European Green Deal: Satellite Monitoring in the Implementation of the Concept of Agricultural Development in an Urbanized Environment
Abstract
:1. Introduction
- When using heat islands determined by the specifics of objects in urban areas, even with soil pollution, it is possible to grow industrial crops, in particular for biogas production;
- When choosing the optimal locations for the placement of green plantations for the production of biomass, the seasonal specificity of heat islands should be taken into account when excess surface heating is observed on a permanent basis precisely in the spring and autumn periods;
- To determine the stable locations of heat islands throughout the year in Ukraine, it is advisable to use data from specialized satellites with a thermal measurement channel for administrative and organizational reasons.
2. Materials and Methods
2.1. Methodology of the Experiment
- (1)
- Lavina. For research, five distinct city areas were selected concerning the heat islands identified in the summer of 2021. The dimensions of the experimental plots (50 × 70 pixels) were chosen based on the dimensions of the heat island caused by the functioning of the shopping and entertainment center “Lavina Mall”, which is the largest in Ukraine. The center was built in 2016 on the outskirts of Kyiv. Coordinates of the site center: 50.4952, 30.3600.
- (2)
- Podol. The plot is in the Podilsk district, characterized by a complex of production and warehouse premises. Coordinates of the site center: 50.4674, 30.5152.
- (3)
- Pechersk. The plot is near the “Furniture House” shopping center in the Pechersk district, which is characterized by Soviet-era buildings with modern shopping areas on the underground levels and the “Zvirinetska” metro station. Coordinates of the site center: 50.4165, 30.5431.
- (4)
- Tsimbal. The site in Holosiivskyi district is primarily the private sector with a low population concentration and large green areas of parks and homesteads. Coordinates of the site center: 50.3949, 30.5321.
- (5)
- Bereznyki. A plot of land in the Darnytskyi district is occupied by an array of metal garages for passenger cars, as well as a lake (Nizhny Telbin). Coordinates of the site center: 50.4258, 30.6071.
2.2. Developing the Software for Studying Temperature Islands for Urban Agriculture Needs
2.2.1. Data Preparation
Listing 1. Downloading the LANDSAT 8 set. |
Listing 2. Filter the collection by area of interest. |
Listing 3. Collection filter by cloudiness indicator (filter). |
Listing 4. Masking of cloudiness and cloud shadows on all instances of the collection. |
Listing 5. Selecting the required channels (select). |
Listing 6. Obtain a list of the date and time of shooting of available pictures. |
Listing 7. Selection of an instance from the collection. |
Listing 8. Calculation of LST. |
2.2.2. Visualization of Layers (addLayer)
2.3. Selection of a Control Point on the Experimental Site (onClick)
Listing 9. Obtaining the coordinates of a point. |
Listing 10. Obtaining and outputting characteristics. |
Listing 11. Building a plot. |
2.4. Statistical Processing of Results for Experimental Plots
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faichuk, O.; Voliak, L.; Hutsol, T.; Glowacki, S.; Pantsyr, Y.; Slobodian, S.; Szeląg-Sikora, A.; Gródek-Szostak, Z. European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU. Sustainability 2022, 14, 3712. [Google Scholar] [CrossRef]
- Ciot, M.-G. Implementation Perspectives for the European Green Deal in Central and Eastern Europe. Sustainability 2022, 14, 3947. [Google Scholar] [CrossRef]
- Vindel, J.M.; Trincado, E.; Sánchez-Bayón, A. European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects. Energies 2021, 14, 1994. [Google Scholar] [CrossRef]
- Sandri, S.; Hussein, H.; Alshyab, N.; Sagatowski, J. The European Green Deal: Challenges and opportunities for the Southern Mediterranean. Mediterr. Politics 2023, 1–12. [Google Scholar] [CrossRef]
