Enhancing the MSPA Method to Incorporate Ecological Sensitivity: Construction of Ecological Security Patterns in Harbin City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Evaluation of Ecological Sensitivity
- (1)
- Selection and ranking of evaluation factors
- (2)
- Factor weight assignment
2.3.2. Ecological Source Area Identification
2.3.3. Constructing a Resistance Surface
2.3.4. Ecological Corridors and Node Extraction
2.3.5. Ecological Security Pattern Construction
3. Results and Analysis
3.1. Ecological Sensitivity and Ecological Source Area Identification for MSPA
3.1.1. Ecological Sensitivity Classification
3.1.2. Determination of Source Areas
3.2. Ecological Resistance Surface Construction
3.3. Extraction of Ecological Corridors and Nodes
3.4. Ecological Security Pattern Construction and Optimization
3.4.1. Ecological Security Pattern Construction
3.4.2. Strategy for Optimizing Ecological Security Pattern
Two Axes
- (1)
- Songhua River ecological axis.
- (2)
- Hulan River–A-cheng ecological axis.
Two Belts
- (1)
- Songbei–A-cheng corridor belt.
- (2)
- Urban eco-corridor restoration belt
Four Areas
- (1)
- Argo-ecological development area.
- (2)
- New urban eco-development area.
- (3)
- Urban ecological restoration area.
- (4)
- Important ecological culvert area.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, S.; Pan, J.; Liu, X. Landscape Ecological Safety Assessment and Landscape Pattern Optimization in Arid Inland River Basin: Take Ganzhou District as an Example. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 782–806. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Zuo, J.; Zhang, J.; Hong, J.; Lin, C. Optimization of Ecological Industrial Chain Design Based on Reliability Theory—A Case Study. J. Clean. Prod. 2016, 124, 175–182. [Google Scholar] [CrossRef]
- Shi, F.; Liu, S.; An, Y.; Sun, Y.; Zhao, S.; Liu, Y.; Li, M. Spatio-Temporal Dynamics of Landscape Connectivity and Ecological Network Construction in Long Yangxia Basin at the Upper Yellow River. Land 2020, 9, 265. [Google Scholar] [CrossRef]
- Cheng, C.; Hu, Y.; Zhao, M. Progress and Prospect of the Spatiotemporal Change and Ecosystem Services Evaluation of Urban Green Space Pattern. Prog. Geogr. 2020, 39, 1770–1782. [Google Scholar] [CrossRef]
- Song, S.; Shi, M.; Hu, S.; Wang, S.; Xu, D. Evolutions and Driving Mechanisms of Urban Blue-Green Spaces in Northeast China: A Case Study with the Urban Central District of Harbin City. J. Nanjing For. Univ. 2022, 46, 221. [Google Scholar]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking Ecological Degradation Risk to Identify Ecological Security Patterns in a Rapidly Urbanizing Landscape. Habitat. Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking Ecosystem Services and Circuit Theory to Identify Ecological Security Patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zhang, X.; Zhu, X.; Zhang, B. Ecological Security Pattern: A New Idea for Balancing Regional Development and Ecological Protection. A Case Study of the Jiaodong Peninsula, China. Glob. Ecol. Conserv. 2021, 26, e01472. [Google Scholar] [CrossRef]
- Kong-Jian, Y.U.; Di-Hua, L.I.; Tie-Wu, D. Landscape Approaches in Biodiversity Conservation. Biodivers. Sci. 1998, 6, 205. [Google Scholar]
- Kong-Jian, Y.U. Landscape Ecological Security Patterns in Biological Conservation. Acta Ecol. Sin. 1999, 19, 8–15. [Google Scholar]
