Energy Efficiency of Conifer Cones and Seed Extraction Residue Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laboratory Analyses
2.3. Statistical Analysis
3. Results and Discussion
3.1. Proportions (%) of Scots Pine Seed Extraction Residues (Percentage by Weight)
3.2. Bulk Density of Seed Extraction Residues
3.3. Thermophysical Properties of Seed Extraction Residues
3.4. Elemental Composition of Seed Extraction Residues
3.5. General Characteristics of Solid Biofuels Derived from Seed Extraction Residues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union, Strasbourg, France. 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF (accessed on 10 January 2024).
- Statistics Poland. Energy from Renewable Sources in 2022; Statistics Poland: Warsaw, Poland, 2023; p. 67. [Google Scholar]
- Picchio, F.; Latterini, R.; Venanzi, W.; Stefanoni, A.; Suardi, D.; Tocci, L.; Pari, L. Pellet production from woody and non-woody feedstocks: A review on biomass quality evaluation. Energies 2020, 13, 2937. [Google Scholar] [CrossRef]
- Pedišius, N.; Praspaliauskas, M.; Pedišius, J.; Dzenajavičienė, E.F. Analysis of Wood Chip Characteristics for Energy Production in Lithuania. Energies 2021, 14, 3931. [Google Scholar] [CrossRef]
- Enström, J.; Eriksson, A.; Eliasson, L.; Larsson, A.; Olsson, L. Wood chip supply from forest to port of loading—A simulation study. Biomass Bioenergy 2021, 152, 106182. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Dudziec, P.; Krzyżaniak, M.; Olba-Zięty, E. Solid Biomass Energy Potential as a Development Opportunity for Rural Communities. Energies 2021, 14, 3398. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Stachowicz, P.; Dudziec, P. Wood pellet quality depending on dendromass species. Renew. Energy 2022, 199, 498–508. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Dudziec, P.; Olba-Zięty, E.; Stachowicz, P.; Krzyżaniak, M. Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ. Energies 2022, 15, 1442. [Google Scholar] [CrossRef]
- Sherman, L.A.; Page-Dumroese, D.S.; Coleman, M.D. Idaho forest growth response to post-thinning energy biomass removal and complementary soil amendments. GCB Bioenergy 2017, 10, 246–261. [Google Scholar] [CrossRef]
- Stolarski, J.; Wierzbicki, S.; Nitkiewicz, S.; Stolarski, M.J. Wood Chip Production Efficiency Depending on Chipper Type. Energies 2023, 16, 4894. [Google Scholar] [CrossRef]
- Dudziec, P.; Stachowicz, P.; Stolarski, M.J. Diversity of properties of sawmill residues used as feedstock for energy generation. Renewable Energy 2023, 202, 822–833. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Mahamood, R.M.; Jen, T.-C.; Loha, C.; Akinlabi, E.T. An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties. J. Bioresour. Bioprod. 2023, 8, 333–360. [Google Scholar] [CrossRef]
- Stafford, W.; De Lange, W.; Nahman, A.; Chunilall, V.; Lekha, P.; Andrew, J.; Johakimu, J.; Sithole, B.; Trotter, D. Forestry biorefineries. Renew. Energy 2020, 154, 461–475. [Google Scholar] [CrossRef]
- Costa, A.R.; Lourenço, A.; Patrício, H.; Quilhó, T.; Gominho, J. Valorization of Pine Nut Industry Residues on a Biorefinery Concept. Valorization of Pine Nut Industry Residues on a Biorefinery Concept. Waste Biomass Valor 2023, 14, 4081–4099. [Google Scholar] [CrossRef]