- Labenko, O.; Sobchenko, T.; Hutsol, T.; Cupiał, M.; Mudryk, K.; Kocira, A.; Pavlenko-Didur, K.; Klymenko, O.; Neuberger, P. Project Environment and Outlook within the Scope of Technologically Integrated European Green Deal in EU and Ukraine. Sustainability 2022, 14, 8759. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A. The potential of urban agriculture in combination with organic waste valorization: Assessment of resource flows and emissions for two European cities. J. Clean. Prod. 2020, 244, 118490. [Google Scholar] [CrossRef]
- Saha, M.; Eckelman, M.J. Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landsc. Urban Plan. 2017, 165, 130–141. [Google Scholar] [CrossRef]
- Beltran, A.M.; Jepsen, K.; Rufí-Salís, M.; Ventura, S.; Lopez, C.M.; Villalba, G. Mapping direct N2O emissions from peri-urban agriculture: The case of the Metropolitan Area of Barcelona. Sci. Total Environ. 2022, 822, 153514. [Google Scholar] [CrossRef] [PubMed]
- Tapia, C.; Randall, L.; Wang, S.; Borges, L.A. Monitoring the contribution of urban agriculture to urban sustainability: An indicator-based framework. Sustain. Cities Soc. 2021, 74, 103130. [Google Scholar] [CrossRef]
- Ghosh, S. Urban agriculture potential of home gardens in residential land uses: A case study of regional City of Dubbo, Australia. Land Use Policy 2021, 109, 105686. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Sisman, S.; Aydınoglu, A.C. Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques. Ecol. Model. 2021, 455, 109610. [Google Scholar] [CrossRef]
- Hume, I.V.; Summers, D.M.; Cavagnaro, T.R. Self-sufficiency through urban agriculture: Nice idea or plausible reality? Sustain. Cities Soc. 2021, 68, 102770. [Google Scholar] [CrossRef]
- Schaefer, M.; Thinh, N.X. Evaluation of Land Cover Change and Agricultural Protection Sites: A GIS and Remote Sensing Approach for Ho Chi Minh City, Vietnam. Heliyon 2019, 5, e01773. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Hansen, H.C.B.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–666. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Karim, F.; Gathenya, J.M. A Scoping Review of Roof Harvested Rainwater Usage in Urban Agriculture: Australia and Kenya in Focus. J. Clean. Prod. 2018, 202, 174–190. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Fathololoumi, S.; Kiavarz, M.; Arsanjani, J.J.; Alavipanah, S.K. Modelling surface heat island intensity according to differences of biophysical characteristics: A case study of Amol city, Iran. Ecol. Indic. 2020, 109, 105816. [Google Scholar] [CrossRef]
- Kabano, P.; Lindley, S.; Harris, A. Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landsc. Urban Plan. 2020, 206, 103989. [Google Scholar] [CrossRef]
- Bushma, A.V.; Hudz, O.V.; Kwrpiuk, A.D.; Holub, B.L.; Dudnyk, A.O. Optical sensor for the detection of mycotoxins. Semicond. Phys. Quantum Electron. Optoelectron. 2021, 24, 227–233. [Google Scholar] [CrossRef]
- Kho, E.P.; Chua, S.N.D.; Lim, S.F.; Lau, L.C.; Gani, M.C.N. Development of young sago palm environmental monitoring system with wireless sensor networks. Comput. Electron. Agric. 2022, 193, 106723. [Google Scholar] [CrossRef]
- Golub, B.; Hudz, A.; Dudnyk, A.; Bushma, A. Production of Biotechnological Objects using Business Intelligence. In Proceedings of the 2019 9th International Conference on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, Czech Republic, 5–7 June 2019; pp. 200–204. [Google Scholar] [CrossRef]
- Levintal, E.; Kang, K.L.; Larson, L.; Winkelman, E.; Nackley, L.; Weisbrod, N.; Selker, J.S.; Udell, C.J. eGreenhouse: Robotically positioned, low-cost, open-source CO2 analyzer and sensor device for greenhouse applications. HardwareX 2021, 9, e00193. [Google Scholar] [CrossRef] [PubMed]
- Dudnyk, A.; Lysenko, V.; Zaets, N.; Komarchuk, D.; Lendiel, T.; Yakymenko, I. Intelligent Control System of Biotechnological Objects with Fuzzy Controller and Noise Filtration Unit. In Proceedings of the 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 9–12 October 2018; pp. 586–590. [Google Scholar] [CrossRef]
- Nitoslawski, S.A.; Galle, N.J.; Van Den Bosch, C.K.; Steenberg, J.W. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 2019, 51, 101770. [Google Scholar] [CrossRef]
