Effects of Air Pollution on Morphological, Biochemical, DNA, and Tolerance Ability of Roadside Plant Species
Abstract
:1. Introduction
2. Effects of Air Pollution on the Morphology of Plants
2.1. Morphological Effects Related to Root, Seed, and Productivity
2.2. Morphological Effects on Leaf
2.3. Effects of Air Pollution on Stomata Structure
3. Effects of Air Pollution on Biochemical and Physiological Parameters
3.1. pH
3.2. Ascorbic Acid (AA)
3.3. Total Chlorophyll Content
3.4. Relative Water Content
3.5. Simple Sugar
3.6. Proline and Polyamines
4. Effects of Air Pollutants on the DNA of Plants
4.1. Effects of Different Pollutants on DNA
4.2. Effects of Heavy Metals on DNA
5. Biomonitoring and Tolerance Ability of Plants against Air Pollution
APTI Values for Different Plant Species
6. Future Direction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Enitan, I.T.; Durowoju, O.S.; Edokpayi, J.N.; Odiyo, J.O. A review of air pollution mitigation approach using air pollution tolerance index (APTI) and anticipated performance index (API). Atmosphere 2022, 13, 374. [Google Scholar] [CrossRef]
- Husen, A. Harsh Environment and Plant Resilience: Molecular and Functional Aspects; Springer Nature: Cham, Switzerland, 2021; pp. 1–158. [Google Scholar]
- Bachheti, A.J.; Bhalla, P.; Bachheti, R.K.; Husen, A. Growth and development of medicinal plants and production of secondary metabolites under ozone pollution. In Environmental Pollution and Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2022; pp. 25–38. [Google Scholar]
- Zhang, A.; Ye, X.; Yang, X.; Li, J.; Zhu, H.; Xu, H. Elevated urbanization-driven plant accumulation and human intake risks of polycyclic aromatic hydrocarbons in crops of peri-urban farmlands. Environ. Sci. Pollut. Res. 2022, 29, 68143–68151. [Google Scholar] [CrossRef] [PubMed]
- Swami, A. Impact of automobile induced air pollution on roadside vegetation: A review. ESSENCE Int. J. Environ. Rehabil. Conserv. 2018, 9, 101–116. [Google Scholar] [CrossRef]
- Swislowski, P.; Rajfur, M.; Waclawek, M. Influence of heavy metal concentration on chlorophyll content in Pleurozium schreberi mosses. Ecol. Chem. Eng. S 2020, 27, 591–601. [Google Scholar]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.Z.; Shafiq, M.; Athar, M.; Kabir, M.; Farooqi, Z.U.R. Impact of auto exhaust pollution on trees. Adv. Agric. Environ. Sci. 2019, 2, 27–53. [Google Scholar]
- Abida, B.; Harikrishna, S. Evaluation of some tree species to absorb air pollutants in three industrial locations of South Bengaluru, India. J. Chem. 2010, 7, S151–S156. [Google Scholar]
- Pathak, V.; Tripathi, B.D.; Mishra, V.K. Evaluation of Anticipated Performance Index of some tree species for green belt development to mitigate traffic generated noise. Urban For. Urban Green. 2011, 10, 61–66. [Google Scholar] [CrossRef]
- Karmakar, D.; Padhy, P.K. Air pollution tolerance, anticipated performance, and metal accumulation indices of plant species for greenbelt development in urban industrial area. Chemosphere 2019, 237, 124522. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, Z.; Hasnain, A.; Luqman, M.; Muhammad, S.; Dhital, N.B.; John, A.; Iqbal, M.; Ejaz, A.; Tufail, M.; Harma; et al. Assessment of Air Pollution Tolerance and Physicochemical Alterations of Alstonia scholaris along Roadsides of Lahore, Pakistan. Aerosol. Air. Qual. Res. 2023, 23, 230038. [Google Scholar] [CrossRef]
- Mishra, A.; Lal, B.; Kumar, R. Air quality monitoring and its impact on local tree species in and around mining areas of Dhanbad District, Jharkhand, India. In Spatial Modeling of Environmental Pollution and Ecological Risk; Woodhead Publishing: Sawston, UK, 2024; pp. 9–40. [Google Scholar]
