Wildfire Scenarios for Assessing Risk of Cover Loss in a Megadiverse Zone within the Colombian Caribbean
Abstract
:1. Introduction
2. Literature Review
2.1. Causes and Drivers of Wildfires
2.2. Climate Change and Wildfires in Colombia
2.3. Impacts of Wildfires
2.4. Wildfire Risk Prevention: Vulnerability and Machine Learning Forecast
2.4.1. Vulnerability Assessment
2.4.2. Machine Learning Forecasts
2.5. Wildfire Management Strategies
3. Materials and Methods
3.1. Study Area
3.2. Atmospheric Characteristics Present during Wildfires Episodes
3.3. Machine Learning Model
3.3.1. Multicollinearity Analysis
3.3.2. Machine Learning Structures and Statistical Validation
3.4. Monte Carlo Simulations
3.5. Land Cover Analysis and Risk Assessment
3.6. Modeling and Management Strategies
4. Results and Discussion
4.1. Wildfire Atmospheric, Soil, and Vegetation Characteristics
4.2. Model Evaluation and Monte Carlo Simulation
4.3. Land Cover Characteristics and Risk
4.4. Machine Learning Risk Management Strategies Evaluation
4.5. Strategies for Managing Risk with Vulnerability Scenarios
4.6. Strategies for Managing Risk with Hazard Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Variance Inflation Factor |
---|---|
Evaporation | 2.14 |
Precipitation | 3.58 |
Leaf area index high vegetation | 1.55 |
Leaf skin reservoir content | 6.38 |
Solar radiation | 4.04 |
WIND | 2.95 |
DMC | 4.63 |
DSR | 3.37 |
Appendix B
Variable | Probability Distribution |
---|---|
Evaporation | Burr |
U component of wind | Norm |
V component of wind | Norm |
Precipitation | Expon |
Soil temperature | Norm |
Leaf area index high vegetation | Norm |
Dew point (used in FWI index) | Burr |
Air temperature (used in FWI index) | Burr |
Skin reservoir content | Norm |
Solar radiation | Burr |
Appendix C
Type of Cover (Corine Land Cover Lever 3) | Dominant Fuel Type |
---|---|
3.3.2. Stone outcrops | Non-combustible |
3.1.1. Dense forest | Trees |
3.1.3. Fragmented forest | Trees |
3.1.4. Gallery and riparian forest | Trees |
3.2.2. Shrubland | Shrubbery |
5.1.2. Natural ponds, lakes, and marshes | Non-combustible |
2.4.3. Mosaic of crops, pastures, and natural areas | Grass/herbs |
2.4.4. Mosaic of pastures with natural spaces | Grass/herbs |
2.4.2. Mosaic of pastures and crops | Grass/herbs |
2.4.1. Crop mosaic | Herbs |
2.3.3. Grassland with weeds | Grass |
2.3.1. Clean pastures | Grass |
3.2.1. Herbage | Herbs |
3.3.5. Glacial and snow zones | Non-combustible |
Vegetal Fuel Type | Duration | Fuel Load | Fire Influence on Ecosystems | |
---|---|---|---|---|
1 | Non-combustible | Non-combustible | Very low | Not influenced |
2 | Trees | >100 h | Low | Independent |
3 | Trees/shrubbery | 10–100 h | Medium | Sensible |
4 | Shrubbery, herbs | 1–10 h | High | Influenced |
5 | Grass/herbs | 1 h | Very high | Dependent |
Ecological Vulnerability | Socio-Economic Vulnerability | |||
---|---|---|---|---|
Reference | Net Susceptibility of Vegetation | Threatened Ecosystems | Wildland–Urban Interface | Response Capacity |
[130] | 1 | 0 | 0 | 0 |
[131] | 1 | 1 | 1 | 1 |
[132] | 1 | 0 | 1 | 0 |
[133] | 1 | 1 | 0 | 0 |
[134] | 1 | 0 | 0 | 1 |
[58] | 1 | 0 | 0 | 0 |
[135] | 1 | 0 | 1 | 0 |
[136] | 1 | 1 | 0 | 0 |
[137] | 1 | 0 | 0 | 1 |
[138] | 1 | 0 | 1 | 1 |
[139] | 1 | 1 | 0 | 1 |
[140] | 0 | 0 | 1 | 1 |
[141] | 1 | 0 | 0 | 1 |
Total | 12 | 4 | 5 | 7 |
References
- Su, Z.; Zheng, L.; Luo, S.; Tigabu, M.; Guo, F. Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic regression and geographically weighted logistic regression. Nat. Hazards 2021, 108, 1317–1345. [Google Scholar] [CrossRef]
- Devisscher, T.; Malhi, Y.; Rojas Landívar, V.D.; Oliveras, I. Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. For. Ecol. Manag. 2016, 360, 273–286. [Google Scholar] [CrossRef]
- Arrogante-Funes, F.; Aguado, I.; Chuvieco, E. Global assessment and mapping of ecological vulnerability to wildfires. Nat. Hazards Earth Syst. Sci. 2022, 22, 2981–3003. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Laurance, W.F. Synergisms among Fire, Land Use, and Climate Change in the Amazon. AMBIO J. Hum. Environ. 2008, 37, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Garavito, M.; Isaacs-Cubides, P.; Ruiz-Santacruz, J.S.; Cortina-Segarra, J. Wildfire dynamics and impacts on a tropical Andean oak forest. Int. J. Wildland Fire 2020, 30, 112–124. [Google Scholar] [CrossRef]
