive diversity | 4.00 | |
Agrobiodiversity conservation | 4.07 | |
Soil chemical quality | 3.93 | |
Soil biological quality | 3.98 | |
Soil organic matter | 3.85 | |
Land gain/loss of productive land | 3.86 | |
Food Security (FS) | ||
Guarantee of production levels | 3.35 | |
Diversification of products | 3.59 | |
Safety nets | 2.96 | |
Risk management | 3.31 | |
Control measures | 3.96 | |
Dangerous pesticides | 4.20 | |
Food contamination | 4.18 | |
Food quality | 3.96 | |
Traceability | 3.81 | |
Certified production | 3.67 | |
Social Factors (SF) | ||
Right to quality of life | 4.14 | |
Capacity development | 3.52 | |
Fair prices and transparent contracts | 3.30 | |
Non-discrimination | 4.30 | |
Gender equality | 4.33 | |
Support for vulnerable people | 4.08 | |
Health and safety training | 3.47 | |
Public health | 4.19 | |
Indigenous knowledge | 4.26 | |
Food sovereignty | 4.34 | |
Business Factor (BF) | ||
Mission Statement | 3.08 | |
Driven mission | 3.07 | |
Holistic audits | 3.11 | |
Transparency | 3.05 | |
Stakeholder engagement | 3.25 | |
Effective participation | 3.05 | |
Complaint procedures | 3.11 | |
Conflict resolution | 3.25 | |
Free, Prior, and Informed Consent (FPIC) | 3.49 | |
Tenure rights | 3.46 | |
Total cost accounting | 3.18 | |
Market stability | 3.09 | |
Business plan | 3.15 | |
Financial-Economic Sustainability (FES) | ||
Domestic investment | 3.29 | |
Community investment | 3.47 | |
Long-term profitability | 3.23 | |
Cash flow | 3.09 | |
Net income | 3.19 | |
Production costs | 3.15 | |
Price determination | 3.26 |
References
- Xie, H.; Huang, Y.; Chen, Q.; Zhang, Y.; Wu, Q. Prospects for Agricultural Sustainable Intensification: A Review of Research. Land 2019, 8, 157. [Google Scholar] [CrossRef]
- Shrestha, J.; Subedi, S.; Timsina, K.P.; Chaudhary, A.; Kandel, M.; Tripathi, S. Conservation Agriculture as an Approach towards Sustainable Crop Production: A Review. Farming Manag. 2020, 5, 7–15. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. Cultivate Biodiversity to Harvest Food Security and Sustainability. Curr. Biol. 2021, 31, R1154–R1158. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, G. Agroforestry for Sustainable Development: Assessing Frameworks to Drive Agricultural Sector Growth. Environ. Dev. Sustain. 2023, 1–37. [Google Scholar] [CrossRef]
- Dumont, E.S.; Bonhomme, S.; Pagella, T.F.; Sinclair, F.L. Structured Stakeholder Engagement Leads to Development of More Diverse and Inclusive Agroforestry Options. Exp. Agric. 2019, 55, 252–274. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). The Amazonian Chakra, a Traditional Agroforestry System Managed by Indigenous Communities in Napo Province, Ecuador. Available online: https://www.fao.org/giahs/giahsaroundtheworld/designated-sites/latin-america-and-the-caribbean/amazon-chakra/detailed-information/en/ (accessed on 19 May 2023).
