Quantifying the Sustainability of Football (Soccer) Pitches: A Comparison of Artificial and Natural Turf Pitches with a Focus on Microplastics and Their Environmental Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Assessment
2.1.1. Goal and Scope Definition
2.1.2. Life Cycle Inventory
2.1.3. Life Cycle Impact Assessment
2.2. Modeling Impacts of Microplastics
2.2.1. Calculation of Fate Factor
2.2.2. Endpoint Results
2.3. Sensitivity Analysis
3. Results
3.1. Life Cycle Inventory
3.2. CFs for MP Rubbers
3.3. Life Cycle Impact Assessment—SB1
3.4. Life Cycle Impact Assessment—SB2—Ecosystem Damage
4. Discussion
4.1. LCI Generation
4.2. Microplastics’ Impacts and Developments of CFs
4.3. LCIA at the Midpoint Level
4.4. Microplastics and Ecosystem Damage
4.5. Sensitivity Analysis
4.5.1. CFs
4.5.2. EoL Emissions
4.6. The Limitations of This Study
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organisation for Standardization (ISO). Definitions of Key Terms for Plastic Pollution; ISO: Geneva, Switzerland, 2023. [Google Scholar]
- Dauvergne, P. Why Is the Global Governance of Plastic Failing the Oceans? Glob. Environ. Change 2018, 51, 22–31. [Google Scholar] [CrossRef]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic Pollution in the Marine Environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef] [PubMed]
- Isobe, A.; Uchiyama-Matsumoto, K.; Uchida, K.; Tokai, T. Microplastics in the Southern Ocean. Mar. Pollut. Bull. 2017, 114, 623–626. [Google Scholar] [CrossRef]
- Andrady, A.L. The Plastic in Microplastics: A Review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Materić, D.; Ludewig, E.; Brunner, D.; Röckmann, T.; Holzinger, R. Nanoplastics Transport to the Remote, High-Altitude Alps. Environ. Pollut. 2021, 288, 117697. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cui, Y.; Brahney, J.; Mahowald, N.M.; Li, Q. Long-Distance Atmospheric Transport of Microplastic Fibres Influenced by Their Shapes. Nat. Geosci. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Alimba, C.G.; Faggio, C. Microplastics in the Marine Environment: Current Trends in Environmental Pollution and Mechanisms of Toxicological Profile. Environ. Toxicol. Pharmacol. 2019, 68, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Song, B.; Liang, J.; Niu, Q.; Zeng, G.; Shen, M.; Deng, J.; Luo, Y.; Wen, X.; Zhang, Y. Microplastics and Associated Contaminants in the Aquatic Environment: A Review on Their Ecotoxicological Effects, Trophic Transfer, and Potential Impacts to Human Health. J. Hazard. Mater. 2021, 405, 124187. [Google Scholar] [CrossRef]
- Lehtiniemi, M.; Hartikainen, S.; Näkki, P.; Engström-Öst, J.; Koistinen, A.; Setälä, O. Size Matters More than Shape: Ingestion of Primary and Secondary Microplastics by Small Predators. Food Webs 2018, 17, e00097. [Google Scholar] [CrossRef]
- Korez, Š.; Gutow, L.; Saborowski, R. Feeding and Digestion of the Marine Isopod Idotea Emarginata Challenged by Poor Food Quality and Microplastics. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 226, 108586. [Google Scholar] [CrossRef] [PubMed]