- Chuvieco, E.; Opazo, S.; Sione, W.; Valle, H.; del Anaya, J.; Bella, C.D.; Cruz, I.; Manzo, L.; López, G.; Mari, N.; et al. Global burned-land estimation in Latin America using MODIS composite data. Ecol. Appl. 2008, 18, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.I.; Belém, L.B.C.; Szabo, J.K.; Libonati, R.; Garcia, L.C. Prioritising areas for wildfire prevention and post-fire restoration in the Brazilian Pantanal. Ecol. Eng. 2022, 176, 106517. [Google Scholar] [CrossRef]
- Trang, P.T.; Andrew, M.E.; Enright, N.J. Burn severity and proximity to undisturbed forest drive post-fire recovery in the tropical montane forests of northern Vietnam. Fire Ecol. 2023, 19, 47. [Google Scholar] [CrossRef]
- Duran-Izquierdo, M.; Olivero-Verbel, J. Vulnerability assessment of Sierra Nevada de Santa Marta, Colombia: World’s most irreplaceable nature reserve. Glob. Ecol. Conserv. 2021, 28, e01592. [Google Scholar] [CrossRef]
- Romero-Ruiz, M.; Etter, A.; Sarmiento, A.; Tansey, K. Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Glob. Chang. Biol. 2010, 16, 2013–2023. [Google Scholar] [CrossRef]
- Borrelli, P.; Armenteras, D.; Panagos, P.; Modugno, S.; Schütt, B. The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. Remote Sens. 2015, 7, 11061–11082. [Google Scholar] [CrossRef]
- Armenteras, D.; González, T.M.; Vargas Ríos, O.; Meza Elizalde, M.C.; Oliveras, I. Incendios en ecosistemas del norte de Suramérica: Avances en la ecología del fuego tropical en Colombia, Ecuador y Perú. Caldasia 2020, 42, 1–16. [Google Scholar] [CrossRef]
- Armenteras, D.; Romero, M.; Galindo, G. Vegetation fire in the savannas of the Llanos Orientales of Colombia. World Resour. Rev. 2005, 17, 531–543. [Google Scholar]
- Armenteras-Pascual, D.; Retana-Alumbreros, J.; Molowny-Horas, R.; Roman-Cuesta, R.M.; Gonzalez-Alonso, F.; Morales-Rivas, M. Characterizing fire spatial pattern interactions with climate and vegetation in Colombia. Agric. Forest Meteorol. 2011, 151, 279–289. [Google Scholar] [CrossRef]
- Hoyos, N.; Correa-Metrio, A.; Sisa, A.; Ramos-Fabiel, M.A.; Espinosa, J.M.; Restrepo, J.C.; Escobar, J. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 2017, 84, 42–54. [Google Scholar] [CrossRef]
- Celis, N.; Casallas, A.; López-Barrera, E.A.; Felician, M.; De Marchi, M.; Pappalardo, S. Climate Change, Forest Fires, and territorial dynamics in Amazon Rainforest: An integrated analysis for mitigation strategies. ISPRS Int. J. Geoinf. 2023, 12, 436. [Google Scholar] [CrossRef]
- Rezaie, F.; Panahi, M.; Bateni, S.M.; Lee, S.; Jun, C.; Trauernicht, C.; Neale, C.M. Development of novel optimized deep learning algorithms for wildfire modeling: A case study of Maui, Hawaii. Eng. Appl. Artif. Intell. 2023, 125, 106699. [Google Scholar] [CrossRef]
- Young, B.E.; Young, K.; Josse, C. Vulnerability of tropical andean ecosystems to climate change. In Climate Change and Biodiversity in the Tropical Andes; Herzog, S.K., Martínez, R., Jørgensen, P.M., Tiessen, H., Eds.; Inter-American Institute for Global Change Research and Scientific Committee on Problems of the Environment: São José dos Campos, Brazil, 2011; pp. 170–181. [Google Scholar]
- Le, H.V.; Hoang, D.A.; Tran, C.T.; Nguyen, P.Q.; Tran, V.H.T.; Hoang, N.D.; Amiri, M.; Ngo, T.P.T.; Nhu, H.V.; Van Hoang, T.; et al. A new approach of deep neural computing for spatial prediction of wildfire danger at tropical climate areas. Ecol. Inform. 2021, 63, 101300. [Google Scholar] [CrossRef]
- Celis, N.; Casallas, A.; Lopez-Barrera, E.A.; Martínez, H.; Peña-Rincón, C.A.; Arenas, R.; Ferro, C. Design of an Early Alert System for PM2.5 through a stochastic method and machine learning models. Environ. Sci. Pol. 2022, 127, 241–252. [Google Scholar] [CrossRef]
- Casallas, A.; Castillo-Camacho, M.P.; Sanchez, E.R.; González, Y.; Celis, N.; Mendez-Espinosa, J.F.; Belalcazar, L.C.; Ferro, C. Surface, satellite ozone variations in Northern South America during low anthropogenic emission conditions: A machine learning approach. Air Qual. Atmos. Health 2023, 16, 745–764. [Google Scholar] [CrossRef]
- Agudelo-Hz, W.J.; Castillo-Barrera, N.C.; Uriel, M.G. Scenarios of land use and land over change in the Colombian Amazon to evaluate alternative post-conflict pathways. Sci. Rep. 2023, 13, 2152. [Google Scholar] [CrossRef] [PubMed]
- Refworld. UN General Assembly, Transforming Our World: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 15 November 2023).