- Joimel, S.; Cortet, J.; Jolivet, C.C.; Saby, N.P.A.; Chenot, E.D.; Branchu, P.; Consalès, J.N.; Lefort, C.; Morel, J.L.; Schwartz, C. Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Sci. Total Environ. 2016, 545–546, 40–47. [Google Scholar] [CrossRef]
- Polishchuk, V.M.; Shvorov, S.A.; Flonts, I.V.; Davidenko, T.S.; Dvornyk, Y.O. Increasing the Yield of Biogas and Electricity during Manure Fermentation Cattle by Optimally Adding Lime to Extruded Straw. Probl. Energeticii Reg. 2021, 1, 73–85. [Google Scholar] [CrossRef]
- Polishchuk, V.; Shvorov, S.; Zablodskiy, M.; Kucheruk, P.P.; Davidenko, T.S.; Dvornyk, Y.O. Effectiveness of Adding Extruded Wheat Straw to Poultry Manure to Increase the Rate of Biogas Yield. Probl. Energ. Reg. 2021, 3, 111–124. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Zhang, Q.; Zhang, G.; Teng, J. Predicting the surface urban heat island intensity of future urban green space development using a multi-scenario simulation. Sustain. Cities Soc. 2021, 66, 102698. [Google Scholar] [CrossRef]
- Qiu, K.; Jia, B. The roles of landscape both inside the park and the surroundings in park cooling effect. Sustain. Cities Soc. 2019, 52, 101864. [Google Scholar] [CrossRef]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imura, H. Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Hunter, A.M.; Williams, N.S.; Rayner, J.P.; Aye, L.; Hes, D.; Livesley, S.J. Quantifying the thermal performance of green façades: A critical review. Ecol. Eng. 2014, 63, 102–113. [Google Scholar] [CrossRef]
- Yin, H.; Kong, F.; Middel, A.; Dronova, I.; Xu, H.; James, P. Cooling effect of direct green façades during hot summer days: An observational study in Nanjing, China using TIR and 3DPC data. Build. Environ. 2017, 116, 195–206. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Sabatino, S.D.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Elmarakby, E.; Khalifa, M.; Elshater, A.; Afifi, S. Tailored methods for mapping urban heat islands in Greater Cairo Region. Ain Shams Eng. J. 2022, 13, 101545. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Muradyan, V.; Hovsepyan, A.; Pinigin, G.; Medvedev, A.; Asmaryan, S. Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Build. Environ. 2021, 187, 107390. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Pasichnyk, N.; Komarchuk, D.; Opryshko, O.; Shvorov, S.; Reshetiuk, V.; Oksana, B. Technologies for Environmental Monitoring of the City. In Proceedings of the 2021 IEEE 16th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Lviv, Ukraine, 22–26 February 2021; pp. 40–43. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Wang, Y. Estimating local-scale urban heat island intensity using nighttime light satellite imageries. Sci. Total Environ. 2020, 57, 102125. [Google Scholar] [CrossRef]
- Yang, D.; Luan, W.; Qiao, L.; Pratama, M. Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery. Appl. Energy 2020, 268, 114696. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Frolking, S.; Zhou, D.; Schneider, A.; Weng, Q.; Yu, P.; Wang, X.; Li, X.; et al. Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites. Sci. Total Environ. 2021, 763, 144224. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tang, L.; Wang, H. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J. Clean. Prod. 2021, 328, 129488. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A.; Irașoc, A.; Paraschiv, M.-G.; Perry, M.; Ghent, D. MODIS-based climatology of the Surface Urban Heat Island at country scale (Romania). Urban Clim. 2022, 41, 101056. [Google Scholar] [CrossRef]
- Chakraborty, T.C.; Lee, X.; Ermida, S.; Zhan, W. On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sens. Environ. 2021, 265, 112682. [Google Scholar] [CrossRef]
- Mushore, T.D.; Odindi, J.; Dube, T.; Matongera, T.N.; Mutanga, O. Remote sensingapplications in monitoring urban growth impacts on in-and-out door thermal con-ditions: A review. Remote Sens. Appl. Soc. Environ. 2017, 8, 83–93. [Google Scholar]