- Wei, H.; Zhu, H.; Chen, J.; Jiao, H.; Li, P.; Xiong, L. Construction and Optimization of Ecological Security Pattern in the Loess Plateau of China Based on the Minimum Cumulative Resistance (MCR) Model. Remote. Sens. 2022, 14, 5906. [Google Scholar] [CrossRef]
- Gao, J.; Du, F.; Zuo, L.; Jiang, Y. Integrating Ecosystem Services and Rocky Desertification into Identification of Karst Ecological Security Pattern. Landsc. Ecol. 2021, 36, 2113–2133. [Google Scholar] [CrossRef]
- Lin, G.; Yang, Z.; Xu, L.; Zhang, F.; Yang, R. Urban Ecological Network Construction in Loess Plateau Regions in China-Case Study of Huanxian City. Alex. Eng. J. 2023, 74, 153–169. [Google Scholar] [CrossRef]
- Brown, L.R. Building a Sustainable Society; W. W. Norton & Company: New York, NY, USA, 1981. [Google Scholar]
- Sun, X.; Crittenden, J.C.; Li, F. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ. 2018, 622–623, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wong, C.P.; Jiang, B. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, B.; Su, F. Identifying Ecological Security Patterns Meeting Future Urban Expansion in Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China. Remote Sens. 2023, 15, 3141. [Google Scholar] [CrossRef]
- Kirchner, S.; Mazzullo, N.; Nebasifu, A.A. Towards a Holistic Cross-Border Environmental Governance in the European Arctic. J. Territ. Marit. Stud. 2022, 9, 31–46. [Google Scholar]
- Zhang, Z.; Zeng, W. What Would Be Necessary to Construct a Rule Framework for Sustainability in the New Western Land–Sea Corridor? An Analysis Based on Green International Rule of Law. Sustainability 2023, 15, 16888. [Google Scholar] [CrossRef]
- Keming, M.; Bojie, F.; Xiaoya, L.; Wenbin, G. The Regional Pattern for Ecological Security (RPES): The Concept and Theoretical Basis. Acta Ecol. Sin. 2004, 24, 761–768. [Google Scholar]
- Xu, X.; Wang, S.; Yan, G.; He, X. Ecological Security Assessment Based on the “Importance—Sensitivity—Connectivity” Index and Pattern Construction: A Case Study of Xiliu Ditch in the Yellow River Basin, China. Land 2023, 12, 1296. [Google Scholar] [CrossRef]
- Elbakidze, M.; Angelstam, P.; Yamelynets, T.; Dawson, L.; Gebrehiwot, M.; Stryamets, N.; Johansson, K.-E.; Garrido, P.; Naumov, V.; Manton, M. A Bottom-up Approach to Map Land Covers as Potential Green Infrastructure Hubs for Human Well-Being in Rural Settings: A Case Study from Sweden. Landsc. Urban. Plan. 2017, 168, 72–83. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Liu, Y.; Wang, F.; Liu, H.; Yu, L. Effects of Urban Agglomeration and Expansion on Landscape Connectivity in the River Valley Region, Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02004. [Google Scholar] [CrossRef]
- Huang, K.; Peng, L.; Wang, X.; Chen, T. Integrating Landscape Connectivity and Natural-Anthropogenic Interaction to Understand Karst Vegetation Restoration: A Case Study of Guizhou Province, China. Front. Ecol. Evol. 2022, 10, 844437. [Google Scholar] [CrossRef]
- Ureta, J.C.; Clay, L.; Motallebi, M.; Ureta, J. Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services. Land 2020, 10, 21. [Google Scholar] [CrossRef]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and Optimization of Ecological Security Pattern in Ebinur Lake Basin Based on MSPA-MCR Models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Z.; Wang, Y.; Sun, D.; Zhang, J. Combining MSPA-MCR Model to Evaluate the Ecological Network in Wuhan, China. Land 2022, 11, 213. [Google Scholar] [CrossRef]