- Martin, D.A. Linking fire and the United Nations Sustainable Development Goals. Sci. Total Environ. 2018, 662, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Alvear, M.; Ocampo, G.; Parra, O.C.; Carbonó, E.; Almeda, F. Melastomataceae of the Sierra Nevada de Santa Marta (Colombia): Floristic affinities and annotated catalogue. Phytotaxa 2015, 195, 1–30. [Google Scholar] [CrossRef]
- Armenteras, D.; Gonzalez-Alonso, F.; Franco, C. Geographic and temporal distribution of fire in Colombia using thermal anomalies data. Caldasia. 2009, 31, 303–318. [Google Scholar]
- UAESPNN. Plan de Manejo de los Parques Nacionales Naturales Sierra Nevada de Santa Marta y Tayrona Hacia una Política Pública Ambiental del Territorio Ancestral de la Línea Negra de los Pueblos Iku, Kággaba, Wiwa y Kankuamo de la Sierra Nevada de Santa Marta en la Construcción Conjunta con Parques Nacionales Naturales. 2020. Available online: https://old.parquesnacionales.gov.co/portal/wp-content/uploads/2020/10/plan-de-manejo-del-pnn-sierra-nevada-de-santa-marta-y-tayrona.pdf (accessed on 20 September 2023).
- EarthData Open Access for Open Science. MODIS Collection Hotspot/Active Fire Detections MCD14ML Distributed from NASA FIRMS. Available online: https://earthdata.nasa.gov/firms (accessed on 2 March 2022).
- Tanpipat, V.; Honda, K.; Nuchaiya, P. MODIS Hotspot Validation over Thailand. Remote Sens. 2009, 1, 1043–1054. [Google Scholar] [CrossRef]
- Levin, N.; Heimowitz, A. Mapping spatial and temporal patterns of Mediterranean wildfires from MODIS. Remote Sens. Environ. 2012, 126, 12–26. [Google Scholar] [CrossRef]
- Casallas, A.; Hernandez-Deckers, D.; Mora-Paez, H. Understanding convective storms in a tropical, high-altitude location with in-situ meteorological observations and GPS-derived water vapor. Atmósfera 2023, 36, 225–238. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1979 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Brussels, Belgium, 2018. [Google Scholar]
- Mateus, P.; Catalão, J.; Mendes, V.B.; Nico, G. An ERA5-Based Hourly Global Pressure and Temperature (HGPT) Model. Remote Sens. 2020, 12, 1098. [Google Scholar] [CrossRef]
- Vitolo, C.; Di Giuseppe, F.; Barnard, C.; Coughlan, R.; San-Miguel-Ayanz, J.; Libertá, G.; Krzeminski, B. ERA5-based global meteorological wildfire danger maps. Sci. Data 2020, 7, 216. [Google Scholar] [CrossRef]
- Cartopy. A Cartographic Python Library with Matplotlib Interface; Met Office: Exeter, UK; Available online: http://scitools.org.uk/cartopy/docs/latest (accessed on 5 January 2024).
- Van Wagner, C.E.; Pickett, T.L. Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System. In Canadian Forestry Service; Forestry Technical Report; Petawawa National Forestry Institute: Chalk River, ON, Canada, 1985; p. 25. [Google Scholar]
- Tian, X.; McRae, D.J.; Jin, J.; Shu, L.; Zhao, F.; Wang, M. Wildfires and the Canadian Forest Fire Weather Index system for the Daxing’anling region of China. Int. J. Wildland Fire 2011, 20, 963–973. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Idrees, M.O.; Janizadeh, S.; Ahmadi, K.; Shabani, F. Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data. Remote Sens. 2020, 12, 3682. [Google Scholar] [CrossRef]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Jung, J.; Mousavinezhad, S.; Hammond, D. A comprehensive study of the COVID-19 impact on PM2. 5 levels over the contiguous United States: A deep learning approach. Atmos. Environ. 2022, 272, 118944. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Publications: New York, NY, USA; London, UK, 2015; p. 534. [Google Scholar]
- Gettelman, A.; Geer, A.J.; Forbes, R.M.; Carmichael, G.R.; Feingold, G.; Posselt, D.J.; Stephens, G.L.; van den Heever, S.C.; Varble, A.C.; Zuidema, P. The Future of Earth System Prediction: Advances in model-data Fusion. Sci. Adv. 2022, 8, eban3488. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Jin, Y.; Harrison, S.P.; Quilodrán-Casas, C.; Prentice, I.C.; Guo, Y.-K.; Arcucci, R. Parameter Flexible Wildfire Prediction Using Machine Learning Techniques: Forward and Inverse Modelling. Remote Sens. 2022, 14, 3228. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Valizadeh Kamran, K.; Blaschke, T.; Aryal, J.; Naboureh, A.; Einali, J.; Bian, J. Spatial Prediction of Wildfire Susceptibility Using Field Survey GPS Data and Machine Learning Approaches. Fire 2019, 2, 43. [Google Scholar] [CrossRef]
- Ndiaye, E.; Le, T.; Fercoq, O.; Salmon, J.; Takeuchi, I. Safe Grid Search with Optimal Complexity. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 4771–4780. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 7 January 2024).