- MacPherson, J.; Voglhuber-Slavinsky, A.; Olbrisch, M.; Schöbel, P.; Dönitz, E.; Mouratiadou, I.; Helming, K. Future Agricultural Systems and the Role of Digitalization for Achieving Sustainability Goals. A Review. Agron. Sustain. Dev. 2022, 42, 70. [Google Scholar] [CrossRef]
- Soule, E.; Michonneau, P.; Michel, N.; Bockstaller, C. Environmental Sustainability Assessment in Agricultural Systems: A Conceptual and Methodological Review. J. Clean. Prod. 2021, 325, 129291. [Google Scholar] [CrossRef]
- Pancholi, R.; Yadav, R.; Gupta, H.; Vasure, N.; Choudhary, S.; Singh, M.N.; Rastogi, M. The Role of Agroforestry Systems in Enhancing Climate Resilience and Sustainability-A Review. Int. J. Environ. Clim. Chang. 2023, 13, 4342–4353. [Google Scholar] [CrossRef]
- Grenz, J.; Thalmann, C.; Schoch, M.; Stalder, S.; Studer, C. RISE (Response-Inducing Sustainability Evaluation), version 2.0; School of Agricultural, Forest and Food Sciences, HAFL, Bern University of Applied Sciences: Bern, Switzerland, 2012. [Google Scholar]
- Hani, F.; Braga, F.S.; Stampfli, A.; Keller, T.; Fischer, M.; Porsche, H. RISE, a Tool for Holistic Sustainability Assessment at the Farm Level. Int. Food Agribus. Manag. Rev. 2003, 6, 78–90. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; Cidad, V.G.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J. SAFE—A Hierarchical Framework for Assessing the Sustainability of Agricultural Systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing Farm Sustainability with the IDEA Method—From the Concept of Agriculture Sustainability to Case Studies on Farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Meul, M.; Van Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Van Hauwermeiren, A. MOTIFS: A Monitoring Tool for Integrated Farm Sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef]
- Van Passel, S.; Meul, M. Multilevel Sustainability Assessment of Farming Systems: A Practical Approach. In Proceedings of the 9th European IFSA Symposium, Vienna, Austria, 4–7 July 2010; pp. 791–800. [Google Scholar]
- Van Ittersum, M.K.; Ewert, F.; Heckelei, T.; Wery, J.; Olsson, J.A.; Andersen, E.; Bezlepkina, I.; Brouwer, F.; Donatelli, M.; Flichman, G. Integrated Assessment of Agricultural Systems–A Component-Based Framework for the European Union (SEAMLESS). Agric. Syst. 2008, 96, 150–165. [Google Scholar] [CrossRef]
- Zedadra, O.; Guerrieri, A.; Jouandeau, N.; Seridi, H.; Fortino, G.; Spezzano, G.; Pradhan-Salike, I.; Raj Pokharel, J.; The Commissioner of Law; Freni, G.; et al. Structural Analysis of Covariance on Health-Related Indicators in the Elderly at Home, Focusing on Subjective Health Perception. Sustainability 2019, 11, 1–14. [Google Scholar]
- Van Calker, K.J.; Berentsen, P.B.M.; De Boer, I.J.M.; Giesen, G.W.J.; Huirne, R.B.M. Modelling Worker Physical Health and Societal Sustainability at Farm Level: An Application to Conventional and Organic Dairy Farming. Agric. Syst. 2007, 94, 205–219. [Google Scholar] [CrossRef]
- Dantsis, T.; Douma, C.; Giourga, C.; Loumou, A.; Polychronaki, E.A. A Methodological Approach to Assess and Compare the Sustainability Level of Agricultural Plant Production Systems. Ecol. Indic. 2010, 10, 256–263. [Google Scholar] [CrossRef]