- Wajs, A.; Urbańska, J.; Zaleśkiewicz, E.; Bonikowski, R. Composition of Essential Oil from Seeds and Cones of Abies alba. Nat. Prod. Commun. 2010, 5, 1291–1294. [Google Scholar] [CrossRef]
- Kar, T.; Kaygusuz, Ö.; Güney, M.Ş.; Cuce, E.; Keleş, S.; Shaik, S.; Owolabi, A.B.; Nsafon, B.E.K.; Ogunsua, J.M.; Huh, J.-S. Fast Pyrolysis of Tea Bush, Walnut Shell, and Pine Cone Mixture: Effect of Pyrolysis Parameters on Pyrolysis Crop Yields. Sustainability 2023, 15, 13718. [Google Scholar] [CrossRef]
- Sahin, H.T.; Yalcin, O.U. Conifer Cones: An Alternative Raw Material for Industry. Br. J. Pharm. Res. 2017, 17, 3415. [Google Scholar] [CrossRef]
- Statistics Poland. Statistical Yearbook of Forestry; Statistics Poland: Warsaw/Białystok, Poland, 2023; p. 348. [Google Scholar]
- Fonder, W.; Matras, J.; Załęski, A. Leśna baza nasienna w Polsce; CILP: Warszawa, Poland, 2007; p. 302. [Google Scholar]
- Statistics Poland. Forestry in 2022; Statistics Poland: Warsaw/Białystok, Poland, 2023; p. 5. [Google Scholar]
- Aniszewska, M.; Kuszpit, D. Analysis of acquisition and potential usage of conifer cones from Polish seed extraction houses between 2009–2012. Ann. Wars. Univ. Life Sci. SGGW Agric. 2015, 65, 93–101. [Google Scholar]
- Register of Issued Certificates of Origin for Forest Reproductive Material. Available online: https://rejestry.bnl.gov.pl/registry/CERT (accessed on 29 February 2024).
- Titus, B.D.; Brown, K.; Helmisaari, H.S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 10. [Google Scholar] [CrossRef]
- Nicholls, D.L.; Monserud, R.A.; Dykstra, D.P. Biomass utilization for bioenergy in the western United States. For. Prod. J. 2008, 58, 6–16. [Google Scholar]
- Brack, D. The Impacts of the Demand for Woody Biomass for Power and Heat on Climate and Forests; Chatham House: London, UK, 2017. [Google Scholar]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Garcia-Maraver, A.; Zamorano, M.; Fernandes, U.; Rabaçal, M.; Costa, M. Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel 2014, 119, 141–152. [Google Scholar] [CrossRef]
- Winter, F.; Wartha, C.; Hofbauer, H. NO and N2O formation during the combustion of wood, straw, malt waste and peat. Bioresour Technol. 1999, 70, 39–49. [Google Scholar] [CrossRef]
- Saleh, S.B.; Flensborg, J.P.; Shoulaifar, T.K.; Sárossy, Z.; Hansen, B.B.; Egsgaard, H.; DeMartini, N.; Jensen, P.A.; Glarborg, P.; Dam-Johansen, K. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis. Energy Fuels 2014, 28, 3738–3746. [Google Scholar] [CrossRef]
- PN-EN ISO 18134-1:2015-11; Biofuels–Determination of Moisture Content–Dryer Method–Part 1: Total Moisture–Reference Method. Polish Standardization Committee: Warsaw, Poland, 2017.
- PN-EN ISO 14780:2017-07; Solid Biofuels—Sample Preparation. Polish Standardization Committee: Warsaw, Poland, 2020.
- PN-EN ISO 18125:2017-07; Solid Biofuels—Determination of Calorific Value. Polish Standardization Committee: Warsaw, Poland, 2017.
- PN-EN ISO 18122:2016-01; Solid Biofuels—Determination of Ash Content. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. Polish Standardization Committee: Warsaw, Poland, 2015.
- PN-EN ISO 16994:2016-10; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-ISO 587:2000; Solid Fuels—Determination of Chlorine Content Using the Eschka Mixture (In Polish). Polish Standardization Committee: Warsaw, Poland, 2000.