- Keras. Available online: https://keras.io (accessed on 12 October 2023).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 1975, 20, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Prechelt, L. Early stopping–but when? In Neural Networks: Tricks of the Trade; Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 1524, pp. 1–5. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, M.; Liu, K. Wildfire Susceptibility Assessment in Southern China: A Comparison of Multiple Methods. Int. J. Disaster Risk Sci. 2017, 8, 164–181. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen-Thoi, T.; Ly, H.-B.; Nguyen, M.D.; Al-Ansari, N.; Tran, V.-Q.; Le, T.-T. Extreme Learning Machine Based Prediction of Soil Shear Strength: A Sensitivity Analysis Using Monte Carlo Simulations and Feature Backward Elimination. Sustainability 2020, 12, 2339. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Chang, H.; Chester, M.V.; Depietri, Y.; Friedman, E.; Grimm, N.B.; Kominoski, J.S.; McPhearson, T.; Méndez-Lázaro, P.; Rosi, E.J.; et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future 2018, 6, 441–455. [Google Scholar] [CrossRef]
- Paramo-Rocha, G. Susceptibilidad de las coberturas vegetales de Colombia al fuego. In Incendios de la Cobertura Vegetal en Colombia; Universidad Autónoma de Occidente: Cali, Colombia, 2011; pp. 73–142. [Google Scholar]
- Sistema de Información Ambiental de Colombia–SIAC. Available online: http://www.siac.gov.co/catalogo-de-mapas (accessed on 2 December 2022).
- IDIGER. Estudios Básicos Amenaza por Incendios Forestales. Proyecto Actualización de Componente de Gestión del Riesgo para la Revisión Ordinaria y Actualización del Plan de Ordenamiento Territorial. 2019; Volume 7, pp. 18–32. Available online: https://www.sdp.gov.co/sites/default/files/generales/anexo_11_incendios_forestales.pdf (accessed on 4 October 2023).
- IDEAM. Protocolo para la Realización de Mapas de Zonificación de Riesgos a Incendios de la Cobertura Vegetal–Escala 1:100.000 Bogotá, D.C. 2011. Available online: http://www.ideam.gov.co/documents/11769/68985506/PROTOCOLO+AJUSTADO_MAPAS+DE+ZRICV+copia.pdf/77d37bb7-3e62-44b1-b8a8-dcd5079b6883 (accessed on 2 March 2023).
- Moreno, A.; Montealegre, F.; Vargas, Y. Propuesta Metodológica para la Evaluación de la Susceptibilidad de la Cobertura Vegetal a la Ocurrencia de Incendios Forestales Usando Imágenes SENTINEL-2B. Master’s Thesis, Universidad Sergio Arboleda, Bogotá, Colombia, 2021. Master in Information Management and Geospatial Technologies. [Google Scholar]
- Etter, A.; Andrade, Á.; Saavedra, K.; Amaya, P.; Arevalo, P. Risk Assessment of Colombian Continental Ecosystems: An Application of the Red List of Ecosystems Methodology (v2.0). Final Report; Pontificia Universidad Javeriana: Bogotá, Colombia, 2017; p. 138. [Google Scholar]
- Casallas, A.; Jiménez-Saenz, C.; Torres, V.; Quirama-Aguilar, M.; Lizcano, A.; Lopez-Barrera, E.A.; Ferro, C.; Celis, N.; Arenas, R. Design of a Forest Fire Early Alert System through a Deep 3D-CNN Structure and a WRF-CNN Bias Correction. Sensors 2022, 22, 8790. [Google Scholar] [CrossRef] [PubMed]
- Gestión del Riesgo. Índice Municipal de Riesgo de Desastres Ajustado por Capacidades. Available online: https://repositorio.gestiondelriesgo.gov.co/bitstream/handle/20.500.11762/26622/Indice_Mpal_Riesgo_Ajustado_Capacidades.xlsx?sequence=2isAllowed=y (accessed on 30 July 2023).
- ProSierra. Fundación Pro-Sierra Nevada de Santa Marta, Ministerio del Medio Ambiente. Flora–Sierra Nevada de Santa Marta, Colombia. Available online: https://www.prosierra.org/index.php/la-sierra-nevada/la-sierra-parte-2/biodiversidad/flora (accessed on 14 November 2023).
- Morales, M.; Otero, J.; Van der Hammen, T.; Torres, A.; Cadena, C.; Pedraza, C.; Rodríguez, N.; Franco, C.; Betancourth, J.C.; Olaya, E.; et al. Atlas de Páramos de Colombia, 1st ed.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2007; pp. 184–190. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. 2018, p. 255. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 11 October 2023).
- Bot, K.; Borges, J.G. A Systematic Review of Applications of Machine Learning Techniques for Wildfire Management Decision Support. Inventions 2022, 7, 15. [Google Scholar] [CrossRef]
- Marsden-Smedley, J. Tasmanian Wildfires January–February 2013: Forcett-Dunalley, Repulse, Bicheno, Giblin River, Montumana, Molesworth and Gretna; Bushfire Cooperative Research Centre: East Melbourne, VIC, Australia, 2014; p. 7. Available online: https://www.bushfirecrc.com/sites/default/files/managed/resource/taswildfires2013_final_reduced_sizel.pdf (accessed on 20 September 2023).