- Zilaie, N.M.; Arani, M.A.; Etesami, H. The importance of plant growth-promoting rhizobacteria to increase air pollution tolerance index (APTI) in the plants of green belt to control dust hazards. Front. Plant Sci. 2023, 14, 1098368. [Google Scholar] [CrossRef] [PubMed]
- Richard, G.; Sawyer, E.W.; Izah, C.S. Outdoor air quality index of biomass combustion in the Niger Delta, Nigeria: A health impact perspective. J. Adv. Res. Med. Sci. Technol. 2021, 8, 19–28. [Google Scholar]
- Izah, S.C.; Uzoekwe, S.; Aigberua, A. Source, geochemical spreading and risks of trace metals in particulate matter 2.5 within a gas flaring area in Bayelsa State, Nigeria. Adv. Environ. Technol. 2021, 7, 101–118. [Google Scholar]
- Kundariya, N.; Mohanty, S.S.; Varjani, S.; Ngo, H.H.; Wong, J.W.; Taherzadeh, M.J.; Chang, J.S.; Ng, H.Y.; Kim, S.H.; Bui, X.T. A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresour. Technol. 2021, 342, 125982. [Google Scholar] [CrossRef] [PubMed]
- Popek, R.; Przybysz, A.; Gawrońska, H.; Klamkowski, K.; Gawroński, S.W. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions. Ecotoxicol. Environ. Saf. 2018, 163, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Kim, D.Y.; Park, S.H.; Woo, S.Y.; Nie, H.; Kim, S.H. Particulate matter (PM) adsorption and leaf characteristics of ornamental sweet potato (Ipomoea batatas L.) cultivars and two common indoor plants (Hedera helix L. and Epipremnum aureum Lindl. & Andre). Horticturae 2021, 8, 26. [Google Scholar]
- Jochner, S.; Markevych, I.; Beck, I.; Traidl-Hoffmann, C.; Heinrich, J.; Menzel, A. The effects of short-and long-term air pollutants on plant phenology and leaf characteristics. Environ. Pollut. 2015, 206, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Kropff, M.J.; Smeets, W.L.M.; Meijer, E.M.J.; Van der Zalm, A.J.A.; Bakx, E.J. Effects of sulphur dioxide on leaf photosynthesis: The role of temperature and humidity. Physiol. Plant. 1990, 80, 655–661. [Google Scholar] [CrossRef]
- Thompson, M.; Gamage, D.; Ratnasekera, D.; Perera, A.; Martin, A.; Seneweera, S. Effect of elevated carbon dioxide on plant biomass and grain protein concentration differs across bread, durum and synthetic hexaploid wheat genotypes. J. Cereal. Sci. 2019, 87, 103–110. [Google Scholar] [CrossRef]
- Lamichaney, A.; Tewari, K.; Basu, P.S.; Katiyar, P.K.; Singh, N.P. Effect of elevated carbon-dioxide on plant growth, physiology, yield and seed quality of chickpea (Cicer arietinum L.) in Indo-Gangetic plains. Physiol. Mol. Biol. Plants. 2021, 27, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Mishra, L.C. Effect of environmental pollution on the morphology and leaf epidermis of Commelina bengalensis linn. Environ. Pollut. Ser. A. Ecolo. Biolog. 1982, 28, 281–284. [Google Scholar] [CrossRef]
- Idso, S.B.; Kimball, B.A.; Anderson, M.G.; Mauney, J.R. Effects of atmospheric CO2 enrichment on plant growth: The interactive role of air temperature. Agric. Ecosyst. Environ. 1987, 20, 1–10. [Google Scholar] [CrossRef]
- Montesinos-Pereira, D.; Barrameda-Medina, Y.; Baenas, N.; Moreno, D.A.; Sanchez-Rodriguez, E.; Blasco, B.; Ruiz, J.M. Evaluation of hydrogen sulfide supply to biostimulate the nutritive and phytochemical quality and the antioxidant capacity of Cabbage (Brassica oleracea L. ‘Bronco’). J. Appl. Bot. Food Qual. 2016, 89, 290–298. [Google Scholar]
- Ausma, T.; De Kok, L.J. Atmospheric H2S: Impact on plant functioning. Front. Plant Sci. 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Zhu, Z. Effects of nitrogen dioxide on biochemical responses in 41 garden plants. Plants 2019, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, T.A.; Whitmore, M.E.; Law, R.M. Effects of nitrogen oxides on plants: Two case studies. Stud. Environ. Sci. 1982, 21, 511–520. [Google Scholar]