- Tyszkiewicz, S. Nasiennictwo Leśne; Instytut Badawczy Leśnictwa: Warszawa, Poland, 1949; p. 358. [Google Scholar]
- Tylek, P. Selected physical features and sorting criteria for European larch seeds. Sylwan 2004, 4, 27–33. [Google Scholar] [CrossRef]
- Aniszewska, M.; Gendek, A. Logistics of the supplies of selected forest tree species’ cones. Part 1. Cone density and substitution coefficient. Ann. Wars. Univ. Life Sci. SGGW Agric. 2016, 67, 121–130. [Google Scholar]
- Aniszewska, M.; Gendek, A.; Zychowicz, W. Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency. Forests 2018, 9, 405. [Google Scholar] [CrossRef]
- Spinelli, R.; De Francesco, F.; Eliasson, L.; Jessup, E.; Magagnotti, N. An agile chipper truck for space-constrained operations. Biomass Bioenergy 2015, 81, 137–143. [Google Scholar] [CrossRef]
- Aniszewska, M. Analysis of opening cones of selected coniferous trees. Ann. Wars. Univ. Life Sci. SGGW Agric. 2010, 55, 57–64. [Google Scholar]
- Stankov, S.; Tasheva, S.; Fidan, H.; Bozadzhiev, B.; Dimov, M.; Stoyanova, A. Investigation of chemical composition, basic energy indices, and thermodynamic properties of unripe and ripe black pine (Pinus nigra Arn.) cones. AIP Conf. Proc. 2023, 2889, 070001. [Google Scholar] [CrossRef]
- García, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
- Stachowicz, P.; Stolarski, M.J. Short rotation woody crops and forest biomass sawdust mixture pellet quality. Ind. Crop. Prod. 2023, 197, 116604. [Google Scholar] [CrossRef]
- Malaťák, J.; Gendek, A.; Aniszewska, M.; Velebila, J. Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel 2020, 276, 118001. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Olba-Zięty, E.; Stolarski, J. Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time. Energies 2023, 16, 7973. [Google Scholar] [CrossRef]
- Gündüz, G.; Saraçoğlu, N.; Aydemir, D. Characterization and elemental analysis of wood pellets obtained from low-valued types of wood. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2211–2216. [Google Scholar] [CrossRef]
- Gendek, A.; Malaťák, J.; Velebil, J. Effect of harvest method and composition of wood chips on their caloric value and ash content. Sylwan 2018, 162, 248–257. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Y.; Zhang, Q.; Rong, H.; Liu, Y.; Xiao, B.; Guo, D.; Laghari, M.; Ruan, R. Gas-carrying enhances the combustion temperature of the biomass particles. Energy 2022, 239, 121956. [Google Scholar] [CrossRef]
- Patel, D.K.; Katiyar, R.; Dwivedi, P.; Rathore, A.K.; Singh, A. Co-pyrolysis of pine-cone and chicken feathers: A study to determine kinetic parameters, thermodynamic properties, and potential synergistic effects. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 1644–1657. [Google Scholar] [CrossRef]