- López-Ridaura, S.; Masera, O.; Astier, M. Evaluating the Sustainability of Complex Socio-Environmental Systems. The MESMIS Framework. Ecol. Indic. 2002, 2, 135–148. [Google Scholar] [CrossRef]
- Astier, M.; García-Barrios, L.; Galván-Miyoshi, Y.; González-Esquivel, C.E.; Masera, O.R. Assessing the Sustainability of Small Farmer Natural Resource Management Systems. A Critical Analysis of the MESMIS Program (1995–2010). Ecol. Soc. 2012, 17, 25. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). SAFA: Sustainability Assessment of Food and Agriculture Systems. Guidelines Version 3.0 Edition; FAO: Rome, Italy, 2014; ISBN 9789251084854. [Google Scholar]
- De-Pablos-Heredero, C.; Montes-Botella, J.L.; García-Martínez, A. Sustainability in smart farms: Its impact on performance. Sustainability 2018, 10, 1713. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análisis Multivariante de Datos; Prentice Hall: Hoboken, NJ, USA, 2004; ISBN 8483220350. [Google Scholar]
- Hair, J.F., Jr. Next-Generation Prediction Metrics for Composite-Based PLS-SEM. Ind. Manag. Data Syst. 2020, 121, 5–11. [Google Scholar] [CrossRef]
- Kahn, J.H. Factor Analysis in Counseling Psychology Research, Training, and Practice: Principles, Advances, and Applications. Couns. Psychol. 2006, 34, 684–718. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Cayambe, J.; Ramos, N.; Luna, M.; Diaz-Ambrona, C.G.H. Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas. Agronomy 2020, 10, 1973. [Google Scholar] [CrossRef]
- De Gonçalves, C.B.Q.; Schlindwein, M.M.; Martinelli, G.D.C. Agroforestry Systems: A Systematic Review Focusing on Traditional Indigenous Practices, Food and Nutrition Security, Economic Viability, and the Role of Women. Sustainability 2021, 13, 1397. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Bhagwat, S.A.; Buchori, D.; Faust, H.; Hertel, D.; Hölscher, D.; Juhrbandt, J.; Kessler, M.; Perfecto, I.; et al. Multifunctional Shade-Tree Management in Tropical Agroforestry Landscapes—A Review. J. Appl. Ecol. 2011, 48, 619–629. [Google Scholar] [CrossRef]
- Clough, Y.; Barkmann, J.; Juhrbandt, J.; Kessler, M.; Wanger, T.C.; Anshary, A.; Buchori, D.; Cicuzza, D.; Darras, K.; Putra, D.D. Combining High Biodiversity with High Yields in Tropical Agroforests. Proc. Natl. Acad. Sci. USA 2011, 108, 8311–8316. [Google Scholar] [CrossRef] [PubMed]
- Niether, W.; Jacobi, J.; Blaser, W.J.; Andres, C.; Armengot, L. Cocoa Agroforestry Systems versus Monocultures: A Multi-Dimensional Meta-Analysis. Environ. Res. Lett. 2020, 15, 104085. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Duguma, L.A.; Dewi, S.; Leimona, B.; Catacutan, D.C.; Lusiana, B.; Öborn, I.; Hairiah, K.; Minang, P.A. SDG Synergy between Agriculture and Forestry in the Food, Energy, Water and Income Nexus: Reinventing Agroforestry? Curr. Opin. Environ. Sustain. 2018, 34, 33–42. [Google Scholar] [CrossRef]
- Vera-Vélez, R.; Grijalva, J.; Cota-Sánchez, J.H. Cocoa Agroforestry and Tree Diversity in Relation to Past Land Use in the Northern Ecuadorian Amazon. New For. 2019, 50, 891–910. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D.; Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Food Security, Agroforestry, and Sustainable Development Goals. In An Introduction to Agroforestry. Four Decades of Scientific Developments; Springer: Cham, Switzerland, 2021; pp. 585–608. [Google Scholar]