- Ye, H.; Yang, Z.; Xu, X. Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region. Sustainability 2020, 12, 959. [Google Scholar] [CrossRef]
- Lin, Z.; Xiao, Y.; Ouyang, Z. Assessment of Ecological Importance of the Qinghai-Tibet Plateau Based on Ecosystem Service Flows. J. Mt. Sci. 2021, 18, 1725–1736. [Google Scholar] [CrossRef]
- Xiao, S.; Wu, W.; Guo, J.; Ou, M.; Pueppke, S.G.; Ou, W.; Tao, Y. An Evaluation Framework for Designing Ecological Security Patterns and Prioritizing Ecological Corridors: Application in Jiangsu Province, China. Landsc. Ecol. 2020, 35, 2517–2534. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, X.; Nan, Y.; Zhang, D.; Sun, Y. Ecological Sensitivity Assessment and Spatial Pattern Analysis of Land Resources in Tumen River Basin, China. Appl. Sci. 2023, 13, 4197. [Google Scholar] [CrossRef]
- Cui, H.; Liu, M.; Chen, C. Ecological Restoration Strategies for the Topography of Loess Plateau Based on Adaptive Ecological Sensitivity Evaluation: A Case Study in Lanzhou, China. Sustainability 2022, 14, 2858. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Eladawy, A.; Yu, T.; Sha, J. A Multi-Dimensional Vulnerability Assessment of Pingtan Island (China) and Nile Delta (Egypt) Using Ecological Sensitivity-Resilience-Pressure (SRP) Model. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 1860–1882. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, Y.; Yan, F.; Su, F. Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area. Land 2023, 12, 754. [Google Scholar] [CrossRef]
- Zhou, S.; Song, Y.; Li, Y.; Wang, J.; Zhang, L. Construction of Ecological Security Pattern for Plateau Lake Based on MSPA–MCR Model: A Case Study of Dianchi Lake Area. Sustainability 2022, 14, 14532. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.O. Morphological analysis of green infrastructure in the Seoul metropolitan area, South Korea. Landsc. Ecol. Eng. 2015, 11, 259–268. [Google Scholar] [CrossRef]
- Velázquez, J.; Anza, P.; Gutiérrez, J. Planning and selection of green roofs in large urban areas. Application to Madrid metropolitan area. Urban. For. Urban. Green. 2019, 40, 323–334. [Google Scholar] [CrossRef]
- Classification Evaluation and Spatial-Temporal Analysis of “Production-Living-Ecological” Spaces in China—CNKI. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2017&filename=DLXB201707014&uniplatform=OVERSEA&v=07B7c1RAipS9Bs-DtD18L6VksBBfHt2vcQDSJLh5eArFHzCe1jKF-3PwyJ7JjrCd (accessed on 10 June 2023).
- OuYang, Z.; Wang, X.; Miao, H. China’s Eco-Environmental Sensitivity and Its Spatial Heterogeneity. Acta Ecol. Sin. 2000, 20, 9–12. [Google Scholar]
- Pan, F.; Tian, C.; Shao, F.; Zhou, W.; Chen, F. Evaluation of Ecological Sensitivity in Karamay, Xinjiang, China. J. Geogr. Sci. 2012, 22, 329–345. [Google Scholar] [CrossRef]
- Huo, J.; Shi, Z.; Zhu, W.; Li, T.; Xue, H.; Chen, X.; Yan, Y.; Ma, R. Construction and Optimization of an Ecological Network in Zhengzhou Metropolitan Area, China. Int. J. Environ. Res. Public Heal. 2022, 19, 8066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, B.; Ashraf, M.A. Ecological Security Pattern for the Landscape of Mesoscale and Microscale Land: A Case Study of the Harbin City Center. J. Environ. Eng. Landsc. Manag. 2015, 23, 192–201. [Google Scholar]