- Senelwa, K.; Sims, R.E.H. Fuel characteristics of short rotation forest biomass. Biomass Bioenergy 1999, 17, 127–140. [Google Scholar] [CrossRef]
- Aniszewska, M.; Gendek, A.; Hýsek, Š.; Malaťák, J.; Velebil, J.; Tamelová, B. Changes in the Composition and Surface Properties of Torrefied Conifer Cones. Materials 2020, 13, 5660. [Google Scholar] [CrossRef]
- Nurek, T.; Gendek, A.; Roman, K. Forest residues as a renewable source of energy: Elemental composition and physical properties. BioResources 2019, 14, 6–20. [Google Scholar] [CrossRef]
- Pour, N.; Webley, P.A.; Cook, P.J. Opportunities for Application of BECCS in the Australian Power Sector. Appl. Energy 2018, 224, 615–635. [Google Scholar] [CrossRef]
- Froese, R.E.; Shonnard, D.R.; Miller, C.A.; Koers, K.P.; Johnson, D.M. An Evaluation of Greenhouse Gas Mitigation Options for Coal-Fired Power Plants in the US Great Lakes States. Biomass Bioenergy 2010, 34, 251–262. [Google Scholar] [CrossRef]
- Karaj, S.; Rehl, T.; Leis, H.; Müller, J. Analysis of Biomass Residues Potential for Electrical Energy Generation in Albania. Renew. Sustain. Energy Rev. 2010, 14, 493–499. [Google Scholar] [CrossRef]
- Chałupka, W.; Barzdajn, W.; Blonkowski, S.; Burczyk, J.; Fonder, W.; Grądzki, T.; Gryzło, Z.; Kacprzak, P.; Kowalczyk, J.; Kozioł, C.; et al. Program of Conserving Forest Genetic Resources and Breeding of Trees in Poland for the Years 2011–2035; The State Forests Information Centre: Warsaw, Poland, 2011; p. 144. [Google Scholar]
Seed Extraction Residues | Percentage |
---|---|
cones | 98.35 |
waste from precleaning winged seed | 0.59 |
seed wings | 0.46 |
waste from seed cleaning | 0.51 |
empty seeds | 0.09 |
Types of Seed Extraction Residues | MC (%) | Ash (% DM) | FC (% DM) | VM (% DM) | HHV (GJ Mg−1 DM) | LHV (GJ Mg−1) |
---|---|---|---|---|---|---|
Woody seed scales of larch cones | 6.86 d ± 0.110 | 0.99 f ± 0.021 | 28.59 b ± 0.353 | 70.42 e ± 0.333 | 20.79 e ± 0.009 | 18.00 c ± 0.037 |
Central larch cone stems | 9.99 a ± 0.054 | 0.71 g ± 0.017 | 28.08 c ± 0.031 | 71.20 d ± 0.048 | 20.77 e ± 0.027 | 17.33 d ± 0.039 |
Spruce cones | 6.93 d ± 0.055 | 1.35 e ± 0.008 | 31.93 a ± 0.097 | 66.72 g ± 0.105 | 21.07 cd ± 0.025 | 18.29 b ± 0.004 |
Pine cones | 8.98 b ± 0.008 | 0.93 f ± 0.035 | 24.06 e ± 0.170 | 75.02 b ± 0.205 | 20.30 f ± 0.036 | 17.08 e ± 0.048 |
Residues from precleaning winged pine seeds | 7.40 c ± 0.250 | 17.69 a ± 0.015 | 17.66 h ± 0.025 | 64.66 h ± 0.040 | 21.14 c ± 0.073 | 18.28 b ± 0.123 |
Pine seed wings | 9.85 a ± 0.024 | 2.27 d ± 0.080 | 25.50 d ± 0.220 | 72.23 c ± 0.300 | 20.91 de ± 0.091 | 17.47 d ± 0.077 |
Residues from cleaning dewinged pine seeds | 8.72 b ± 0.191 | 3.63 c ± 0.080 | 18.55 g ± 0.110 | 77.82 a ± 0.030 | 25.43 a ± 0.122 | 21.62 a ± 0.158 |
Empty pine seeds | 10.02 a ± 0.143 | 7.93 b ± 0.050 | 22.56 f ± 0.015 | 69.52 f ± 0.035 | 21.81 b ± 0.026 | 18.21 bc ± 0.016 |