- Tinoco-Jaramillo, L.; Vargas-Tierras, Y.; Habibi, N.; Caicedo, C.; Chanaluisa, A.; Paredes-Arcos, F.; Viera, W.; Almeida, M.; Vásquez-Castillo, W. Agroforestry Systems of Cocoa (Theobroma cacao L.) in the Ecuadorian Amazon. Forests 2024, 15, 195. [Google Scholar] [CrossRef]
- Vizuete Montero, M.O.; Carrera-Oscullo, P.; de las Mercedes Barreno-Silva, N.; Sánchez, M.; Figueroa-Saavedra, H.; Moya, W. Agroecological Alternatives for Small and Medium Tropical Crop Farmers in the Ecuadorian Amazon for Adaptation to Climate Change. SSRN 2023. [Google Scholar] [CrossRef]
- Coq-Huelva, D.; Higuchi, A.; Alfalla-Luque, R.; Burgos-Morán, R.; Arias-Gutiérrez, R. Co-Evolution and Bio-Social Construction: The Kichwa Agroforestry Systems (Chakras) in the Ecuadorian Amazonia. Sustainability 2017, 9, 1920. [Google Scholar] [CrossRef]
- Díaz-Valderrama, J.R.; Leiva-Espinoza, S.T.; Aime, M.C. The History of Cacao and Its Diseases in the Americas. Phytopathology 2020, 110, 1604–1619. [Google Scholar] [CrossRef]
- Voora, V.; Bermúdez, S.; Larrea, C. Global Market Report: Cocoa; Sustainable Commodities Marketplace Series 2019; International Institute for Sustainable Development: Winnipeg, Canada, 2019. [Google Scholar]
- Luna, M. La Influencia de Los Factores Socioeconómicos y Empresariales En La Sostenibilidad de Empresas Asociativas Rurales Con Sistemas de Producción Agroforestal; CENTRUM Católica Graduate Business School: Lima, Peru, 2023. [Google Scholar]
- Perreault, T. Why Chacras (Swidden Gardens) Persist: Agrobiodiversity, Food Security, and Cultural Identity in the Ecuadorian Amazon. Hum. Organ. 2005, 64, 327–339. [Google Scholar] [CrossRef]
- Coq-Huelva, D.; Torres-Navarrete, B.; Bueno-Suárez, C. Indigenous Worldviews and Western Conventions: Sumak Kawsay and Cocoa Production in Ecuadorian Amazonia. Agric. Human Values 2018, 35, 163–179. [Google Scholar] [CrossRef]
- Jadán, O.; Cifuentes Jara, M.; Torres, B.; Selesi, D.; Veintimilla Ramos, D.A.; Günter, S.; Influence of Tree Cover on Diversity, Carbon Sequestration and Productivity of Cocoa Systems in the Ecuadorian Amazon. Programa Cambio Climático y Cuencas 2015. Available online: https://repositorio.catie.ac.cr/handle/11554/8110 (accessed on 19 May 2023).
- Jadán, O.; Torres, B.; Selesi, D.; Peña, D.; Rosales, C.; Günter, S. Diversidad Florística y Estructura En Cacaotales Tradicionales y Bosque Natural (Sumaco, Ecuador). Colomb. For. 2016, 19, 129–142. [Google Scholar] [CrossRef]
- Torres, B.; Maza, O.J.; Aguirre, P.; Hinojosa, L.; Günter, S. The Contribution of Traditional Agroforestry to Climate Change Adaptation in the Ecuadorian Amazon: The Chakra System. In Handbook of Climate Change Adaptation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1973–1994. [Google Scholar]
- Vera, V.R.R.; Cota-Sánchez, J.H.; Grijalva Olmedo, J.E. Biodiversity, Dynamics, and Impact of Chakras on the Ecuadorian Amazon. J. Plant Ecol. 2019, 12, 34–44. [Google Scholar] [CrossRef]
- Torres, B.; Andrade, A.K.; Enriquez, F.; Luna, M.; Heredia, M.; Bravo, C. Estudios Sobre Medios de Vida, Sostenibilidad y Captura de Carbono En El Sistema Agroforestal Chakra Con Cacao En Comunidades de Pueblos Originarios de La Provincia de Napo: Casos de Las Asociaciones Kallari, Wiñak y Tsatsayaku, Amazonía Ecuatoriana; Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): Rome, Italy, 2022. [Google Scholar]