- Joppien, M.; Westphal, H.; Stuhr, M.; Doo, S.S. Microplastics Alter Feeding Strategies of a Coral Reef Organism. Limnol. Oceanogr. Lett. 2022, 7, 131–139. [Google Scholar] [CrossRef]
- Sonnemann, G.; Valdivia, S. Medellin Declaration on Marine Litter in Life Cycle Assessment and Management: Facilitated by the Forum for Sustainability through Life Cycle Innovation (FSLCI) in Close Cooperation with La Red Iberoamericana de Ciclo de Vida (RICV) on Wednesday 14 of June 2017. Int. J. Life Cycle Assess 2017, 22, 1637–1639. [Google Scholar] [CrossRef]
- Woods, J.S.; Verones, F.; Jolliet, O.; Vázquez-Rowe, I.; Boulay, A.-M. A Framework for the Assessment of Marine Litter Impacts in Life Cycle Impact Assessment. Ecol. Indic. 2021, 129, 107918. [Google Scholar] [CrossRef]
- Fantke, P.; Bijster, M.; Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; Kounina, A.; Magaud, V.; Margni, M.; McKone, T.E.; Rosenbaum, R.K.; et al. USEtox® 2.0 Documentation, version 1.00; Technical University of Denmark: Kongens Lyngby, Denmark, 2017. [Google Scholar] [CrossRef]
- Lavoie, J.; Boulay, A.; Bulle, C. Aquatic Micro- and Nano-plastics in Life Cycle Assessment: Development of an Effect Factor for the Quantification of Their Physical Impact on Biota. J. Ind. Ecol. 2021, 26, 2123–2135. [Google Scholar] [CrossRef]
- Corella-Puertas, E.; Guieu, P.; Aufoujal, A.; Bulle, C.; Boulay, A. Development of Simplified Characterization Factors for the Assessment of Expanded Polystyrene and Tire Wear Microplastic Emissions Applied in a Food Container Life Cycle Assessment. J. Ind. Ecol. 2022, 26, 1882–1894. [Google Scholar] [CrossRef]
- Corella-Puertas, E.; Hajjar, C.; Lavoie, J.; Boulay, A.-M. MarILCA Characterization Factors for Microplastic Impacts in Life Cycle Assessment: Physical Effects on Biota from Emissions to Aquatic Environments. J. Clean. Prod. 2023, 418, 138197. [Google Scholar] [CrossRef]
- Owsianiak, M.; Hauschild, M.Z.; Posthuma, L.; Saouter, E.; Vijver, M.G.; Backhaus, T.; Douziech, M.; Schlekat, T.; Fantke, P. Ecotoxicity Characterization of Chemicals: Global Recommendations and Implementation in USEtox. Chemosphere 2023, 310, 136807. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, C.; Bulle, C.; Boulay, A.-M. Life Cycle Impact Assessment Framework for Assessing Physical Effects on Biota of Marine Microplastics Emissions. Int. J. Life Cycle Assess 2023, 29, 25–45. [Google Scholar] [CrossRef]
- European Chemical Agency Microplastics—ECHA. Available online: https://echa.europa.eu/hot-topics/microplastics (accessed on 1 March 2023).
- Committee for Risk Assessment (RAC); Committee for Socio-Economic Analysis (SEAC). Opinion on an Annex XV Dossier Proposing Restrictions on Intentionally-Added Microplastics; ECHA: Helsinki, Finland, 2020. [Google Scholar]
- UEFA.com UEFA HatTrick Development Programme|Inside UEFA. Available online: https://www.uefa.com/insideuefa/football-development/hattrick/ (accessed on 1 March 2023).
- Q&A Restriction to Intentionally Added Microplastics. Available online: https://ec.europa.eu/commission/presscorner/detail/en/qanda_23_4602 (accessed on 3 December 2023).