- Guo, R.; Wu, T.; Liu, M.; Huang, M.; Stendardo, L.; Zhang, Y. The Construction and Optimization of Ecological Security Pattern in the Harbin-Changchun Urban Agglomeration, China. Int. J. Environ. Res. Public Heal. 2019, 16, 1190. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Xu, D.; Hu, S.; Shi, M. Ecological Network Optimization in Urban Central District Based on Complex Network Theory: A Case Study with the Urban Central District of Harbin. Int. J. Environ. Res. Public Heal. 2021, 18, 1427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, Z.; Jiang, L. Progress on studies of land use/land cover classification systems. Resour. Sci. 2011, 33, 1195–1203. [Google Scholar]
- Wang, X.; Xie, X.; Wang, Z.; Lin, H.; Liu, Y.; Xie, H.; Liu, X. Construction and Optimization of an Ecological Security Pattern Based on the MCR Model: A Case Study of the Minjiang River Basin in Eastern China. Int. J. Environ. Res. Public. Health 2022, 19, 8370. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Zhang, Y.-Z.; Jiang, Z.-Y.; Guo, C.-X.; Zhao, M.-Y.; Yang, Z.-G.; Guo, M.-Y.; Wu, B.-Y.; Chen, Q.-L. Integrating Morphological Spatial Pattern Analysis and the Minimal Cumulative Resistance Model to Optimize Urban Ecological Networks: A Case Study in Shenzhen City, China. Ecol. Process 2021, 10, 63. [Google Scholar] [CrossRef]
- Kang, J.; Li, C.; Li, M.; Zhang, T.; Zhang, B. Identifying priority areas for conservation in the lower Yellow River basin from an ecological network perspective. Ecosyst Health Sustain. 2022, 8, 2105751. [Google Scholar] [CrossRef]
- Yang, Z.G.; Jiang, Z.Y.; Guo, C.X.; Yang, X.J.; Xu, X.J.; Li, X.; Hu, Z.M.; Zhou, H.Y. Construction of Ecological Network Using Morphological Spatial Pattern Analysis and Minimal Cumulative Resistance Models in Guangzhou City, China. Yingyong Shengtai Xuebao 2018, 29, 3367–3376. [Google Scholar] [PubMed]
- Yu, C.L.; Liu, D.; Feng, R.; Tang, Q.; Guo, C.L. Construction of Ecological Security Pattern in Northeast China Based on MCR Model. Acta Ecol. Sin. 2021, 41, 290–301. [Google Scholar]
- Wang, Z.; Shi, Z.; Huo, J.; Zhu, W.; Yan, Y.; Ding, N. Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China. Land 2023, 12, 1529. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Hu, M.; Fan, C.; Wang, T.; Xia, B. Promoting Landscape Connectivity of Highly Urbanized Area: An Ecological Network Approach. Ecol. Indic. 2021, 125, 107487. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and Optimizing Urban Ecological Network in the Context of Rapid Urbanization for Improving Landscape Connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Yu, K. Security Patterns and Surface Model in Landscape Ecological Planning. Landsc. Urban. Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Yu, K.J. Ecologically Strategic Points in Landscape and Surface Model. Acta Geogr. Sin. 1998, 53, 11–20. [Google Scholar]
- Li, Q.; Zhou, Y.; Yi, S. An Integrated Approach to Constructing Ecological Security Patterns and Identifying Ecological Restoration and Protection Areas: A Case Study of Jingmen, China. Ecol. Indic. 2022, 137, 108723. [Google Scholar] [CrossRef]
- Zhao, X.; Yue, Q.; Pei, J.; Pu, J.; Huang, P.; Wang, Q. Ecological Security Pattern Construction in Karst Area Based on Ant Algorithm. Int. J. Environ. Res. Public Health 2021, 18, 6863. [Google Scholar] [CrossRef] [PubMed]
- Harbin Municipal Peoples Government. The Public Draft of the “Master Plan for Territorial Space of Harbin City (2021–2035)”. Available online: https://www.harbin.gov.cn/haerbin/c104710/202107/c01_145700.shtml (accessed on 5 July 2021).