- Vasco, C.; Tamayo, G.; Griess, V. The Drivers of Market Integration among Indigenous Peoples: Evidence from the Ecuadorian Amazon. Soc. Nat. Resour. 2017, 30, 1212–1228. [Google Scholar] [CrossRef]
- Hřebíček, J.; Faldík, O.; Kasem, E.; Trenz, O. Determinants of Sustainability Reporting in Food and Agriculture Sectors. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 539–552. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Vasseur, L.; Puhl, L.; Barreto, D.; Díaz-Ambrona, C.G.H. Sustainability Dimensions Assessment in Four Traditional Agricultural Systems in the Amazon. Front. Sustain. Food Syst. 2022, 5, 782633. [Google Scholar] [CrossRef]
- Colombo, T.C.; Watanabe, M. Analysis of Sustainability Indicators in Irrigated Rice Production in the South of Santa Catarina, Brazil. In International Business, Trade and Institutional Sustainability; Springer: Cham, Switzerland, 2020; pp. 403–413. [Google Scholar]
- Havardi-Burger, N.; Mempel, H.; Bitsch, V. Framework for Sustainability Assessment of the Value Chain of Flowering Potted Plants for the German Market. J. Clean. Prod. 2021, 329, 129684. [Google Scholar] [CrossRef]
- Hanisch, A.L.; Negrelle, R.R.B.; Bonatto, R.A.; Nimmo, E.R.; Lacerda, A.E.B. Evaluating Sustainability in Traditional Silvopastoral Systems (Caívas): Looking beyond the Impact of Animals on Biodiversity. Sustainability 2019, 11, 3098. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Zambrano, E.; Torres, B.; Ochoa-Moreno, S.; Reyes, H.; Torres, A.; Velasco, C.; Heredia, M. Socioeconomic determinants of timber forest use in the buffer zone of the Sumaco Napo Galeras National Park, Ecuadorian Amazon. Ecosystems 2021, 30, 2216. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Food Security and Nutrition in the World; FAO: Rome, Italy, 2014. [Google Scholar]
- das Almeida, T.A.N.; Cruz, L.; Barata, E.; García-Sánchez, I.M. Economic Growth and Environmental Impacts: An Analysis Based on a Composite Index of Environmental Damage. Ecol. Indic. 2017, 76, 119–130. [Google Scholar] [CrossRef]
- Loehlin, J.C.; Beaujean, A.A. Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis; Taylor & Francis: Abingdon, UK, 2016; ISBN 131728528X. [Google Scholar]
- Usakli, A.; Kucukergin, K.G. Using Partial Least Squares Structural Equation Modeling in Hospitality and Tourism: Do Researchers Follow Practical Guidelines? Int. J. Contemp. Hosp. Manag. 2018, 30, 3462–3512. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Press: New York, NY, USA, 1998. [Google Scholar]
- Rivas, J.; Perea, J.M.; De-Pablos-Heredero, C.; Angon, E.; Barba, C.; García, A. Canonical Correlation of Technological Innovation and Performance in Sheep’s Dairy Farms: Selection of a Set of Indicators. Agric. Syst. 2019, 176, 102665. [Google Scholar] [CrossRef]
- García-Martínez, A.; Rivas-Rangel, J.; Rangel-Quintos, J.; Espinosa, J.A.; Barba, C.; De-Pablos-Heredero, C. A Methodological Approach to Evaluate Livestock Innovations on Small-Scale Farms in Developing Countries. Futur. Internet 2016, 8, 25. [Google Scholar] [CrossRef]
- Torres, B.; Eche, D.; Torres, Y.; Bravo, C.; Velasco, C.; García, A. Identification and Assessment of Livestock Best Management Practices (BMPs) Using the REED+ Approach in the Ecuadorian Amazon. Agronomy 2021, 11, 1336. [Google Scholar] [CrossRef]