- Pasichnyk, N.; Komarchuk, D.; Opryshko, O.; Shvorov, S.; Kiktev, N. Methodology for Software Assessment of the Conformity of Atmospheric Correction from the UAV’s Zenith Sensor. In Proceedings of the 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD), Kyiv, Ukraine, 19–21 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Sebbah, B.; Alaoui, O.Y.; Wahbi, M.; Maâtouk, M.; Achhab, N.B. QGIS-Landsat Indices plugin (Q-LIP): Tool for environmental indices computing using Landsat data. Environ. Model. Softw. 2021, 137, 104972. [Google Scholar] [CrossRef]
- Komarchuk, D.; Pasichnyk, N.; Lysenko, V.; Opryshko, O.; Shvorov, S.; Reshetiuk, V.; Udovenko, O.; Knizhka, T.; Kharinova, M. Algorithms and Software for UAV Flight Planning for Monitoring the Stress Conditions of Plantations. In Proceedings of the 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), Kyiv, Ukraine, 20–23 October 2020; pp. 146–149. [Google Scholar] [CrossRef]
- Pasichnyk, N.; Komarchuk, D.; Korenkova, H.; Shvorov, S.; Opryshko, O.; Kiktev, N. Spectral-spatial analysis of data of images of plantings for identification of stresses of technological character. In Proceedings of the 2nd International Conference on Intellectual Systems and Information Technologies (ISIT 2021) Co-Located with 1st International Forum “Digital Reality” (DRForum 2021). CEUR Workshop Proceedings, Odesa, Ukraine, 13–19 September 2021; Volume 3126, pp. 305–312. [Google Scholar]
- Wang, Y.R.; Samset, B.H.; Stordal, F.; Bryn, A.; Hessen, D.O. Past and future trends of diurnal temperature range and their correlation with vegetation assessed by MODIS and CMIP6. Sci. Total Environ. 2023, 904, 166727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kasimu, A.; Liang, H.; Wei, B.; Aizizi, Y.; Han, F. Mechanism analysis of vegetation phenology in an urban agglomeration in an arid zone driven by seasonal land surface temperatures. Urban Clim. 2024, 53, 101795. [Google Scholar] [CrossRef]
- Mu, X.; Hu, R.; Zeng, Y.; McVicar, T.R.; Ren, H.; Song, W.; Wang, Y.; Casa, R.; Qi, J.; Xie, D.; et al. Estimating structural parameters of agricultural crops from ground-based multi-angular digital images with a fractional model of sun and shade components. Agric. For. Meteorol. 2017, 246, 162–177. [Google Scholar] [CrossRef]
- Kupková, L.; Červená, L.; Potůčková, M.; Lysák, J.; Roubalová, M.; Hrázský, Z.; Březina, S.; Epstein, H.E.; Müllerová, J. Towards reliable monitoring of grass species in nature conservation: Evaluation of the potential of UAV and PlanetScope multi-temporal data in the Central European tundra. Remote Sens. Environ. 2023, 294, 113645. [Google Scholar] [CrossRef]
- Van Espen, M.; Williams, J.H.; Alves, F.; Hung, Y.; de Graaf, D.C.; Verbeke, W. Beekeeping in Europe facing climate change: A mixed methods study on perceived impacts and the need to adapt according to stakeholders and beekeepers. Sci. Total Environ. 2023, 888, 164255. [Google Scholar] [CrossRef]
- Simbürger, M.; Dreisiebner-Lanz, S.; Kernitzkyi, M.; Prettenthaler, F. Climate risk management with insurance or tax-exempted provisions? An empirical case study of hail and frost risk for wine and apple production in Styria. Int. J. Disaster Risk Reduct. 2022, 80, 103216. [Google Scholar] [CrossRef]
- Dai, X.; Guo, Z.; Lin, Y.; Wei, C.; Ye, S. Application of satellite remote sensing data for monitoring thermal discharge pollution from Tianwan nuclear power plant in eastern China. In Proceedings of the 2012 5th International Congress on Image and Signal Processing, Chongqing, China, 16–18 October 2012; pp. 1019–1023. [Google Scholar] [CrossRef]
- Dai, X.; Guo, Z.; Chen, Y.; Ma, P.; Chen, C. Monitoring of thermal plume discharged from thermal and nuclear power plants in eastern China using satellite images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7659–7662. [Google Scholar] [CrossRef]
- Stagakis, S.; Burud, I.; Thiis, T.; Gaitani, N.; Panagiotakis, E.; Lantzanakis, G.; Spyridakis, N.; Chrysoulakis, N. Spatiotemporal monitoring of surface temperature in an urban area using UAV imaging and tower-mounted radiometer measurements. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 22–24 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Fu, C.; Liu, D.; Li, B. Demo Abstract: Smart City: A Real-Time Environmental Monitoring System on Green Roof. In Proceedings of the 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), Orlando, FL, USA, 17–20 April 2018; pp. 300–301. [Google Scholar] [CrossRef]