- Russo, C.; Cappelletti, G.M.; Nicoletti, G.M. The Product Environmental Footprint Approach to Compare the Environmental Performances of Artificial and Natural Turf. Environ. Impact Assess. Rev. 2022, 95, 106800. [Google Scholar] [CrossRef]
- Bertling, J.; Dresen, B.; Bertling, R.; Aryan, V.; Weber, T. Kunstrasenplätze—Systemanalyse unter Berücksichtigung von Mikroplastik- und Treibhausgasemissionen, Recycling, Standorten und Standards, Kosten sowie Spielermeinungen; Springer: Berlin/Heidelberg, Germany, 2021; p. 141. [Google Scholar] [CrossRef]
- Itten, R.; Glauser, L.; Stucki, M. Ökobilanzierung von Rasensportfeldern: Natur-, Kunststoff-und Hybridrasen der Stadt Zürich im Vergleich; Zürcher Hochschule für angewandte Wissenschaften, ZHAW: Wädenswil, Switzerland, 2020; p. 124. [Google Scholar]
- Magnusson, S.; Mácsik, J. Analysis of Energy Use and Emissions of Greenhouse Gases, Metals and Organic Substances from Construction Materials Used for Artificial Turf. Resour. Conserv. Recycl. 2017, 122, 362–372. [Google Scholar] [CrossRef]
- Wender, B.A.; Foley, R.W.; Hottle, T.A.; Sadowski, J.; Prado-Lopez, V.; Eisenberg, D.A.; Laurin, L.; Seager, T.P. Anticipatory Life-Cycle Assessment for Responsible Research and Innovation. J. Responsible Innov. 2014, 1, 200–207. [Google Scholar] [CrossRef]
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Bø, S.M.; Bohne, R.A.; Aas, B.; Hansen, L.M. Material Flow Analysis for Norway’s Artificial Turfs. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 042068. [Google Scholar] [CrossRef]
- GOE Bio Granulat|GOE Production. Available online: https://www.goe-production.no (accessed on 25 August 2023).
- Johansson, K. Life Cycle Assessment of Two End-of-Life Tyre Applications: Artificial Turfs and Asphalt Rubber; Ragn-Sells Däckåtervinning AB: Landskrona, Sweden, 2018. [Google Scholar]
- Regnell, F. Dispersal of Microplastic from a Modern Artificial Turf Pitch with Preventive Measures. Kalmar, Sweden, 2019. Available online: https://www.genan.eu/wp-content/uploads/2020/02/MP-dispersal-from-Bergavik-IP-Kalmar-Report.pdf (accessed on 7 April 2023).
- Weijer, A.; Knol, J.; Hofstra, U. Verspreiding van Infill en Indicatieve Massabalans; Sweco Nederland B.V.: Rotterdam, The Netherlands; Utrecht, The Netheralands; Amsterdam, The Netherlands; The Hague, The Netheralands, 2017. [Google Scholar]
- Løkkegard, H.; Malmgren-Hansen, B.; Nilsson, N.H. Mass Balance of Rubber Granulate Lost from Artificial Turf Fields, Focusing on Discharge to the Aquatic Environment; Danish Technological Institute (DTI): Aarhus, Denmark, 2019. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.-M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A Globally Regionalized Life Cycle Impact Assessment Method. Int. J. Life Cycle Assess 2019, 24, 1653–1674. [Google Scholar] [CrossRef]
- Maga, D.; Galafton, C.; Blömer, J.; Thonemann, N.; Özdamar, A.; Bertling, J. Methodology to Address Potential Impacts of Plastic Emissions in Life Cycle Assessment. Int. J. Life Cycle Assess 2022, 27, 469–491. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. CH4 and CO2 Emissions from the Decomposition of Microplastics in the Bottom Sediment—Preliminary Studies. Environments 2022, 9, 91. [Google Scholar] [CrossRef]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. Decomposition of Microplastics: Emission of Harmful Substances and Greenhouse Gases in the Environment. J. Environ. Chem. Eng. 2023, 11, 109047. [Google Scholar] [CrossRef]
- Royer, S.-J.; Ferrón, S.; Wilson, S.T.; Karl, D.M. Production of Methane and Ethylene from Plastic in the Environment. PLoS ONE 2018, 13, e0200574. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Q.; Hu, X.; Tao, Z. Polyethylene Microplastic-Induced Microbial Shifts Affected Greenhouse Gas Emissions during Litter Decomposition in Coastal Wetland Sediments. Water Res. 2024, 251, 121167. [Google Scholar] [CrossRef]
- Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro)Plastic Crisis: Un-Ignorable Contribution to Global Greenhouse Gas Emissions and Climate Change. J. Clean. Prod. 2020, 254, 120138. [Google Scholar] [CrossRef]
- Fleming, P.R.; Forrester, S.E.; McLaren, N.J. Understanding the Effects of Decompaction Maintenance on the Infill State and Play Performance of Third-Generation Artificial Grass Pitches. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2015, 229, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, A.J.; van Gelderen, A.; Hofstra, U. Fate of Recycled Tyre Granulate Used on Artificial Turf. Environ. Sci. Eur. 2021, 33, 27. [Google Scholar] [CrossRef]
- Nations Encyclopedia Norway. Available online: https://www.nationsencyclopedia.com/economies/Europe/Norway.html (accessed on 9 December 2023).