Data Types | Period | Resolution | Sources |
---|---|---|---|
Land-use data | 2020 | 30 m | Land-use dataset of China GeoState Data Cloud (www.dsac.cn, (accessed on 13 February 2024)) |
Digital elevation model | 2020 | 12.5 m | ALOS (Advanced Land Observing Satellite) China regional dataset (https://www.earthdata.nasa.gov/, (accessed on 13 February 2024)) |
Landsat-OLI remote sensing data | 2021 | 30 m | Geospatial Data Cloud, China (https://www.gscloud.cn/#page1/3, (accessed on 13 February 2024)) |
Soil texture data | 1 km | Harmonized World Soil Database v1.2 (https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12, (accessed on 13 February 2024)) | |
Annual precipitation data in China | 2011–2020 | 1 km | The National Earth System Science Data Center, China (www.geodata.cn, (accessed on 13 February 2024)) |
Roads | 2023 | Shapefile | OSM (www.openstreetmap.org, (accessed on 13 February 2024)) |
Railways | 2020 | Shapefile | Resource and Environment Science and Data Center, Chinese Academy of Sciences (www.resdc.cn, (accessed on 13 February 2024)) |
NDVI | 2021 | 30 m | Decode by using remote sensing data |
Fraction vegetation coverage (FVC) | 2021 | 30 m | Calculated by using NDVI |
Settlement area/water area | 2020 | 30 m | Calculated by using land-use data |
Soil erodibility | 1 km | Calculated by using soil texture data | |
Slope/slope direction/topographic relief | 2020 | 12.5 m | Calculated by using DEM |
Guideline | Ecological Indicator | Ecological Sensitivity Grade | Weight | ||||
---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | |||
Topography and Geomorphology | Elevation (m) | <140 | 140–190 | 190–240 | 240–290 | >290 | 0.0283 |
Slope (°) | 3 | 8 | 15 | 25 | >25 | 0.0848 | |
Slope Direction | Flat, south | Southeast, southwest | East, west | Northeast, northwest | North | 0.0599 | |
Topographic Relief (m) | 10 | 23 | 45 | 74 | >74 | 0.1199 | |
Soil Security | Soil Type | Loamy sand | - | Loam | Silt loam | Clay loam | 0.0479 |
Soil Erodibility | Extremely low | Low | Medium | High | Extremely high | 0.1580 | |
Rainfall (mm) | <562 | 562–577 | 577–592 | 592–614 | >614 | 0.0870 | |
Vegetation and Water Systems | Watershed Buffer (m) | >400 | 200–400 | 100–200 | 50–100 | <50 | 0.1036 |
Fraction Vegetation Coverage (%) | <0.25 | 0.25–0.4 | 0.4–0.55 | 0.55–0.65 | >0.65 | 0.1036 | |
Human Activities | Land-Use Type | Construction land | Other unutilized land | Arable land | Grassland, swamp | Water area, woodland | 0.1726 |
Settlement Buffer (m) | <200 | 200–400 | 400–600 | 600–800 | >800 | 0.0345 |
Resistance Factor | Weight | Grade | Resistance Value |
---|---|---|---|
Land-Use Type | 0.391 | Woodland | 10 |
Grassland | 30 | ||
Mudflat and marsh | 50 | ||