- Tariq, H.; Pathirage, C.; Fernando, T.; Sulaiman, N.; Nazir, U.; Abdul Latib, S.K.K.; Masram, H. Measuring Environmental Resilience Using Q-Methods: A Malaysian Perspective. Sustainability 2022, 14, 14749. [Google Scholar] [CrossRef]
- Blandford, D. We Should Focus on Food Consumption to Reduce Greenhouse Gas Emissions in Agriculture. EuroChoices 2021, 20, 18–22. [Google Scholar] [CrossRef]
- Chitapur, B.M.; Murthy, M.M. Traditional Agroforestry Systems and Biodiversity Conservation. Bangladesh J. Bot. 2018, 47, 927–935. [Google Scholar] [CrossRef]
- Saci, H.; Berezowska-Azzag, E. Food Security and Urban Sustainability of Alternative Food Models: Multicriteria Analysis Based on Sustainable Development Goals and Sustainable Urban Planning. Cah. Agric. 2021, 30, 35. [Google Scholar] [CrossRef]
- Duffy, C.; Toth, G.G.; Hagan, R.P.O.; McKeown, P.C.; Rahman, S.A.; Widyaningsih, Y.; Sunderland, T.; Spillane, C. Agroforestry Contributions to Smallholder Farmer Food Security in Indonesia. Agrofor. Syst. 2021, 95, 1109–1124. [Google Scholar] [CrossRef]
- Ağizan, K.; Bayramoğlu, Z. The Role of Social Capital in the Formation of Entrepreneurship Skills on Agricultural Farms. J. Agric. Nat. 2020, 23, 678–686. [Google Scholar] [CrossRef]
- Assefa, W.; Kewessa, G.; Datiko, D. Agrobiodiversity and Gender: The Role of Women in Farm Diversification among Smallholder Farmers in Sinana District, Southeastern Ethiopia. Biodivers. Conserv. 2022, 31, 2329–2348. [Google Scholar] [CrossRef]
- Vrabcová, P.; Urbancová, H. Sustainable Innovation in Agriculture: Building Competitiveness and Business Sustainability. Agric. Econ. 2023, 69, 1–12. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Martínez Ávila, M.; Fierro Moreno, E. Aplicación de La Técnica PLS-SEM En La Gestión Del Conocimiento: Un Enfoque Técnico Práctico. RIDE Rev. Iberoam. Investig. Desarro. Educ. 2018, 8, 130–164. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Joreskog, K.G. The ML and PLS Techniques for Modeling with Latent Variables: Historical and Comparative Aspects. In Systems under Indirect Observation: Causality, Structure, Prediction, Part I; Elsevier: Amsterdam, The Netherlands, 1982; pp. 263–270. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The Use of Partial Least Squares Path Modeling in International Marketing. In New Challenges to International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009; ISBN 1848554680. [Google Scholar]
- Kock, N. WarpPLS User Manual: Version 8.0; ScriptWarp Systems: Laredo, TX, USA, 2017. [Google Scholar]
- Sheng, Y.; Chancellor, W. Exploring the Relationship between Farm Size and Productivity: Evidence from the Australian Grains Industry. Food Policy 2019, 84, 196–204. [Google Scholar] [CrossRef]
- Rada, N.E.; Fuglie, K.O. New Perspectives on Farm Size and Productivity. Food Policy 2019, 84, 147–152. [Google Scholar] [CrossRef]
- Cha, E.; Sanderson, M.; Renter, D.; Jager, A.; Cernicchiaro, N.; Bello, N.M. Implementing Structural Equation Models to Observational Data from Feedlot Production Systems. Prev. Vet. Med. 2017, 147, 163–171. [Google Scholar] [CrossRef]
- An Introduction to the Basic Concepts of Food Security; EC-FAO Food Security Programm; FAO: Rome, Italy, 2008; p. 9.
