A Case Study in Natural Fibre Material (Luffa Sponge) Development Using E2-Material-Driven Design
Abstract
:1. Introduction
1.1. Materials
1.2. Material-Driven Design (MDD)
1.3. User Emotions and Product Eco Assessment
1.4. Aims of the Study
2. Materials and Methods
2.1. Theory
2.1.1. Screening Main Material Quality
2.1.2. Capturing User Emotion Vision
2.1.3. Deconstructing E2 Vision Pattern
2.1.4. Deducting Product Design Concept
2.2. Procedure
2.3. Practice
2.3.1. Screening Main Material Quality
2.3.2. Capturing User Emotion Vision
2.3.3. Deconstructing E2 Vision Pattern
2.3.4. Deducting Product Design Concept
3. Discussion
3.1. Reflections on Design Methods
3.2. Application Prospects for Material Development
3.2.1. User Needs
3.2.2. Ecological Utilisation
3.2.3. Commercial Value
4. Conclusions
- (1)
- On the theoretical side, this paper developed a new E2-MDD tool by taking natural fibres as the main body and based on the two deficiencies of the material-driven design method, which was improved by combining the ecological and emotional factors. The feasibility of the method was verified by using luffa as a raw material.
- (2)
- On the practical side, the four concepts were scored and discussed through the E2-MDD ring radar column score chart, and the results of the analyses showed that for products made from natural materials, those that were highly accepted by users tended to be closer to the material’s original form. The emotional experience generated by users had a similar trend to the ecology of the product in a series of processes such as materials and design. Further, it was verified that materials and design can create a link between ecology and emotion.
- (3)
- In terms of application, this paper showed that the effective use of the method requires adjustments based on the material focus and design objectives, which can serve as a starting point for new methods or tools, and applications in user needs, ecological utilisation, and commercial value are proposed. In conclusion, we hope that our work will inspire and guide stakeholders to lower the barriers to designing with natural materials and promote the advancement of design methodologies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, G.; Wan, K.; Kong, H.; Guo, L.; Wang, Y.; Liu, X.; Wei, G. Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr. Polym. 2023, 305, 120537. [Google Scholar] [CrossRef] [PubMed]
- Manu, T.; Nazmi, A.R.; Shahri, B.; Emerson, N.; Huber, T. Biocomposites: A review of materials and perception. Mater. Today Commun. 2022, 31, 103308. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Rognoli, V.; Petreca, B.; Pollini, B.; Saito, C. Materials biography as a tool for designers’ exploration of bio-based and bio-fabricated materials for the sustainable fashion industry. Sustain. Sci. Pract. Policy 2022, 18, 749–772. [Google Scholar] [CrossRef]
- Karana, E.; McQuillan, H.; Rognoli, V.; Giaccardi, E. Living artefacts for regenerative ecologies. Res. Dir. Biotechnol. Des. 2023, 1, e16. [Google Scholar] [CrossRef]
- Aravinth, K.; Ramakrishnan, T.; Tamilarasan, V.D.; Veeramanikandan, K. A Brief Review on Plant Fibres Composites: Extraction, Chemical Treatment and Fibre Orientation. Mater. Today Proc. 2022, 62, 2005–2009. [Google Scholar] [CrossRef]
- Bourmaud, A.; Shah, D.U.; Beaugrand, J.; Dhakal, H.N. Property Changes in Plant Fibres during the Processing of Bio-Based Composites. Ind. Crops Prod. 2020, 154, 112705. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar]
- Asyraf, M.R.M.; Syamsir, A.; Zahari, N.M.; Supian, A.B.M.; Ishak, M.R.; Sapuan, S.M.; Sharma, S.; Rashedi, A.; Razman, M.R.; Zakaria, S.Z.S.; et al. Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers 2022, 14, 920. [Google Scholar] [CrossRef]
- Futami, E.; Shafigh, P.; Katman, H.Y.B.; Ibrahim, Z. Recent Progress in the Application of Coconut and Palm Oil Fibres in Cement-Based Materials. Sustainability 2021, 13, 12865. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. Acoustic Energy Absorption Properties of Fibrous Materials: A Review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 360–380. [Google Scholar] [CrossRef]