- Nakamura, T.; Chaikumpollert, O.; Yamamoto, Y.; Ohtake, Y.; Kawahara, S. Degradation of EPDM Seal Used for Water Supplying System. Polym. Degrad. Stab. 2011, 96, 1236–1241. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Kooi, M.; Law, K.L.; Van Sebille, E. All Is Not Lost: Deriving a Top-down Mass Budget of Plastic at Sea. Environ. Res. Lett. 2017, 12, 114028. [Google Scholar] [CrossRef]
- Afrin, H.; Huda, N.; Abbasi, R. Study on End-of-Life Tires (ELT) Recycling Strategy and Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1200, 012009. [Google Scholar] [CrossRef]
- Andler, R.; D’Afonseca, V.; Pino, J.; Valdés, C.; Salazar-Viedma, M. Assessing the Biodegradation of Vulcanised Rubber Particles by Fungi Using Genetic, Molecular and Surface Analysis. Front. Bioeng. Biotechnol. 2021, 9, 761510. [Google Scholar] [CrossRef]
- Maga, D.; Aryan, V.; Blömer, J. A Comparative Life Cycle Assessment of Tyre Recycling Using Pyrolysis Compared to Conventional End-of-Life Pathways. Resour. Conserv. Recycl. 2023, 199, 107255. [Google Scholar] [CrossRef]
- Bauer, B.; Egebæk, K.; Aare, A.K. Environmentally Friendly Substitute Products for Rubber Granulates as Infill for Artificial Turf Fields—Miljødirektoratet. Available online: https://www.miljodirektoratet.no/publikasjoner/2018/januar-2018/environmentally-friendly-substitute-products-for-rubber-granulates-as-infill-for-artificial-turf-fields/ (accessed on 25 August 2023).
- Emborg, M. Drainage Structure 2020. European Patent Office, EP3670743A1. Available online: https://patents.google.com/patent/EP3670743A1/en (accessed on 1 March 2023).
- Vries, L.D. Shock Pad for Artificial Sports Fields. U.S. Patent Application No. 17/295,374, 20 November 2019. [Google Scholar]
- Sandkuehler, P.; Torres, E.; Allgeuer, T. Performance Artificial Turf Components—Fibrillated Tape. Procedia Eng. 2010, 2, 3367–3372. [Google Scholar] [CrossRef]
- Ford, H.V.; Jones, N.H.; Davies, A.J.; Godley, B.J.; Jambeck, J.R.; Napper, I.E.; Suckling, C.C.; Williams, G.J.; Woodall, L.C.; Koldewey, H.J. The Fundamental Links between Climate Change and Marine Plastic Pollution. Sci. Total Environ. 2022, 806, 150392. [Google Scholar] [CrossRef]
- California Department of Transportation. Greenhouse Gas Emissions Arising from Microplastics Pollution; California Department of Transportation: Sacramento, CA, USA, 2023.