- Dai, A.; Liu, C.; Ji, Y.; Sheng, Q.; Zhu, Z. Effect of different plant communities on NO2 in an urban road greenbelt in Nanjing, China. Sci. Rep. 2023, 13, 3424. [Google Scholar] [CrossRef] [PubMed]
- Zafar, N.; Athar, M.; Iqbal, M.Z.; Shafiq, M. Effect of diesel generator exhaust pollutants on growth of Vinca rosea and Ruellia tuberosa. J. Appl. Sci. Environ. Manag. 2016, 20, 1191–1197. [Google Scholar] [CrossRef]
- Khalid, N.; Hussain, M.; Young, H.S.; Boyce, B.; Aqeel, M.; Noman, A. Effects of road proximity on heavy metal concentrations in soils and common roadside plants in Southern California. Environ. Sci. Pollut. Res. 2018, 25, 35257–35265. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.S.L.H.; Power, S.A. Effects of vehicle exhaust emissions on urban wild plant species. Environ. Pollut. 2011, 159, 1984–1990. [Google Scholar] [CrossRef]
- Anake, W.U.; Bayode, F.O.; Jonathan, H.O.; Omonhinmin, C.A.; Odetunmibi, O.A.; Anake, T.A. Screening of plant species response and performance for green belt development: Implications for semi-urban ecosystem restoration. Sustainability 2022, 14, 3968. [Google Scholar] [CrossRef]
- Cali, I.O.; Karavin, N. Auto-exhaust pollution effects on the leaf structure of Olea europea L. Ban. J. Bot. 2020, 49, 481–486. [Google Scholar] [CrossRef]
- Belford, E.J. Response of roadside tree leaves in a tropical city to automobile pollution. Not. Sci. Biol. 2020, 12, 752–768. [Google Scholar]
- Nandy, A.; Talapatra, S.N.; Bhattacharjee, P.; Chaudhuri, P.; Mukhopadhyay, A. Assessment of morphological damages of leaves of selected plant species due to vehicular air pollution, Kolkata, India. Int. Lett. Nat. Sci. 2014, 4, 76–91. [Google Scholar] [CrossRef]
- Pourkhabbaz, A.; Rastin, N.; Olbrich, A.; Langenfeld-Heyser, R.; Polle, A. Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L. Bull. Environ. Contam. Toxicol. 2010, 85, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Kwak, M.J.; Jeong, S.G.; Woo, S.Y. Individual and interactive effects of elevated ozone and temperature on plant responses. Horticulturae 2022, 8, 211. [Google Scholar] [CrossRef]
- Abu Ziada, M.E.A.; Haroun, S.A.; El-Sherbeny, G.A.; Najm, A.A. Effects of air pollution on morphological and physiological features of Malva parviflora. J. Plant Prod. 2015, 6, 1811–1817. [Google Scholar] [CrossRef]
- Shafiq, M.; Iqbal, M.Z.; Athar, M.; Qayyum, M. Effect of auto exhaust emission on the phenology of Cassia siamea and Peltophorum pterocarpum growing in different areas of Karachi. Afr. J. Biotechnol. 2009, 8, 2469–2475. [Google Scholar]
- Chen, Z.H.; Chen, G.; Dai, F.; Wang, Y.; Hills, A.; Ruan, Y.L.; Zhang, G.; Franks, P.J.; Nevo, E.; Blatt, M.R. Molecular Evolution of Grass Stomata. Trends Plant Sci. 2017, 22, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Wagoner, S. Leaf cuticular and morphological variations in Plantago lanceolata as indicators of environmental pollution. J. Tenn. Acad. Sci. 1975, 50, 79–83. [Google Scholar]
- Gostin, I.N. Air pollution effects on the leaf structure of some Fabaceae species. Not. Bot. Horti Agrobot. 2009, 37, 57–63. [Google Scholar]
- Guo, Z.; Gao, Y.; Yuan, X.; Yuan, M.; Huang, L.; Wang, S.; Duan, C. Effects of Heavy Metals on Stomata in Plants: A Review. Int. J. Mol. Med. 2023, 24, 9302. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.; Panda, L.S. Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: An Indo-Burma hot spot region air quality. Air Qual. Atmos. Health 2014, 7, 93–101. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Dutta, R.; Dhara, A. Assessment of air pollution tolerance index of Murraya paniculata (L.) Jack in Kolkata metro city, West Bengal, India. Urban Clim. 2021, 39, 100977. [Google Scholar] [CrossRef]