- Rangel, J.; Espinosa, J.A.; de Pablos-Heredero, C.; Barba, C.; Velez, A.; Rivas, J.; Garcia, A. Adoption of Innovations and Organizational Practices in Management, Animal Feeding and Reproduction in Dual-Purpose Bovine of Small Farms in Mexico. Rev. Cient. Fac. Ciencias Vet. Univ. Zulia 2017, 27, 44–55. [Google Scholar]
- Morantes, M.; Dios-Palomares, R.; Peña, M.E.; Rivas, J.; Perea, J.; García-Martínez, A. Management and Productivity of Dairy Sheep Production Systems in Castilla-La Mancha, Spain. Small Rumin. Res. 2017, 149, 62–72. [Google Scholar] [CrossRef]
- Caicedo-Vargas, C.; Pérez-Neira, D.; Abad-González, J.; Gallar, D. Assessment of the Environmental Impact and Economic Performance of Cacao Agroforestry Systems in the Ecuadorian Amazon Region: An LCA Approach. Sci. Total Environ. 2022, 849, 157795. [Google Scholar] [CrossRef] [PubMed]
- Burki, T. Food Security and Nutrition in the World. Lancet Diabetes Endocrinol. 2022, 10, 622. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ccori, J.; Bilhaut, A.-G.; Mazé, A.; Fernández-Manjarrés, J. Unveiling Cacao Agroforestry Sustainability through the Socio-Ecological Systems Diagnostic Framework: The Case of Four Amazonian Rural Communities in Ecuador. Sustainability 2020, 12, 5934. [Google Scholar] [CrossRef]
- Pastorino, L.F. La Seguridad Alimentaria—Un Concepto Pretencioso. Przegląd. Prawa Rolnego 2020, 2, 183–205. [Google Scholar] [CrossRef]
- Aboagye, S. Economic Expansion and Environmental Sustainability Nexus in Ghana. Afr. Dev. Rev. 2017, 29, 155–168. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The Impact of Economic Structure to the Environmental Kuznets Curve (EKC) Hypothesis: Evidence from European Countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef]
- Kwakwa, P.A. Energy Consumption, Financial Development, and Carbon Dioxide Emissions. J. Energy Dev. 2019, 45, 175–196. [Google Scholar]
- González, R.; Rosas, J.G.; Blanco, D.; Smith, R.; Martínez, E.J.; Pastor-Bueis, R.; Gómez, X. Anaerobic Digestion of Fourth Range Fruit and Vegetable Products: Comparison of Three Different Scenarios for Its Valorisation by Life Cycle Assessment and Life Cycle Costing. Environ. Monit. Assess. 2020, 192, 551. [Google Scholar] [CrossRef] [PubMed]
- Visscher, A.M.; Vanek, S.; Meza, K.; Wellstein, C.; Zerbe, S.; Ccanto, R.; Olivera, E.; Huaraca, J.; Scurrah, M.; Fonte, S.J. Tree-Based Land Uses Enhance the Provision of Ecosystem Services in Agricultural Landscapes of the Peruvian Highlands. Agric. Ecosyst. Environ. 2023, 342, 108213. [Google Scholar] [CrossRef]
- Hughes, K.; Morgan, S.; Baylis, K.; Oduol, J.; Smith-Dumont, E.; Vågen, T.-G.; Kegode, H. Assessing the Downstream Socioeconomic Impacts of Agroforestry in Kenya. World Dev. 2020, 128, 104835. [Google Scholar] [CrossRef]
- Mukhlis, I.; Rizaludin, M.S.; Hidayah, I. Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. Forests 2022, 13, 556. [Google Scholar] [CrossRef]
- Torres, B.; Vasco, C.; Günter, S.; Knoke, T. Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2018, 10, 1432. [Google Scholar] [CrossRef]
- Vasco, C.; Bilsborrow, R.; Torres, B.; Griess, V. Agricultural Land Use among Mestizo Colonist and Indigenous Populations: Contrasting Patterns in the Amazon. PLoS ONE 2018, 13, e0199518. [Google Scholar] [CrossRef]
- Ferrer Velasco, R.; Lippe, M.; Fischer, R.; Torres, B.; Tamayo, F.; Kalaba, F.K.; Kaoma, H.; Bugayong, L.; Günter, S. Reconciling Policy Instruments with Drivers of Deforestation and Forest Degradation: Cross-Scale Analysis of Stakeholder Perceptions in Tropical Countries. Sci. Rep. 2023, 13, 2180. [Google Scholar] [CrossRef]