Arable land | 100 | ||
Water area | 200 | ||
Unutilized land | 700 | ||
Construction land | 1000 | ||
Vegetation Fraction Coverage (%) | 0.138 | >0.65 | 10 |
0.65 | 30 | ||
0.55 | 50 | ||
0.4 | 500 | ||
0.25 | 800 | ||
Topographic Relief (m) | 0.131 | 10 | 10 |
23 | 30 | ||
45 | 50 | ||
74 | 200 | ||
188 | 600 | ||
Slope (°) | 0.065 | 3 | 10 |
8 | 20 | ||
15 | 80 | ||
25 | 200 | ||
>25 | 600 | ||
Distance from Railroad and Highway (m) | 0.163 | >800 | 10 |
800 | 20 | ||
600 | 100 | ||
400 | 400 | ||
200 | 800 | ||
Distance from Settlement (m) | 0.112 | >800 | 10 |
800 | 30 | ||
600 | 150 | ||
400 | 500 | ||
200 | 800 |
Sensitivity Classification | Area (km2) | Percentage (%) |
---|---|---|
Insensitive | 737.371 | 17.07 |
Slightly Sensitive | 1333.487 | 30.87 |
Moderately Sensitive | 1560.703 | 36.13 |
Highly Sensitive | 527.866 | 12.22 |
Extremely Sensitive | 160.26 | 3.71 |
Total | 4319.687 | 100 |
Landscape Types | Area/km2 | Percentage of the Study Area | Percentage of Total Ecological Landscape Area |
---|---|---|---|
Core | 916.94 | 21.23% | 73.22% |
Bridge | 68.80 | 1.59% | 5.49% |
Edge | 117.24 | 2.71% | 9.36% |
Loop | 16.96 | 0.39% | 1.35% |
Perforation | 8.16 | 0.19% | 0.65% |
Branch | 63.17 | 1.46% | 5.04% |
Islet | 61.09 | 1.41% | 4.88% |
Total | 1252.35 | 28.99% |
Node | dIIC | dPC | Area | Node | dIIC | dPC | Area |
---|---|---|---|---|---|---|---|
1 | 0.01 | 0.02 | 253.72 | 13 | 0.08 | 0.15 | 155.97 |
2 | 0.34 | 0.45 | 194.30 | 14 | 0.06 | 0.05 | 176.88 |
3 | 0.03 | 0.04 | 609.86 | 15 | 0.06 | 0.05 | 141.39 |
4 | 0.40 | 0.45 | 230.43 | 16 | 1.68 | 2.27 | 220.71 |
5 | 1.18 | 1.70 | 1008.36 | 17 | 18.52 | 18.95 | 21,534.43 |
6 | 0.01 | 0.01 | 206.22 | 18 | 0.10 | 0.09 | 226.03 |
7 | 0.41 | 0.50 | 237.30 | 19 | 0.19 | 0.24 | 227.77 |
8 | 0.09 | 0.16 | 155.15 | 20 | 1.63 | 2.19 | 909.51 |
9 | 0.38 | 0.52 | 351.74 | 21 | 81.00 | 80.47 | 47,079.82 |
10 | 0.32 | 0.44 | 188.34 | 22 | 0.94 | 1.15 | 1459.40 |
11 | 0.04 | 0.04 | 1087.49 | 23 | 0.30 | 0.38 | 578.13 |
12 | 0.31 | 0.40 | 184.49 |
No. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.19 | 9.07 | 0.23 | 0.17 | 3.2 | 0.07 | 0.05 | 0.12 | 0.09 | 0.05 | 0.05 | 0.05 | 0.03 | 0.03 | 0.15 | 0.07 | 0.04 | 0.05 | 0.03 | 0.19 | 0.02 | 0.03 |
2 | 0.17 | 21.79 | 63.7 | 0.11 | 2.26 | 0.32 | 0.71 | 0.11 | 0.39 | 0.06 | 0.24 | 0.15 | 0.14 | 0.65 | 0.31 | 0.17 | 0.22 | 0.1 | 0.21 | 0.08 | 0.1 | |
3 | 0.2 | 0.15 | 21.62 | 0.06 | 0.04 | 0.11 | 0.12 | 0.04 | 0.07 | 0.04 | 0.03 | 0.03 | 0.14 | 0.07 | 0.04 | 0.05 | 0.02 | 0.26 | 0.02 | 0.03 | ||
4 | 26.37 | 0.13 | 2.51 | 0.33 | 0.74 | 0.14 | 0.42 | 0.04 | 0.27 | 0.17 | 0.16 | 0.72 | 0.33 | 0.19 | 0.25 | 0.11 | 0.27 | 0.09 | 0.12 | |||