Types of Seed Extraction Residues | C (% DM) | H (% DM) | S (% DM) | N (% DM) | Cl (% DM) |
---|---|---|---|---|---|
Woody seed scales of larch cones | 53.35 e ± 0.010 | 6.27 bc ± 0.026 | 0.029 f ± 0.0010 | 0.58 f ± 0.008 | 0.035 c ± 0.0022 |
Central larch cone stems | 53.33 e ± 0.026 | 6.11 de ± 0.011 | 0.019 g ± 0.0003 | 0.40 g ± 0.002 | 0.020 d ± 0.0009 |
Spruce cones | 58.58 b ± 0.422 | 6.05 e ± 0.076 | 0.043 e ± 0.0005 | 0.69 e ± 0.018 | 0.041 b ± 0.0021 |
Pine cones | 54.52 d ± 0.055 | 6.34 b ± 0.075 | 0.029 f ± 0.0020 | 0.44 g ± 0.025 | 0.010 e ± 0.0000 |
Residues from precleaning winged pine seeds | 53.22 e ± 0.110 | 5.89 f ± 0.000 | 0.069 d ± 0.0005 | 2.13 a ± 0.082 | 0.030 c ± 0.0000 |
Pine seed wings | 55.41 c ± 0.100 | 6.18 cd ± 0.000 | 0.086 c ± 0.0015 | 1.96 b ± 0.008 | 0.010 e ± 0.0000 |
Residues from cleaning dewinged pine seeds | 64.30 a ± 0.085 | 7.41 a ± 0.015 | 0.115 b ± 0.0015 | 1.26 c ± 0.004 | 0.010 e ± 0.0000 |
Empty pine seeds | 54.63 d ± 0.250 | 6.39 b ± 0.035 | 0.203 a ± 0.0020 | 0.82 d ± 0.000 | 0.055 a ± 0.0050 |
Parameter | Mean | Median | Minimum Value | Maximum Value | Lower Quartile | Upper Quartile | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|---|
BD (kg m−3) | 269.13 | 251.38 | 88.90 | 433.61 | 215.54 | 362.04 | 119.91 | 44.55 |
MC (%) | 8.99 | 8.98 | 7.15 | 10.16 | 8.53 | 9.87 | 0.98 | 10.89 |
Ash (% DM) | 6.49 | 3.63 | 0.89 | 17.70 | 2.19 | 7.98 | 6.29 | 96.88 |
FC (% DM) | 21.66 | 22.56 | 17.63 | 25.72 | 18.44 | 24.23 | 3.18 | 14.66 |
VM (% DM) | 71.85 | 72.23 | 64.62 | 77.85 | 69.48 | 75.22 | 4.70 | 6.54 |
HHV (GJ Mg−1 DM) | 21.92 | 21.14 | 20.27 | 25.55 | 20.82 | 21.84 | 1.89 | 8.61 |
LHV (GJ Mg−1) | 18.53 | 18.20 | 17.04 | 21.78 | 17.40 | 18.40 | 1.67 | 8.99 |
C (% DM) | 56.41 | 54.63 | 53.11 | 64.38 | 54.38 | 55.51 | 4.14 | 7.35 |
H (% DM) | 6.44 | 6.34 | 5.89 | 7.42 | 6.18 | 6.42 | 0.53 | 8.26 |
S (% DM) | 0.10 | 0.09 | 0.03 | 0.21 | 0.07 | 0.12 | 0.06 | 60.42 |
N (% DM) | 1.32 | 1.26 | 0.41 | 2.21 | 0.82 | 1.97 | 0.67 | 50.90 |
Cl (% DM) | 0.02 | 0.01 | 0.01 | 0.06 | 0.01 | 0.03 | 0.02 | 80.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, J.; Sztejna, Z. Energy Efficiency of Conifer Cones and Seed Extraction Residue Biomass. Sustainability 2024, 16, 2693. https://doi.org/10.3390/su16072693
Kwiatkowski J, Sztejna Z. Energy Efficiency of Conifer Cones and Seed Extraction Residue Biomass. Sustainability. 2024; 16(7):2693. https://doi.org/10.3390/su16072693
Chicago/Turabian StyleKwiatkowski, Jacek, and Zdzisław Sztejna. 2024. "Energy Efficiency of Conifer Cones and Seed Extraction Residue Biomass" Sustainability 16, no. 7: 2693. https://doi.org/10.3390/su16072693
APA StyleKwiatkowski, J., & Sztejna, Z. (2024). Energy Efficiency of Conifer Cones and Seed Extraction Residue Biomass. Sustainability, 16(7), 2693. https://doi.org/10.3390/su16072693