- Fischer, R.; Lippe, M.; Dolom, P.; Kalaba, F.K.; Tamayo, F.; Torres, B. Effectiveness of Policy Instrument Mixes for Forest Conservation in the Tropics–Stakeholder Perceptions from Ecuador, the Philippines and Zambia. Land Use Policy 2023, 127, 106546. [Google Scholar] [CrossRef]
- Torres, B.; Günter, S.; Acevedo-Cabra, R.; Knoke, T. Livelihood Strategies, Ethnicity and Rural Income: The Case of Migrant Settlers and Indigenous Populations in the Ecuadorian Amazon. For. Policy Econ. 2018, 86, 22–34. [Google Scholar] [CrossRef]
Hypotheses to Evaluate the Causes of Financial-Economic Sustainability |
---|
Hypothesis 1. Sustainability indicators related to environmental resilience have a positive impact on financial-economic sustainability in traditional agroforestry production systems. |
Hypothesis 2. Sustainability indicators related to biodiversity conservation have a positive impact on financial-economic sustainability in agroforestry production systems. |
Hypothesis 3. Food security practices in agroforestry production systems have a positive impact on financial-economic sustainability. |
Hypothesis 4. Social factors in agroforestry production systems have a positive impact on financial-economic sustainability. |
Hypothesis 5. Business factors (BF) have a positive impact on financial-economic sustainability in agroforestry production systems. |
Index | Value | Value Interpretation |
---|---|---|
Average path coefficient (APC) | APC = 0.165, p < 0.001 | Significant if p < 0.05 |
Average R-squared (ARS) | ARS = 0.200, p < 0.001 | Significant if p < 0.05 |
Average adjusted R-squared (AARS) | AARS = 0.187, p < 0.001 | Significant if p < 0.05 |
Average block VIF (AVIF) | AVIF = 1.322 | Acceptable if ≤5, ideally ≤3.3 |
Average full collinearity VIF (AFVIF) | AFVIF = 2.329 | Acceptable if ≤5, ideally ≤3.3 |
Tenenhaus GoF (GoF) | GoF = 0.307 | Small ≥0.1, medium ≥0.25, large ≥0.36 |
Sympson’s paradox ratio (SPR) | SPR = 0.800 | Acceptable if ≥0.7, ideally =1 |
R-squared contribution ratio (RSCR) | RSCR = 0.958 | Acceptable if ≥0.9, ideally =1 |
Statistical suppression ratio (SSR) | SSR = 1.000 | Acceptable if ≥0.7 |
Non-linear bivariate causality direction ratio (NLBCDR) | NLBCDR = 0.700 | Acceptable if ≥0.7 |
FES | Hypothesis | Model Results | Influence | ||
---|---|---|---|---|---|
β | p-Value | ||||
ER | −0.24 | <0.01 | 1 | Accepted | Negative |
BC | −0.14 | <0.01 | 2 | Accepted | Negative |
FS | 0.13 | <0.01 | 3 | Accepted | Positive |
SF | −0.07 | <0.09 | 4 | Rejected | Negative |
BF | 0.24 | <0.01 | 5 | Accepted | Positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna, M.; Barcellos-Paula, L. Structured Equations to Assess the Socioeconomic and Business Factors Influencing the Financial Sustainability of Traditional Amazonian Chakra in the Ecuadorian Amazon. Sustainability 2024, 16, 2480. https://doi.org/10.3390/su16062480
Luna M, Barcellos-Paula L. Structured Equations to Assess the Socioeconomic and Business Factors Influencing the Financial Sustainability of Traditional Amazonian Chakra in the Ecuadorian Amazon. Sustainability. 2024; 16(6):2480. https://doi.org/10.3390/su16062480
Chicago/Turabian StyleLuna, Marcelo, and Luciano Barcellos-Paula. 2024. "Structured Equations to Assess the Socioeconomic and Business Factors Influencing the Financial Sustainability of Traditional Amazonian Chakra in the Ecuadorian Amazon" Sustainability 16, no. 6: 2480. https://doi.org/10.3390/su16062480
APA StyleLuna, M., & Barcellos-Paula, L. (2024). Structured Equations to Assess the Socioeconomic and Business Factors Influencing the Financial Sustainability of Traditional Amazonian Chakra in the Ecuadorian Amazon. Sustainability, 16(6), 2480. https://doi.org/10.3390/su16062480