- Mandal, K.; Dhal, N.K. Pollution resistance assessment of plants around chromite mine based on anticipated performance index, dust capturing capacity and metal accumulation index. Environ. Sci. Pollut. Res. 2022, 29, 63357–63368. [Google Scholar] [CrossRef] [PubMed]
- Bandara, W.A.R.T.W.; Dissanayake, C.T.M. Most tolerant roadside tree species for urban settings in humid tropics based on Air Pollution Tolerance Index. Urban Clim. 2021, 37, 100848. [Google Scholar] [CrossRef]
- Subramani, S.; Devaanandan, S. Application of air pollution tolerance index in assessing the air quality. Int. J. Pharm. Sci. 2015, 7, 216–221. [Google Scholar]
- Singh, S.N.; Verma, A. Phytoremediation of air pollutants: A review. In Environmental Bioremediation Technologies; Springer: Berlin/Heidelberg, Germany, 2007; pp. 293–314. [Google Scholar]
- Bhattacharya, T.; Kriplani, L.; Chakraborty, S. Seasonal Variation in Air Pollution Tolerance Index of Various Plant Species of Baroda City. Univers. J. Environ. Res. Technol. 2013, 3, 199–208. [Google Scholar]
- Kalaipriya, P.; Vignesh, P.; Chakraborty, S.; Govindaraju, M. Assessment of Biochemical Characters and Development of Anticipated Performance Index for Air Pollution Stress Plants in Tiruchirappalli City. Adv. Biores. 2023, 14, 59–65. [Google Scholar]
- Govindaraju, M.; Ganeshkumar, R.S.; Muthukumaran, V.R.; Visvanathan, P. Identification and evaluation of airpollution-tolerant plants around lignite-based thermal power station for greenbelt development. Environ. Sci. Pollut. Res. 2012, 19, 1210–1223. [Google Scholar] [CrossRef]
- Malav, L.C.; Kumar, S.; Islam, S.; Chaudhary, P.; Khan, S.A. Assessing the environmental impact of air pollution on crops by monitoring air pollution tolerance index (APTI) and anticipated performance index (API). Environ. Sci. Pollut. Res. 2022, 1, 16. [Google Scholar] [CrossRef]
- Dorgan, M. Determining the Heavy Metal Concentrations in Plants Exposed to Exhaust Gases Alongside the Sanliurfa Highway. Ekoloji Dergisi 2013, 22, 40–48. [Google Scholar] [CrossRef]
- Joshi, N.; Chauhan, A.; Joshi, P.C. Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. Environmentalist 2009, 29, 398–404. [Google Scholar] [CrossRef]
- Agbaire, P.O.; Esiefarienhre, E. Air Pollution Tolerance Indices (APTI) of some plants around Otorogun gas plant in Delta region, Nigeria. J. Appl. Sci. Environ. Manag. 2009, 13, 11–14. [Google Scholar]
- Joshi, P.C.; Swami, A. Physiological responses of some tree species under roadside automobile pollution stress around city of Haridwar, India. Environmentalist 2007, 27, 365–374. [Google Scholar] [CrossRef]
- Olanipon, D.G.; Ayandeyi, K.F.; Enochoghene, A.E.; Eludoyin, A.; Adanikin, B.; Awotoye, O. Tree Species as Biomonitors of Air Pollution around a Scrap Metal Recycling Factory in Southwest Nigeria: Implications for Greenbelt Development. bioRxiv 2024. [Google Scholar] [CrossRef]
- Tanee, F.B.G.; Albert, E. Air pollution Tolerance Index of Plant growing Around Umuebulu Gas Flare Station in River State, Nigeria. Afr. J. Environ. Sci. Technol. 2012, 7, 1–8. [Google Scholar]
- Chandawat, D.K.; Verma, P.U.; Solanki, H.A. Air Pollution Tolerance Index (APTI) of three plant species across the road of Ahmedebed City. Life Sci. Leafl. 2011, 20, 935–943. [Google Scholar]
- Mei, P.; Malik, V.; Harper, R.W.; Jiménez, J.M. Air pollution, human health and the benefits of trees: A biomolecular and physiologic perspective. Arboric. J. 2021, 43, 19–40. [Google Scholar] [CrossRef]
- Naya, L.; Ladrera, R.; Ramos, J.; González, E.M.; Arrese-Igor, C.; Minchin, F.R.; Becana, M. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol. 2007, 144, 1104–1114. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Gautam, M. Biochemical parameters of plants as indicators of air pollution. J. Environ. Biol. 2007, 28, 127. [Google Scholar]