- Chen, Y.; Gao, B.; Yang, Y.; Pan, Z.; Liu, J.; Sun, K.; Xing, B. Tracking Microplastics Biodegradation through CO2 Emission: Role of Photoaging and Mineral Addition. J. Hazard. Mater. 2022, 439, 129615. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, S.; Bittar, T.B.; Stubbins, A.; Li, D. Photochemical Dissolution of Buoyant Microplastics to Dissolved Organic Carbon: Rates and Microbial Impacts. J. Hazard. Mater. 2020, 383, 121065. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; You, F. Life Cycle Assessment of Microplastics Reveals Their Greater Environmental Hazards than Mismanaged Polymer Waste Losses. Environ. Sci. Technol. 2022, 56, 11780–11797. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, H.; Sajdak, M.; Paschalis-Jakubowicz, P.; Cichy, W.; Wojtan, R.; Witczak, M. The Influence of Location, Tree Age and Forest Habitat Type on Basic Fuel Properties of the Wood of the Silver Birch (Betula pendula Roth.) in Poland. Bioenergy Res. 2018, 11, 638–651. [Google Scholar] [CrossRef]
- Charles, F.; Garrigue, J.; Coston-Guarini, J.; Guarini, J.-M. Estimating the Integrated Degradation Rates of Woody Debris at the Scale of a Mediterranean Coastal Catchment. Sci. Total Environ. 2022, 815, 152810. [Google Scholar] [CrossRef] [PubMed]
- Belboom, S.; Léonard, A. Does Biobased Polymer Achieve Better Environmental Impacts than Fossil Polymer? Comparison of Fossil HDPE and Biobased HDPE Produced from Sugar Beet and Wheat. Biomass Bioenergy 2016, 85, 159–167. [Google Scholar] [CrossRef]
- Smidt, M.; Den Hollander, J.; Bosch, H.; Xiang, Y.; Van Der Graaf, M.; Lambin, A.; Duda, J. Life Cycle Assessment of Biobased and Fossil-Based Succinic Acid. In Sustainability Assessment of Renewables-Based Products; Dewulf, J., De Meester, S., Alvarenga, R.A.F., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 307–321. ISBN 978-1-118-93394-7. [Google Scholar]
- Zeilerbauer, L.; Lindorfer, J.; Süss, R.; Kamm, B. Techno-economic and Life-cycle Assessment of a Wood Chips-based Organosolv Biorefinery Concept for Production of Lignin Monomers and Oligomers by Base-catalyzed Depolymerization. Biofuels Bioprod. Bioref. 2021, 16, 370–388. [Google Scholar] [CrossRef]
- Grynkiewicz-Bylina, B.; Rakwic, B.; Słomka-Słupik, B. Tests of Rubber Granules Used as Artificial Turf for Football Fields in Terms of Toxicity to Human Health and the Environment. Sci. Rep. 2022, 12, 6683. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; et al. Recycling Waste Rubber Tyres in Construction Materials and Associated Environmental Considerations: A. Review. Resour. Conserv. Recycl. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Armada, D.; Llompart, M.; Celeiro, M.; Garcia-Castro, P.; Ratola, N.; Dagnac, T.; de Boer, J. Global Evaluation of the Chemical Hazard of Recycled Tire Crumb Rubber Employed on Worldwide Synthetic Turf Football Pitches. Sci. Total Environ. 2022, 812, 152542. [Google Scholar] [CrossRef]