- Pinto-Zárate, J.H.; Rangel-Churio, J. La vegetación de los páramos del norte de Colombia (Sierra Nevada de Santa Marta, Serranía de Perijá). In Colombia Diversidad Biótica X: Cambio Global (Natural) y Climático (Antrópico) en el Páramo Colombiano; Rangel, O., Ed.; Universidad Nacional de Colombia: Bogotá, Colombia, 2010; pp. 289–410. ISBN 978-958-719-499-9. [Google Scholar]
- Wild, M.; Ohmura, A.; Makowski, K. Impact of global dimming and brightening on global warming. Geophys. Res. Lett. 2007, 34, L04702. [Google Scholar] [CrossRef]
- Macias Fauria, M.; Michaletz, S.T.; Johnson, E.A. Predicting climate change effects on wildfires requires linking processes across scales. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 99–112. [Google Scholar] [CrossRef]
- Cardil, A.; Eastaugh, C.S.; Molina, D.M. Extreme temperature conditions and wildland fires in Spain. Theor. Appl. Climatol. 2014, 122, 219–228. [Google Scholar] [CrossRef]
- Chen, D.; Liu, W.; Huang, F.; Li, Q.; Uchenna-Ochege, F.; Li, L. Spatial-temporal characteristics and influencing factors of relative humidity in arid region of Northwest China during 1966–2017. J. Arid. Land 2020, 12, 397–412. [Google Scholar] [CrossRef]
- Ingeominas, Ecopetrol ICP, Invemar. Evolución Geohistórica de la Sierra Nevada de Santa Marta. Caracterización Climática de la SNSM y su Efecto Regulador en el Clima Regional. 2009; pp. 8–44. Available online: https://recordcenter.sgc.gov.co/B13/23008010024382/Documento/PDF/2105243821101000.pdf (accessed on 1 September 2023).
- Kang, S.; Kim, S.; Oh, S.; Lee, D. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. For. Ecol. Manag. 2000, 136, 173–184. [Google Scholar] [CrossRef]
- Fujibe, F. Relation between long-term temperature and wind speed trends at surface observation stations in Japan. SOLA 2009, 5, 81–84. [Google Scholar] [CrossRef]
- Astitha, M.; Nikolopoulos, E. Overview of Extreme Weather Events, Impacts and Forecasting Techniques. In Extreme Weather Forecasting; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–86. [Google Scholar] [CrossRef]
- Dai, A. Recent Climatology, Variability, and Trends in Global Surface Humidity. J. Clim. 2006, 19, 3589–3606. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Carlson, J.D.; Engle, D.M.; Twidwell, D.; Fuhlendorf, S.D. Concurrent and antecedent soil moisture relate positively or negatively to probability of large wildfires depending on season. Int. J. Wildland Fire 2016, 25, 657. [Google Scholar] [CrossRef]
- Lonin, S.A.; Hernández, J.L.; Palacios, D.M. Atmospheric events disrupting coastal upwelling in the southwestern Caribbean. J. Geophys. Res. Space Phys. 2010, 115, 1–4. [Google Scholar] [CrossRef]
- Yacomelo, M.J.; Abaunza, C.A. Modelo Productivo de Mango de Azúcar (Mangifera indica L.) Para el Departamento del Magdalena, Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA; Corporación Colombiana de Investigación Agropecuaria: Magdalena, Colombia, 2022; pp. 30–44. Available online: http://hdl.handle.net/20.500.12324/37157 (accessed on 10 October 2023).
- Guzmán, D.; Ruiz, J.F.; Cadena, M. Regionalización de Colombia Según la Estacionalidad de la Precipitación Media Mensual, a Través Análisis de Componentes Principales (ACP); Technical Report; Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cambio Climático, IDEAM: Bogotá, Colombia, 2014; pp. 12–35. Available online: http://www.ideam.gov.co/documents/21021/21141/Regionalizacion+de+la+Precipitacion+Media+Mensual/1239c8b3-299d-4099-bf52-55a414557119 (accessed on 5 November 2023).
- Casallas, A. Estudio del Desarrollo de Eventos de Convección Profunda Asociados a Vientos del Oeste en Superficie en la Sabana de Bogotá. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2020. [Google Scholar]
- Holton, J. An Introduction to Dynamic Meteorology, 4th ed.; Elsevier Science: Amsterdam, The Netherlands, 2004; Available online: https://www.perlego.com/book/1841735/an-introduction-to-dynamic-meteorology-pdf (accessed on 15 October 2022).
- Reid, A.M.; Fuhlendorf, S.D.; Weir, J.R. Weather Variables Affecting Oklahoma Wildfires. Rangel. Ecol. Manag. 2010, 63, 599–603. [Google Scholar] [CrossRef]
- Yamanaka, T.; Yonetani, T. Dynamics of the evaporation zone in dry sandy soils. J. Hydrol. 1999, 217, 135–148. [Google Scholar] [CrossRef]
- GEMA. El Bosque Seco Tropical (Bs-T). In Programa de Inventario de la Biodiversidad; GEMA: Bogota, Colombia, 1998; pp. 1–15. Available online: https://media.utp.edu.co/ciebreg/archivos/bosque-seco-tropical/el-bosque-seco-tropical-en-colombia.pdf (accessed on 7 October 2023).