- Giri, S.; Shrivastava, D.; Deshmukh, K.; Dubey, P. Effect of Air Pollution on Chlorophyll Content of Leaves. Curr. Agric. Res. J. 2015, 1, 93–98. [Google Scholar] [CrossRef]
- Agbaire, O.P. Impact of air pollution on Proline and soluble sugar content of selected plant species. Chem. Mater. Res. 2016, 8, 72–76. [Google Scholar]
- Tzvetkova, N.; Kolarov, D. Effect of air pollution on carbohydrate and nutrients concentrations in some deciduous tree species. Bulg. J. Plant Physiol. 1996, 22, 53–63. [Google Scholar]
- Khedhar, D.D.; Gadge, V.D. Effect of air pollution on metabolic contents of some tress in Amravati (M.S.). J. Aqua. Biol. Fish. 2014, 2, 260–264. [Google Scholar]
- Jaleel, C.A.; Gopi, R.; Manivannan, P.; Panneerselvam, R. Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol. Plant 2007, 29, 205–209. [Google Scholar] [CrossRef]
- Fikriye, K.; Omer, M. Effects of some heavy metals on content of chlorophyll, Proline and some antioxidant chemicals in beans (Phaseolusvalgaris L) seedlings. Acta Biol. Cracov. 2005, 47, 157–164. [Google Scholar]
- Seyyednejad, S.M.; Niknejad, M.; Koochak, H. A review of some different effects of air pollution on plants. J. Environ. Sci. 2011, 5, 302–309. [Google Scholar]
- Hwang, H.M.; Fiala, M.J.; Park, D.; Wade, T.L. Review of pollutants in urban road dust and stormwater runoff: Part 1. Heavy metals released from vehicles. Int. J. Urban Sci. 2016, 20, 334–360. [Google Scholar] [CrossRef]
- Risom, L.; Møller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. 2005, 592, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Misik, M.; Solenska, M.; Micieta, K.; Misikova, K.; Knasmüller, S. In situ monitoring of clastogenicity of ambient air in Bratislava, Slovakia using the Tradescantia micronucleus assay and pollen abortion assays. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2006, 605, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.T.; Desikan, R.; Neill, S.J. Role of reactive oxygen species in cell signaling pathways. Biochem. Soc. Trans. 2001, 29, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.D.N.; Candido, L.S.; Pereira, J.G.; Silva, C.A.M.; da Silva, S.V.; Mussury, R.M. Evaluation of vehicular pollution using the TRAD-MCN mutagenic bioassay with Tradescantia pallida (Commelinaceae). Environ. Pollut. 2018, 240, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.F.; Cunha, M.C.; Santos, V.S.V.; de Campos, E.O., Jr.; Bonetti, A.M.; Pereira, B.B. Analysis of genotoxic effects on plants exposed to high traffic volume in urban crossing intersections. Chemosphere 2020, 259, 127511. [Google Scholar] [CrossRef] [PubMed]
- Sriussadaporn, C.; Yamamoto, K.; Fukushi, K.; Simazaki, D. Comparison of DNA damage detected by plant comet assay in roadside and non-roadside environments. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2003, 541, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Hattab, S.; Chouba, L.; Kheder, M.B.; Mahouachi, T.; Boussetta, H. Cadmium- and copper-induced DNA damage in Pisum sativum, roots and leaves as determined by the Comet assay. Plant Biosyst. 2009, 143, 6–11. [Google Scholar] [CrossRef]
- Gill, M. Heavy metal stress in plants: A review. Int. J. Adv. Res. 2014, 2, 1043–1055. [Google Scholar]
- Li, T.; Zhang, M.; Gu, K.; Herman, U.; Crittenden, J.; Lu, Z. DNA damage in Euonymus japonicus leaf cells caused by roadside pollution in Beijing. Int. J. Environ. Res. Public Health 2016, 13, 742. [Google Scholar] [CrossRef] [PubMed]
- Gichner, T.; Znidar, I.; Szakova, J. Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2008, 652, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Nandini, N. Identification and evaluation of air pollution tolerance index of selected avenue tree species of urban Bangalore, India. Int. J. Emerg. Technol. Comput. Appl. Sci. 2013, 13, 388–390. [Google Scholar]