5 | 0.1 | 3.43 | 0.39 | 0.85 | 0.12 | 0.46 | 0.03 | 0.28 | 0.17 | 0.16 | 0.74 | 0.36 | 0.19 | 0.25 | 0.11 | 0.22 | 0.09 | 0.12 | ||||
6 | 0.04 | 0.03 | 0.07 | 0.09 | 0.03 | 0.05 | 0.03 | 0.02 | 0.02 | 0.09 | 0.05 | 0.03 | 0.03 | 0.02 | 0.22 | 0.01 | 0.02 | |||||
7 | 0.15 | 0.34 | 0.07 | 0.3 | 0.02 | 0.13 | 0.08 | 0.08 | 0.36 | 0.15 | 0.09 | 0.12 | 0.05 | 0.14 | 0.05 | 0.06 | ||||||
8 | 32.82 | 0.03 | 0.22 | 0.01 | 0.56 | 0.23 | 0.26 | 2.73 | 1.69 | 0.24 | 0.89 | 0.27 | 0.05 | 0.14 | 0.25 | |||||||
9 | 0.08 | 0.56 | 0.03 | 2.36 | 0.81 | 1.02 | 12.71 | 8.32 | 0.81 | 3.98 | 1.05 | 0.13 | 0.48 | 0.9 | ||||||||
10 | 0.04 | 0.15 | 0.03 | 0.02 | 0.02 | 0.1 | 0.05 | 0.03 | 0.04 | 0.02 | 3.63 | 0.02 | 0.02 | |||||||||
11 | 0.01 | 0.38 | 0.23 | 0.2 | 0.84 | 0.24 | 0.25 | 0.28 | 0.11 | 0.07 | 0.1 | 0.11 | ||||||||||
12 | 0.01 | 0.01 | 0.01 | 0.04 | 0.02 | 0.02 | 0.02 | 0.01 | 0.16 | 0.01 | 0.01 | |||||||||||
13 | 1.95 | 4.72 | 17.9 | 1.31 | 1.31 | 4.22 | 0.9 | 0.06 | 0.4 | 0.65 | ||||||||||||
14 | 3.79 | 2.65 | 0.46 | 9.42 | 0.8 | 0.28 | 0.04 | 1.02 | 0.74 | |||||||||||||
15 | 4.42 | 0.57 | 1.72 | 1.24 | 0.37 | 0.04 | 0.43 | 0.37 | ||||||||||||||
16 | 10.77 | 2.32 | 357.2 | 12.78 | 0.18 | 2.41 | 5.99 | |||||||||||||||
17 | 0.49 | 3.72 | 0.88 | 0.08 | 0.4 | 0.75 | ||||||||||||||||
18 | 0.73 | 0.49 | 0.05 | 2.15 | 1.4 | |||||||||||||||||
19 | 3.09 | 0.06 | 0.77 | 1.88 | ||||||||||||||||||
20 | 0.03 | 0.94 | 1.95 | |||||||||||||||||||
21 | 0.03 | 0.04 | ||||||||||||||||||||
22 | 2.88 |
Classification of Ecological Safety Areas | Percentage (%) | Area (km2) |
---|---|---|
High | 45.75 | 1976.37 |
Higher | 28.34 | 1224.38 |
Medium | 18.09 | 781.37 |
Lower | 5.95 | 257.05 |
Low | 1.87 | 80.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lu, Y.; Xu, D.; Zhou, H.; Zhang, S. Enhancing the MSPA Method to Incorporate Ecological Sensitivity: Construction of Ecological Security Patterns in Harbin City. Sustainability 2024, 16, 2875. https://doi.org/10.3390/su16072875
Liu Y, Lu Y, Xu D, Zhou H, Zhang S. Enhancing the MSPA Method to Incorporate Ecological Sensitivity: Construction of Ecological Security Patterns in Harbin City. Sustainability. 2024; 16(7):2875. https://doi.org/10.3390/su16072875
Chicago/Turabian StyleLiu, Yulin, Yi Lu, Dawei Xu, Herui Zhou, and Shengnan Zhang. 2024. "Enhancing the MSPA Method to Incorporate Ecological Sensitivity: Construction of Ecological Security Patterns in Harbin City" Sustainability 16, no. 7: 2875. https://doi.org/10.3390/su16072875
APA StyleLiu, Y., Lu, Y., Xu, D., Zhou, H., & Zhang, S. (2024). Enhancing the MSPA Method to Incorporate Ecological Sensitivity: Construction of Ecological Security Patterns in Harbin City. Sustainability, 16(7), 2875. https://doi.org/10.3390/su16072875