- Castro, F.; Tudela, A.; Sebastià, M. Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agric. For. Meteorol. 2003, 116, 49–59. [Google Scholar] [CrossRef]
- Nolan, R.H.; Foster, B.; Griebel, A.; Choat, B.; Medlyn, B.E.; Yebra, M.; Younes, N.; Boer, M.M. Drought-related leaf functional traits control spatial and temporal dynamics of live fuel moisture content. Agric. For. Meteorol. 2022, 319, 108941. [Google Scholar] [CrossRef]
- Parker, G.G. Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. For. Ecol. Manag. 2020, 477, 118496. [Google Scholar] [CrossRef]
- UAESPNN. Plan de Manejo Básico 2005–2009 Parque Nacional Natural Tayrona; UAESPNN: Santa Marta Magdalena, Colombia, 2006; pp. 53–201. Available online: https://old.parquesnacionales.gov.co/portal/wp-content/uploads/2018/07/PMPNNTayrona.pdf (accessed on 13 November 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Noss, R.F.; Franklin, J.F.; Baker, W.L.; Schoennagel, T.; Moyle, P.B. Managing fire-prone forests in the western United States. Front. Ecol. Environ. 2006, 4, 481–487. [Google Scholar] [CrossRef]
- Pizano, C.; González, M.R.; González, M.; Castro-Lima, F.; López, R.; Rodríguez, N.; Idárraga-Piedrahíta, A.; Vargas, W.; Vergara-Varela, H.; Castaño-Naranjo, A.; et al. Las plantas de los bosques secos de Colombia. In El Bosque Seco Tropical en Colombia; Pizano, C., García, H., Eds.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH): Bogotá, Colombia, 2014; ISBN 978-958-8889-01-6. [Google Scholar]
- Lin, X.; Li, Z.; Chen, W.; Sun, X.; Gao, D. Forest Fire Prediction Based on Long- and Short-Term Time-Series Network. Forests 2023, 14, 778. [Google Scholar] [CrossRef]
- Maya-Girón, A.M.; Becoche-Mosquera, J.M.; Gómez-Bernal, L.G. Monitoring of a sub-Andean Forest in restoration process in the Munchique National Natural Park. Biota Colomb. 2023, 24, 2. [Google Scholar] [CrossRef]
- Kraus, P.D.; Goldammer, J.G. Fire regimes and ecosystems: An overview of fire ecology in tropical ecosystems. In Proceedings of the Forest Fires in India, Madurai, India, 19–23 February 2007; pp. 9–13. [Google Scholar]
- McWethy, D.B.; Higuera, P.E.; Whitlock, C.; Veblen, T.T.; Bowman, D.M.J.S.; Cary, G.J.; Haberle, S.G.; Keane, R.E.; Maxwell, B.D.; McGlone, M.S.; et al. A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Glob. Ecol. Biogeogr. 2013, 22, 900–912. [Google Scholar] [CrossRef]
- Oliveras, I.; Gracia, M.; Moré, G.; Retana, J. Factors influencing the pattern of fire severities in a large wildfire under extreme meteorological conditions in the Mediterranean basin. Int. J. Wildland Fire 2009, 18, 755. [Google Scholar] [CrossRef]
- Ding, H.; Yuan, Z.; Shi, X.; Yin, J.; Chen, F.; Shi, M.; Zhang, F. Soil moisture content-based analysis of terrestrial ecosystems in China: Water use efficiency of vegetation systems. Ecol. Indic. 2023, 150, 110271. [Google Scholar] [CrossRef]
- Rubiano, J.L.; Ortiz, R.; Dueñas, H. Caracterización fisionómica, estructural y florística de un área selvática en la Sierra Nevada de Santa Marta, Colombia. Rev. Biol. Trop. 1994, 42, 89–105. [Google Scholar]
- Otero, J. Planificación Ecorregional para la Definición de Áreas Prioritarias para la Conservación de la Biodiversidad en el Área de Jurisdicción de la Mesa SIRAP Caribe: Informe Final; Ramírez, D., Galindo, G., Cabrera, E., Eds.; Instituto de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2008; pp. 16–101. Available online: http://hdl.handle.net/20.500.11761/31226 (accessed on 10 November 2023).