- Joshi, N.; Gupta, C.K.; Mangla, Y.; Chowdhuri, A. Green Plants as a Sustainable Solution to Air Pollution. Int. J. Plant Environ. 2023, 9, 102–112. [Google Scholar] [CrossRef]
- Chauhan, A. Tree as bioindicator of automobile pollution in Dehradun City: A case study. N. Y. Sci. J. 2010, 3, 88–95. [Google Scholar]
- Bui, H.T.; Odsuren, U.; Kwon, K.J.; Kim, S.Y.; Yang, J.C.; Jeong, N.R.; Park, B.J. Assessment of air pollution tolerance and particulate matter accumulation of 11 woody plant species. Atmosphere 2021, 12, 1067. [Google Scholar] [CrossRef]
- Ghafari, S.; Kaviani, B.; Sedaghathoor, S.; Allahyari, M.S. Assessment of air pollution tolerance index (APTI) for some ornamental woody species in green space of humid temperate region (Rasht, Iran). Environ. Dev. Sustain. 2021, 23, 1579–1600. [Google Scholar] [CrossRef]
- Fatima, S.; Nazneen, S.; Azra, B.H. Air pollution tolerance index of plants of Anwarul Uloom Campus. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 1264–1267. [Google Scholar] [CrossRef]
- Tak, A.A.; Kakde, U.B. Evaluation of air pollution tolerance and performance index of plants growing in industrial areas. Int. J. Environ. Sci. 2020, 2, 1–9. [Google Scholar]
- Muhammad, S.; Shakeel, F.; Khan, Z.; Hasnain, M.; Cheema, T.A. Assessment of air pollution sensitivity of some selected tree species of busiest roads of Lahore city. J. Biol. Environ. Sci. 2016, 9, 99–105. [Google Scholar]
- Swami, A.; Chauhan, D. Impact of air pollution induced by automobile exhaust pollution on air pollution tolerance index (APTI) on few species of plants. Science 2015, 4, 342–343. [Google Scholar]
- Mahecha, G.S.; Bamniya, B.R.; Nair, N.; Saini, D. Air pollution tolerance index of certain plant species-A study of Madri Industrial Area, Udaipur (Raj.), India. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 7927–7929. [Google Scholar]
- Verma, J.; Singh, P.; Sharma, R. Evaluation of air pollution tolerance index and anticipated performance index of selected roadside tree species in Ludhiana, India. Environ. Monit. Assess. 2023, 195, 240. [Google Scholar] [CrossRef] [PubMed]
- Correa-Ochoa, M.; Mejia-Sepulveda, J.; Saldarriaga-Molina, J.; Castro-Jimenez, C.; Aguiar-Gil, D. Evaluation of air pollution tolerance index and anticipated performance index of six plant species, in an urban tropical valley: Medellin, Colombia. Environ. Sci. Pollut. Res. Int. 2022, 29, 7952–7971. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.T.; Odsuren, U.; Jeong, M.; Seo, J.W.; Kim, S.Y.; Park, B.J. Evaluation of the air pollution tolerance index of 12 plant species growing in environments with different air pollution levels. J. People Plants Environ. 2022, 25, 23–31. [Google Scholar] [CrossRef]
- Bala, N.; Pakade, Y.B.; Katnoria, J.K. Assessment of air pollution tolerance index and anticipated performance index of a few local plant species available at the roadside for mitigation of air pollution and green belt development. Air. Qual. Atmos. Health 2022, 15, 2269–2281. [Google Scholar] [CrossRef]
- Sawarkar, R.; Shakeel, A.; Kumar, T.; Ansari, S.A.; Agashe, A.; Singh, L. Evaluation of plant species for air pollution tolerance and phytoremediation potential in proximity to a coal thermal power station: Implications for smart green cities. Environ. Geochem. Health 2023, 45, 7303–7322. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Manisha, B.B.; Kandpal, K.C.; Kumar, A. Analyzing preferred indoor ornamental potted plants for their air pollution tolerance ability. Pol. J. Environ. Stud. 2022, 31, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Uka, U.N.; Belford, E.J.; Hogarh, J.N. Roadside air pollution in a tropical city: Physiological and biochemical response from trees. Bull. Natl. Res. Cent. 2019, 43, 90. [Google Scholar] [CrossRef]