- Burns, E.E.; Boxall, A.B.A. Microplastics in the Aquatic Environment: Evidence for or against Adverse Impacts and Major Knowledge Gaps. Environ. Toxicol. Chem. 2018, 37, 2776–2796. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Navarro, V.; Nuutinen, A.; Sorvari, J.; Kukkonen, J.V.K. Toxicity of Tire Rubber Microplastics to Freshwater Sediment Organisms. Arch. Environ. Contam. Toxicol. 2022, 82, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Magni, S.; Tediosi, E.; Maggioni, D.; Sbarberi, R.; Noé, F.; Rossetti, F.; Fornai, D.; Persici, V.; Neri, M.C. Ecological Impact of End-of-Life-Tire (ELT)-Derived Rubbers: Acute and Chronic Effects at Organism and Population Levels. Toxics 2022, 10, 201. [Google Scholar] [CrossRef]
- Massey, R.; Pollard, L.; Jacobs, M.; Onasch, J.; Harari, H. Artificial Turf Infill: A Comparative Assessment of Chemical Contents. New Solut. 2020, 30, 10–26. [Google Scholar] [CrossRef]
- Catarino, A.I.; Kramm, J.; Völker, C.; Henry, T.B.; Everaert, G. Risk Posed by Microplastics: Scientific Evidence and Public Perception. Curr. Opin. Green Sustain. Chem. 2021, 29, 100467. [Google Scholar] [CrossRef]
- Deng, L.; Cai, L.; Sun, F.; Li, G.; Che, Y. Public Attitudes towards Microplastics: Perceptions, Behaviors and Policy Implications. Resour. Conserv. Recycl. 2020, 163, 105096. [Google Scholar] [CrossRef]
- Dowarah, K.; Duarah, H.; Devipriya, S.P. A Preliminary Survey to Assess the Awareness, Attitudes/Behaviours, and Opinions Pertaining to Plastic and Microplastic Pollution among Students in India. Mar. Policy 2022, 144, 105220. [Google Scholar] [CrossRef]
- Garcia-Vazquez, E.; Garcia-Ael, C. The Invisible Enemy. Public Knowledge of Microplastics Is Needed to Face the Current Microplastics Crisis. Sustain. Prod. Consum. 2021, 28, 1076–1089. [Google Scholar] [CrossRef]
- Henderson, L.; Green, C. Making Sense of Microplastics? Public Understandings of Plastic Pollution. Mar. Pollut. Bull. 2020, 152, 110908. [Google Scholar] [CrossRef] [PubMed]
- Heigl, E.-M.; Knöbl, M.; Lindorfer, J.; Zeilerbauer, L. Practical Guideline to Incorporate and Communicate SDGs in the Sports Organisations; Norges Fotballforbund: Oslo, Norway, 2022. [Google Scholar]
- Brynzak-Schreiber, E.; Schögl, E.; Bapp, C.; Cseh, K.; Kopatz, V.; Jakupec, M.A.; Weber, A.; Lange, T.; Toca-Herrera, J.L.; del Favero, G.; et al. Microplastics Role in Cell Migration and Distribution during Cancer Cell Division. Chemosphere 2024, 353, 141463. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Akram, D.; Sharmin, E.; Zafar, F.; Ahmad, S. Vegetable oil based eco-friendly coating materials: A review article. Arab. J. Chem. 2014, 7, 469–479. [Google Scholar] [CrossRef]