- Tovar, C.; Arnillas, C.A.; Cuesta, F.; Buytaert, W. Diverging Responses of Tropical Andean Biomes under Future Climate Conditions. PLoS ONE 2013, 8, e63634. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.; Aponte, A.; Ardila, M.; Arellano, P.H.; Campos, M.; Calvo, N.; Carreño, E.; Carvajal, J.; Casallas, D.; Cuervo, A.; et al. Clima Integrado de la Serranía de Perijá. Colombia Diversidad Biótica XVIII: Biodiversidad y Territorio de la Serranía del Perijá, (Cesar–Colombia), 1st ed.; Rangel, O., Gonzalo, M., Eds.; Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 93–192. ISBN 978-958-794-112-8. [Google Scholar]
- Kennedy, A.; Jamieson, D. Ecological fire management in north east Victoria. In Proceedings of the Joint AFAC/Bushfire CRC Conference, Hobart, TAS, Australia, 18–20 July 2007; pp. 18–20. [Google Scholar]
- Aponte, C.; de Groot, W.J.; Wotton, B.M. Forest fires and climate change: Causes, consequences and management options. Int. J. Wildland Fire 2016, 25, 1–2. [Google Scholar] [CrossRef]
- Myers, R.L. Convivir con el fuego–Manteniendo los ecosistemas y los medios de subsistencia mediante el Manejo Integral del Fuego. Nat. Conserv. 2006, 1, 1–16. [Google Scholar]
- Armenteras, D.; Rodríguez, N.; Retana, J. Landscape Dynamics in Northwestern Amazonia: An Assessment of Pastures, Fire and Illicit Crops as Drivers of Tropical Deforestation. PLoS ONE 2013, 8, e54310. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, V.R.; Alloza, J.A. Post-fire management in the Mediterranean Basin. Isr. J. Ecol. Evol. 2012, 58, 251–264. [Google Scholar]
- Wang, H.-H.; Finney, M.A.; Song, Z.-L.; Wang, Z.-S.; Li, X.-C. Ecological techniques for wildfire mitigation: Two distinct fuelbreak approaches and their fusion. For. Ecol. Manag. 2021, 495, 119376. [Google Scholar] [CrossRef]
- Boving, I.; Celebrezze, J.; Salladay, R.; Ramirez, A.; Anderegg, L.D.; Moritz, M. Live fuel moisture and water potential exhibit differing relationships with leaf-level flammability thresholds. Funct. Ecol. 2023, 37, 2770–2785. [Google Scholar] [CrossRef]
- Everest, T.; Sungur, A.; Özcan, H. Determination of agricultural land suitability with a multiple-criteria decision-making method in Northwestern Turkey. Int. J. Environ. Sci. Technol. 2021, 18, 1073–1088. [Google Scholar] [CrossRef] [PubMed]
- MinAmbiente. Bancos de Hábitat–Mecanismo para la Implementación de Compensaciones Bióticas. 2022; pp. 8–14. Available online: https://www.minambiente.gov.co/wp-content/uploads/2021/10/Compensaciones-Gui%CC%81a-Bancos-de-Ha%CC%81bitat.pdf (accessed on 15 November 2023).
- Echeverri, J.A.P.; Ruiz, G.A.G. Los bancos de hábitat en Colombia. Una apuesta novedosa. Rev. Aragonesa Adm. Pública 2022, 23, 481–501. [Google Scholar]
- Departamento Nacional de Planeación. CONPES 3934: Política de Crecimiento Verde; Departamento Nacional de Planeación: Bogotá, Colombia, 2018; pp. 66–92. [Google Scholar]
- Vargas, R. Programa de Reducción de la Vulnerabilidad Fiscal del Estado Frente a Desastres Naturales; Banco Mundial: Bogotá, Colombia, 2010. [Google Scholar]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.W.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Guariguata, M.R.; Cornelius, J.P.; Locatelli, B.; Forner, C.; Sánchez-Azofeifa, G.A. Mitigation needs adaptation: Tropical forestry and climate change. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 793–808. [Google Scholar] [CrossRef]
- Callaway, J.M. Adaptation benefits and costs: Are they important in the global policy picture and how can we estimate them? Glob. Environ. Chang. 2004, 14, 273–282. [Google Scholar] [CrossRef]
- Ahkami, A.H.; Allen White, R.; Handakumbura, P.P.; Jansson, C. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere 2017, 3, 233–243. [Google Scholar] [CrossRef]
- Chen, G.; Meng, T.; Wu, W.; Zhang, J.N.; Tao, Z.; Wang, N.; Si, B.; Li, M.; Feng, H.; Siddique, K.H. Responses of root water uptake to soil water dynamics for three revegetation species on the Loess Plateau of China. Land. Degrad. Dev. 2023, 34, 2228–2240. [Google Scholar] [CrossRef]
- Fries, A.; Rollenbeck, R.; Nauß, T.; Peters, T.; Bendix, J. Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agric. For. Meteorol. 2012, 152, 17–30. [Google Scholar] [CrossRef]
- Mei, X.; Ma, L. Effect of afforestation on soil water dynamics and water uptake under different rainfall types on the Loess hillslope. Catena 2022, 213, 106216. [Google Scholar] [CrossRef]
- Briceño, A.M.; Rangel-Ch, J.O. Series de clima en anillos de Aspidosperma polyneuron Müll.Arg. y Anacardium excelsum (Bertero ex Kunth) Skeels. Colomb. For. 2021, 24, 52–64. [Google Scholar] [CrossRef]
- Kelly, R.; Boston, E.; Montgomery, W.I.; Reid, N. The role of the seed bank in recovery of temperate heath and blanket bog following wildfires. Appl. Veg. Sci. 2016, 19, 620–633. [Google Scholar] [CrossRef]
- Molina, J.R.; Lora, A.; Prades, C.; Rodríguez y Silva, F. Roadside vegetation planning and conservation: New approach to prevent and mitigate wildfires based on fire ignition potential. For. Ecol. Manag. 2019, 444, 163–173. [Google Scholar] [CrossRef]