- Shrestha, S.; Baral, B.; Dhital, N.B.; Yang, H.H. Assessing air pollution tolerance of plant species in vegetation traffic barriers in Kathmandu Valley, Nepal. Sustain. Environ. Res. 2021, 31, 3. [Google Scholar] [CrossRef]
- Timilsina, S.; Shakya, S.; Chaudhary, S.; Magar, G.T.; Narayan Munankarmi, N. Evaluation of air pollution tolerance index (APTI) of plants growing alongside inner ring road of Kathmandu, Nepal. Int. J. Environ. Sci. 2022, 79, 698–713. [Google Scholar] [CrossRef]
- Akilan, M.; Nandhakumar, S. Air pollution tolerance index of selected plants in industrial and urban areas of Vellore district. Agri. Sci. Dig. A Res. J. 2016, 36, 66–68. [Google Scholar] [CrossRef]
- Sharma, B.; Bhardwaj, S.K.; Kaur, L.; Sharma, A. Evaluation of air pollution tolerance index (APTI) as a tool to monitor pollution and green belt development: A review. J. Appl. Nat. Sci. 2017, 9, 1637–1643. [Google Scholar] [CrossRef]
- Satpute, S.B.; Bhalerao, S.A. Assessment of air pollution tolerance index (APTI) and anticipated performance index (API) for designing green belt. Res. J. Environ. Sci. 2017, 5, 86–94. [Google Scholar]
- Zahid, A.; Ali, S.; Anwar, W.; Fatima, A.; Chattha, M.B.; Ayub, A.; Siddique, M. Assessing the air pollution tolerance index (APTI) of trees in residential and roadside sites of Lahore, Pakistan. SN Appl. Sci. 2023, 5, 294. [Google Scholar] [CrossRef]
- Nayak, A.; Madan, S.; Matta, G. Evaluation of air pollution tolerance index (APTI) and anticipated performance index (API) of some plants species in Haridwar City. Int. J. Environ. Rehabil. Conserv. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Alotaibi, M.D.; Alharbi, B.H.; Al-Shamsi, M.A.; Alshahrani, T.S.; Al-Namazi, A.A.; Alharbi, S.F.; Qian, Y. Assessing the response of five tree species to air pollution in Riyadh City, Saudi Arabia, for potential green belt application. Environ. Sci. Pollut. Res. 2020, 27, 29156–29170. [Google Scholar] [CrossRef] [PubMed]
- Bharti, S.K.; Trivedi, A.; Kumar, N. Air pollution tolerance index of plants growing near an industrial site. Urban Clim. 2018, 24, 820–829. [Google Scholar] [CrossRef]
- Sekhar, P.; Sekhar, P. Evaluation of selected plant species as bio-indicators of particulate automobile pollution using Air Pollution Tolerance Index (APTI) approach. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 57–67. [Google Scholar] [CrossRef]
- Anil, M.D.; Pandey, K.; Krishna, V.; Kumar, M. Air pollution tolerance index (APTI) and expected performance index (EPI) of selected plants at RGSC, (BHU), Mirzapur, India. Pollution 2022, 8, 479–487. [Google Scholar]
Air Pollutants | Effects on Plants | References |
---|---|---|
PM | Reduction in plant growth, reduced leaf area, and several physiological changes like photosynthesis, stomatal conductance, pigment content, enzyme, and transpiration. | [7,18,19] |
SO2 | Reduction in biomass growth, loss of chlorophyll, necrosis, wilting of leaves, defoliation, and production of reactive oxygen species (ROS). | [20,21] |
CO2 | High concentration decreases the variety of nutrients, including protein and vitamins, which affect chlorophyll and carotenoid concentrations, micro and macro elements in plants, stomata closure, and photorespiration suppressed in plants. | [22,23] |
O3 | Leaf injuries, chlorosis, and chlorophyll deficiency restrict respiration, obstruct stomata, bleaching, decrease floral yield, delay fruiting, increase the leaching, prevent photosynthesis, and stunt growth. | [3,24,25] |
H2S | Leaf lesions, defoliation, tissue death, yellowish leaves, and dark brown bands on living and dead tissues. | [26,27] |