- Ifijen, I.H.; Maliki, M.; Odiachi, I.J.; Aghedo, O.N.; Ohiocheoya, E.B. Review on Solvents Based Alkyd Resins and Water Borne Alkyd Resins: Impacts of Modification on Their Coating Properties. Chem. Afr. 2022, 5, 211–225. [Google Scholar] [CrossRef]
- Kumar, A.; Vemula, P.K.; Ajayan, P.M.; John, G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008, 7, 3. [Google Scholar] [CrossRef] [PubMed]
Mass of MPs Discharged from Infill to Aquatic Ecosystems Annually | |||||
---|---|---|---|---|---|
Best Case | Base Case | Worst Case | |||
in kg/a | in % | in kg/a | in % | in kg/a | in % |
1.9 | 0.06% | 48.8 | 1.64% | 325.1 | 10.91% |
Flow | Amount | Unit | Ecoinvent Dataset |
---|---|---|---|
Electricity | 0.368 | kWh | electricity, high voltage, production mix|electricity, high voltage|Cutoff, S—NO |
Municipal solid waste | 0.39 | kg | treatment of municipal solid waste, incineration|municipal solid waste|Cutoff, S—NO |
Scrap steel | 0.34 | kg | market for scrap steel|scrap steel|Cutoff, S—Europe without Switzerland |
Degradation Pathway | Sedimentation Pathway | Degradation Rate (kg/kg * Year) | Sedimentation Rate (kg/kg * Year) | Removal Rate (kg/kg * Year) | Fate Factor (kg * Year/kg) | Midpoint CF (PAF * m3 * Year/kg) | Endpoint CF (PDF * m2 * Year/kg) |
---|---|---|---|---|---|---|---|
EPDM | |||||||
EPDM_High | TWRP_Fast | 10.27 | 55.26 | 65.53 | 0.02 | 1.63 × 101 | 4.07× 10−3 |
EPDM_High | TWRP_Slow | 9.21 | 10.00 | 0.10 | 1.07 × 102 | 2.67× 10−2 | |
EPDM_High | AllPlastic | 1.54 | 11.81 | 0.08 | 9.04 × 101 | 2.26× 10−2 | |
EPDM_Low | TWRP_Fast | 0.79 | 55.26 | 56.05 | 0.02 | 1.90× 101 | 4.76 × 10−3 |
EPDM_Low | TWRP_Slow | 9.21 | 10.00 | 0.10 | 1.07 × 102 | 2.67× 10−2 | |
EPDM_Low | AllPlastic | 1.54 | 2.33 | 0.43 | 4.59 × 102 | 1.15× 10−1 | |
ELT | |||||||
5000 µm_Fast | TWRP_Fast | 0.070 | 55.26 | 55.33 | 0.02 | 1.93 × 101 | 4.82× 10−3 |
5000 µm_Fast | TWRP_Slow | 9.21 | 9.28 | 0.11 | 1.15 × 102 | 2.88× 10−2 | |
5000 µm_Fast | AllPlastic | 1.54 | 1.60 | 0.62 | 6.65 × 102 | 1.66× 10−1 | |
5000 µm_Medium | TWRP_Fast | 3.34 × 10−4 | 55.26 | 55.26 | 0.02 | 1.93 × 101 | 4.83× 10−3 |
5000 µm_Medium | TWRP_Slow | 9.21 | 9.21 | 0.11 | 1.16 × 102 | 2.90× 10−2 | |
5000 µm_Medium | AllPlastic | 1.54 | 1.54 | 0.65 | 6.95 × 102 | 1.74× 10−1 | |
5000 µm_Slow | TWRP_Fast | 1.60 × 10−6 | 55.26 | 55.26 | 0.02 | 1.93 × 101 | 4.83× 10−3 |
5000 µm_Slow | TWRP_Slow | 9.21 | 9.21 | 0.11 | 1.16 × 102 | 2.90× 10−2 | |
5000 µm_Slow | AllPlastic | 1.54 | 1.54 | 0.65 | 6.95 × 102 | 1.74× 10−1 | |
1000 µm_Fast | TWRP_Fast | 0.35 | 55.26 | 55.61 | 0.05 | 5.53 × 101 | 1.38× 10−2 |
1000 µm_Fast | TWRP_Slow | 9.21 | 9.56 | 0.31 | 3.32 × 102 | 8.30× 10−2 | |
1000 µm_Fast | AllPlastic | 1.54 | 1.88 | 1.87 | 1.99 × 10³ | 4.98× 10−1 | |
1000 µm_Medium | TWRP_Fast | 1.67 × 10−3 | 55.26 | 55.26 | 0.02 | 1.93 × 101 | 4.83× 10−3 |