- Mo, F.; Li, H.; Jing, Q.; Zhang, X.; Cao, B.; Liu, Q. Research on High Resolution Thermal Infrared Satellite Technology and Applications. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5674–5677. [Google Scholar] [CrossRef]
- Salem, H.; Sedaghat, A.; Malayer, M.A. Passive Cooling with Finned Roof Tiles. In Proceedings of the 2023 7th International Conference on Green Energy and Applications (ICGEA), Singapore, 10–12 March 2023; pp. 204–208. [Google Scholar] [CrossRef]
- La Gennusa, M.; Peri, G.; Scaccianoce, G.; Sorrentino, G.; Aprile, S. A Case-Study of Green Roof Monitoring: The Building of Council for Agricultural Research and Economics in Bagheria, (Italy). In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Palme, M.; Carrasco, C.; Valenzuela, J. Patterns evolution of Urban Heat Island phenomenon in Chilean cities and proposal of mitigation strategies by climatic emplacement. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 5–8 July 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Khort, D.; Kutyrev, A.; Kiktev, N.; Hutsol, T.; Glowacki, S.; Kuboń, M.; Nurek, T.; Rud, A.; Gródek-Szostak, Z. Automated Mobile Hot Mist Generator: A Quest for Effectiveness in Fruit Horticulture. Sensors 2022, 22, 3164. [Google Scholar] [CrossRef]
- Smirnov, I.; Khort, D.; Filippov, R.; Kutyrev, A. Factor analysis of irradiation of the strawberries (fragaria × ananassa) seeds pulsed low-frequency magnetic field. Indian J. Agric. Sci. 2019, 89, 113–118. [Google Scholar] [CrossRef]
- Izmailov, A.; Smirnov, I.; Khort, D.; Filippov, R.; Kutyrev, A. Magnetic-pulse processing of seeds of berry crops. Res. Agric. Eng. 2018, 64, 181–186. [Google Scholar] [CrossRef]
- Zablodskiy, M.; Kozyrskyi, V.; Zhyltsov, A.; Savchenko, V.; Sinyavsky, O.; Spodoba, M.; Klendiy, P.; Klendiy, G. Electrochemical Characteristics of the Substrate based on Animal Excrement During Methanogenesis with the Influence of a Magnetic Field. In Proceedings of the 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 22–24 April 2020; pp. 530–535. [Google Scholar] [CrossRef]
- Kalivoshko, O.; Kraevsky, V.; Burdeha, K.; Lyutyy, I.; Kiktev, N. The Role of Innovation in Economic Growth: Information and Analytical Aspect. In Proceedings of the 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 5–7 October 2021. [Google Scholar] [CrossRef]
Satellite | Sensor | Spatial Resolution of LST, m | LST Time Series |
---|---|---|---|
Landsat | TM ETM TIRS | 120 60 100 | Daily |
NOAA | AVHRR | 1100 | Daily |
EOS (Terra, Aqua) | MODIS | 1000 1000 25,600 | Per day Per 8 days Per month |
EOS (Terra) | ASTER | 90 | Daily |
METOR | AVHRR-3 | 1100 | Per 10 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opryshko, O.; Pasichnyk, N.; Kiktev, N.; Dudnyk, A.; Hutsol, T.; Mudryk, K.; Herbut, P.; Łyszczarz, P.; Kukharets, V. European Green Deal: Satellite Monitoring in the Implementation of the Concept of Agricultural Development in an Urbanized Environment. Sustainability 2024, 16, 2649. https://doi.org/10.3390/su16072649
Opryshko O, Pasichnyk N, Kiktev N, Dudnyk A, Hutsol T, Mudryk K, Herbut P, Łyszczarz P, Kukharets V. European Green Deal: Satellite Monitoring in the Implementation of the Concept of Agricultural Development in an Urbanized Environment. Sustainability. 2024; 16(7):2649. https://doi.org/10.3390/su16072649
Chicago/Turabian StyleOpryshko, Oleksiy, Natalia Pasichnyk, Nikolay Kiktev, Alla Dudnyk, Taras Hutsol, Krzysztof Mudryk, Piotr Herbut, Piotr Łyszczarz, and Valentyna Kukharets. 2024. "European Green Deal: Satellite Monitoring in the Implementation of the Concept of Agricultural Development in an Urbanized Environment" Sustainability 16, no. 7: 2649. https://doi.org/10.3390/su16072649
APA StyleOpryshko, O., Pasichnyk, N., Kiktev, N., Dudnyk, A., Hutsol, T., Mudryk, K., Herbut, P., Łyszczarz, P., & Kukharets, V. (2024). European Green Deal: Satellite Monitoring in the Implementation of the Concept of Agricultural Development in an Urbanized Environment. Sustainability, 16(7), 2649. https://doi.org/10.3390/su16072649