NO2 | It affects the photosynthetic pigments, damages the membrane and chloroplast, reduces the transpiration rate, reduces the growth and chlorosis, and even death of plants. | [28,29,30] |
Serial No. | APTI | Response of Plant Species |
---|---|---|
1 | 30–100 | Tolerant |
2 | 17–29 | Intermediate |
3 | 1–16 | Sensitive |
4 | <1 | Very sensitive |
Plant Species and Their Location | APTI Values | References |
---|---|---|
(Roadside) Terminalia catappa, Mangifera indica, Ficus platyphylla, Polyalthia longifolia, Cinnamomum camphora, Nerium oleander | 20.52, 18.66, 19.24, 17.66, 36.0, 14.6 | [100,101] |
(Roadside) Mangifera indica, Pinus roxburghii, Thuja occidentalis, Cinnamomum camphora, Buddleia asiatica, Celtis australis, Callistemon lanceolatus, Ficus elastic, Grevillea robusta, Salix babylonica, Cryptomeria japonica, Prunus persica, Sambucus canadensis | 10.62, 9.71, 8.47, 10.22, 6.92, 9.64, 10.23, 9.55, 9.32, 10.04, 7.05, 8.39, 9.29 | [102] |
(Roadside) Nerium oleander, Tamarindus indicus, Azardicta indicia, Pungamia pinnata, Ficus religiosa, Polyalthia longifolia, Tectona grandis | 20.51, 16.55, 14.31, 15.55, 23.35, 22.88, 13.45 | [103,104] |
(Industrial Area) Azadiracht aindica, Mangiferai ndica, Neriumindi cum, Polyalthial ongifolia, Cassia fistula, | 55.19, 66.64, 26.59, 58.01, 23.97 | [105] |
(Roadside) Saraca asoca, Melia azedarach, Morus alba, Alstonia scholaris, Bougainvillea glabra, Syzygium cumini, Ficus benghalensis, Azadirachta indica, Eucalyptus sp., Magnifera indicia, Ziziphus mauritiana, Pongamia pinnata, Nerium indicum, Polyalthia longifolia | 8.45, 8.47, 7.7, 8.5, 5.75, 7.27, 8.03, 7.86, 8.76, 8.95, 7.57, 7.21, 11.51, 12.93 | [106,107] |
(Industrial Area) Mimusops elengi, Anacardium occidentale, Morinda coreia, Bambusa bambos, Lagerstroemia speciose, Millingtonia hortensis, Anacardium occidentale, Potentilla longifolia, Cassia fistola, Ficus benghalensis | 19.03, 12.24, 14.88, 10.58, 8.95, 10.77, 11.13, 10.91, 16.82, 26.90 | [108,109] |
(Roadside) Jacaranda mimosifolia, Dovyalis abyssinica, Eucalyptus camaldulensis, Azadirachta indica, Cordia africana. Calistemon citrinus, Justicia schimperiana, Vernonia amygadalina, Gravillea robusta, Spathodeia nilotica, Schinus molle, Diospyros melanoxylon, Polyalthia longifolia, Ficus religiosa | 35.28, 20.04, 15.04, 28.38, 16.49, 21.4 15.06, 20.41, 20.95, 15.85, 35.21, 12.47, 17.30, 15.75 | [110,111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, Z.; Yang, H.-H.; Awan, M.U.F.; Ahmed, U.; Hasnain, A.; Luqman, M.; Muhammad, S.; Sardar, A.A.; Chan, T.-Y.; Sharjeel, A. Effects of Air Pollution on Morphological, Biochemical, DNA, and Tolerance Ability of Roadside Plant Species. Sustainability 2024, 16, 3427. https://doi.org/10.3390/su16083427
Mehmood Z, Yang H-H, Awan MUF, Ahmed U, Hasnain A, Luqman M, Muhammad S, Sardar AA, Chan T-Y, Sharjeel A. Effects of Air Pollution on Morphological, Biochemical, DNA, and Tolerance Ability of Roadside Plant Species. Sustainability. 2024; 16(8):3427. https://doi.org/10.3390/su16083427
Chicago/Turabian StyleMehmood, Zahid, Hsi-Hsien Yang, Muhammad Umer Farooq Awan, Usman Ahmed, Ali Hasnain, Muhammad Luqman, Sohaib Muhammad, Andleeb Anwar Sardar, Tsai-Yu Chan, and Aleeha Sharjeel. 2024. "Effects of Air Pollution on Morphological, Biochemical, DNA, and Tolerance Ability of Roadside Plant Species" Sustainability 16, no. 8: 3427. https://doi.org/10.3390/su16083427
APA StyleMehmood, Z., Yang, H.-H., Awan, M. U. F., Ahmed, U., Hasnain, A., Luqman, M., Muhammad, S., Sardar, A. A., Chan, T.-Y., & Sharjeel, A. (2024). Effects of Air Pollution on Morphological, Biochemical, DNA, and Tolerance Ability of Roadside Plant Species. Sustainability, 16(8), 3427. https://doi.org/10.3390/su16083427