- Bergmeier, E.; Capelo, J.; Di Pietro, R.; Guarino, R.; Kavgacı, A.; Loidi, J.; Tsiripidis, I.; Xystrakis, F. ‘Back to the Future’—Oak wood-pasture for wildfire prevention in the Mediterranean. Plant Sociol. 2021, 58, 41–48. [Google Scholar] [CrossRef]
- Nabipour, H.; Shi, H.; Wang, X.; Hu, X.; Song, L.; Hu, Y. Flame Retardant Cellulose-Based Hybrid Hydrogels for Firefighting and Fire Prevention. Fire Technol. 2022, 58, 2077–2091. [Google Scholar] [CrossRef]
- Armenteras, D.; González, T.M.; Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 2013, 159, 73–79. [Google Scholar] [CrossRef]
- Armenteras, D.; de la Barrera, F. Landscape management is urgently needed to address the rise of megafires in South America. Commun. Earth Environ. 2023, 4, 305. [Google Scholar] [CrossRef]
- Rosengren, L.M.; Schinko, T.; Sendzimir, J.; Mohammed, A.R.; Buwah, R.; Vihinen, H.; Raymond, C.M. Interlinkages between leverage points for strengthening adaptive capacity to climate change. Sustain. Sci. 2023, 18, 2199–2218. [Google Scholar] [CrossRef]
- Hysa, A.; Teqja, Z.; Bani, A.; Libohova, Z.; Cerda, A. Assessing wildfire vulnerability of vegetated serpentine soils in the Balkan peninsula. J. Nat. Conserv. 2022, 68, 126217. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martínez, S.; Román, M.V.; Hantson, S.; Pettinari, M.L. Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Glob. Ecol. Biogeogr. 2014, 23, 245–258. [Google Scholar] [CrossRef]
- Costa, H.; de Rigo, D.; Libertà, G.; Houston Durrant, T.; San-Miguel-Ayanz, J. European Wildfire Danger and Vulnerability in a Changing Climate: Towards Integrating Risk Dimensions; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-16898-0. [Google Scholar]
- Aretano, R.; Semeraro, T.; Petrosillo, I.; De Marco, A.; Pasimeni, M.R.; Zurlini, G. Mapping ecological vulnerability to fire for effective conservation management of natural protected areas. Ecol. Model. 2015, 295, 163–175. [Google Scholar] [CrossRef]
- Román, M.V.; Azqueta, D.; Rodrígues, M. Methodological approach to assess the socio-economic vulnerability to wildfires in Spain. For. Ecol. Manag. 2013, 294, 158–165. [Google Scholar] [CrossRef]
- Mimbrero, M.R. Review and New Methodological Approaches in Human-Caused Wildfire Modeling and Ecological Vulnerability: Risk Modeling at Mainland Spain. Doctoral Thesis, University of Zaragoza, Zaragoza, Spain, 2015. [Google Scholar]
- Villers, M.L.; López, J. Comportamiento del fuego y evaluación del riesgo por incendios en las áreas forestales de México: Un estudio en el volcán de La Malinche. In Incendios Forestales en México: Métodos de Evaluación; Villers, M.L., López, J., Eds.; Universidad Nacional Autónoma de México, Centro de Ciencias de la Atmósfera: Mexico City, México, 2004; pp. 57–78. [Google Scholar]
- Martelo-Jiménez, N.; Ríos, O.V. Evaluación del riesgo a incendios de la cobertura vegetal del Santuario de Fauna y Flora Iguaque (Boyacá, Colombia). Caldasia 2022, 44, 380–393. [Google Scholar] [CrossRef]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Bouillon, C.; Morge, D.; Ferrier, J.P. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J. Environ. Manag. 2010, 91, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Darabi, H.; Islami Farsani, S.; Irani Behbahani, H. Evaluation of ecological vulnerability in Chelgard mountainous landscape. Pollution 2019, 5, 597–610. [Google Scholar] [CrossRef]
- Pellouchoud, K. Social-Environmental Vulnerability: The Social and Environmental Intersection of Land Fire Risk within the Roosevelt National Forest Wildland-Urban Interface. Doctoral Thesis, University of Colorado, Boulder, CO, USA, 2016. [Google Scholar]
- Romshoo, S.A.; Amin, M.; Sastry, K.L.N.; Parmar, M. Integration of social, economic and environmental factors in GIS for land degradation vulnerability assessment in the Pir Panjal Himalaya, Kashmir, India. Appl. Geogr. 2020, 125, 102307. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera, A.; Ferro, C.; Casallas, A.; López-Barrera, E.A. Wildfire Scenarios for Assessing Risk of Cover Loss in a Megadiverse Zone within the Colombian Caribbean. Sustainability 2024, 16, 3410. https://doi.org/10.3390/su16083410
Cabrera A, Ferro C, Casallas A, López-Barrera EA. Wildfire Scenarios for Assessing Risk of Cover Loss in a Megadiverse Zone within the Colombian Caribbean. Sustainability. 2024; 16(8):3410. https://doi.org/10.3390/su16083410
Chicago/Turabian StyleCabrera, Ailin, Camilo Ferro, Alejandro Casallas, and Ellie Anne López-Barrera. 2024. "Wildfire Scenarios for Assessing Risk of Cover Loss in a Megadiverse Zone within the Colombian Caribbean" Sustainability 16, no. 8: 3410. https://doi.org/10.3390/su16083410
APA StyleCabrera, A., Ferro, C., Casallas, A., & López-Barrera, E. A. (2024). Wildfire Scenarios for Assessing Risk of Cover Loss in a Megadiverse Zone within the Colombian Caribbean. Sustainability, 16(8), 3410. https://doi.org/10.3390/su16083410