1000 µm_Medium | TWRP_Slow | 9.21 | 9.21 | 0.11 | 1.16 × 102 | 2.90× 10−2 | |
1000 µm_Medium | AllPlastic | 1.54 | 1.54 | 0.65 | 6.95 × 102 | 1.74× 10−1 | |
1000 µm_Slow | TWRP_Fast | 8.00 × 10−6 | 55.26 | 55.26 | 0.02 | 1.93 × 101 | 4.83× 10−3 |
1000 µm_Slow | TWRP_Slow | 9.21 | 9.21 | 0.11 | 1.16 × 102 | 2.90× 10−2 | |
1000 µm_Slow | AllPlastic | 1.54 | 1.54 | 0.65 | 6.95 × 102 | 1.74× 10−1 | |
ELT_Bacteria | TWRP_Fast | 0.25 | 55.26 | 55.52 | 0.02 | 1.92 × 101 | 4.81× 10−3 |
ELT_Bacteria | TWRP_Slow | 9.21 | 9.46 | 0.11 | 1.13 × 102 | 2.82× 10−2 | |
ELT_Bacteria | AllPlastic | 1.54 | 1.79 | 0.56 | 5.97 × 102 | 1.49× 10−1 | |
ELT_Tyre | TWRP_Fast | 0.051 | 55.26 | 55.31 | 0.02 | 1.93 × 101 | 4.82× 10−3 |
ELT_Tyre | TWRP_Slow | 9.21 | 9.26 | 0.11 | 1.15 × 102 | 2.88× 10−2 | |
ELT_Tyre | AllPlastic | 1.54 | 1.59 | 0.63 | 6.73 × 102 | 1.68× 10−1 |
Scenario | EPDM Base | EPDM Best | EPDM Worst | ELT Base | ELT Best | ELT Worst |
---|---|---|---|---|---|---|
Damage (PDF * m2 * year/kg) | 9.41 × 10−3 | 0.240 | 1.60 | 9.41 × 10−3 | 0.240 | 1.60 |
Total damage (PDF * m2 * year) | 1.98 × 102 | 1.99 × 102 | 1.98 × 102 | 1.45 × 102 | 1.45 × 102 | 1.44 × 102 |
Damage in % | 0.0047% | 0.12% | 0.81% | 0.0065% | 0.17% | 1.11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeilerbauer, L.; Lindorfer, J.; Fuchs, P.; Knöbl, M.; Ravnås, A.; Maldal, T.; Gilje, E.; Paulik, C.; Fischer, J. Quantifying the Sustainability of Football (Soccer) Pitches: A Comparison of Artificial and Natural Turf Pitches with a Focus on Microplastics and Their Environmental Impacts. Sustainability 2024, 16, 3487. https://doi.org/10.3390/su16083487
Zeilerbauer L, Lindorfer J, Fuchs P, Knöbl M, Ravnås A, Maldal T, Gilje E, Paulik C, Fischer J. Quantifying the Sustainability of Football (Soccer) Pitches: A Comparison of Artificial and Natural Turf Pitches with a Focus on Microplastics and Their Environmental Impacts. Sustainability. 2024; 16(8):3487. https://doi.org/10.3390/su16083487
Chicago/Turabian StyleZeilerbauer, Lukas, Johannes Lindorfer, Pauline Fuchs, Melanie Knöbl, Asle Ravnås, Trygve Maldal, Eimund Gilje, Christian Paulik, and Jörg Fischer. 2024. "Quantifying the Sustainability of Football (Soccer) Pitches: A Comparison of Artificial and Natural Turf Pitches with a Focus on Microplastics and Their Environmental Impacts" Sustainability 16, no. 8: 3487. https://doi.org/10.3390/su16083487
APA StyleZeilerbauer, L., Lindorfer, J., Fuchs, P., Knöbl, M., Ravnås, A., Maldal, T., Gilje, E., Paulik, C., & Fischer, J. (2024). Quantifying the Sustainability of Football (Soccer) Pitches: A Comparison of Artificial and Natural Turf Pitches with a Focus on Microplastics and Their Environmental Impacts. Sustainability, 16(8), 3487. https://doi.org/10.3390/su16083487