- Barati, B.; Karana, E. Affordances as Materials Potential: What Design Can Do for Materials Development. Int. J. Des. 2019, 13, 105–123. [Google Scholar]
- Kozlowski, R.M.; Muzyczek, M.; Mackiewicz-Talarczyk, M.; Barriga-Bedoya, J. Quo Vadis Natural Fibres in 21st Century? Mol. Cryst. Liq. Cryst. 2016, 627, 198–209. [Google Scholar] [CrossRef]
- Tonuk, D.; Fisher, T. Material Processuality: Alternative Grounds for Design Research. Des. Cult. 2020, 12, 119–139. [Google Scholar] [CrossRef]
- Karana, E. Meanings of Materials. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2019. [Google Scholar]
- Seva, R.R. Product-Behavior Targeting: Affective Design Method for Sustainability. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 20–22 October 2021. [Google Scholar]
- John, M.; Thomas, S. Biofibres and Biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Shen, J.; Min Xie, Y.; Huang, X.; Zhou, S.; Ruan, D. Mechanical Properties of Luffa Sponge. J. Mech. Behav. Biomed. Mater. 2012, 15, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Boynard, C.A.; D’Almeida, J.R.M. Water Absorption by Sponge Gourd (Luffa cylindrica)-Polyester Composite Materials. J. Mater. Sci. Lett. 1999, 18, 1789–1791. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Zhai, K.; He, C.; Li, Q.; Gus, P. Methylene Blue Adsorption from Aqueous Solution by Loofah Sponge-Based Porous Carbons. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 28–35. [Google Scholar] [CrossRef]
- Bal, K.E.; Bal, Y.; Lallam, A. Gross Morphology and Absorption Capacity of Cell-Fibres from the Fibrous Vascular System of Loofah (Luffa Cylindrica). Text. Res. J. 2004, 74, 241–247. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Liu, W.; Chen, S.; Huang, Z.; Song, Y. Porous Carbon Derived from Loofah Sponge/Flower-like CoO Nanocomposites for Lithium-Ion Batteries. J. Alloys Compd. 2019, 793, 533–540. [Google Scholar] [CrossRef]
- Liu, X. Static Cushion Property Tests and Analysis of Luffa Sponge Materials. Packag. Eng. 2018, 39, 57–63. [Google Scholar]
- Roth, I. Fruits of Angiosperms. Yale Law J. 1977, 10, 477–478. [Google Scholar]
- Chen, Y.; Zhang, K.; Yuan, F.; Zhang, T.; Weng, B.; Wu, S.; Huang, A.; Su, N.; Guo, Y. Properties of Two-Variety Natural Luffa Sponge Columns as Potential Mattress Filling Materials. Materials 2018, 11, 541. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yi, P.; Yu, M.; Li, G. Fabrication and Performance of a Novel 3D Superhydrophobic Material Based on a Loofah Sponge from Plant. Mater. Lett. 2018, 230, 219–223. [Google Scholar] [CrossRef]
- Liu, Y.-K.; Seki, M.; Tanaka, H.; Furusaki, S. Characteristics of Loofa (Luffa cylindrica) Sponge as a Carrier for Plant Cell Immobilization. J. Ferment. Bioeng. 1998, 85, 416–421. [Google Scholar] [CrossRef]
- Saeed, A.; Iqbal, M. Loofa (Luffa cylindrica) Sponge: Review of Development of the Biomatrix as a Tool for Biotechnological Applications. Biotechnol. Prog. 2013, 29, 573–600. [Google Scholar] [CrossRef]
- Veelaert, L.; Du Bois, E.; Moons, I.; Karana, E. Experiential characterization of materials in product design: A literature review. Mater. Des. 2020, 190, 108543. [Google Scholar] [CrossRef]
- Karana, E.; Barati, B.; Rognoli, V.; Zeeuw Van Der Laan, A. Material Driven Design (MDD): A Method to Design for Material Experiences. Int. J. Des. 2015, 9, 35–54. [Google Scholar]
- Karana, E.; Blauwhoff, D.; Hultink, E.-J.; Camere, S. When the Material Grows: A Case Study on Designing (with) Mycelium-Based Materials. Int. J. Des. 2018, 12, 119–136. [Google Scholar]
- Olcay, T. How Can Material Driven Design Create Playful Interaction. Des. Power 2017, 7, 1–5. [Google Scholar]
- Liu, L.; Lu, X.-Y. Creative Expression of Natural Materials in Fibre Art. In Proceedings of the 13th Textile Bioengineering and Informatics Symposium (TBIS), Online, 7–10 July 2020; pp. 436–441. [Google Scholar]
- Plumed, A.; Ranz, D.; Miralbes, R.; Vargas, G. Enhanced Material-Driven Design Methodology: Luffa cylindrica’s Case. Lect. Notes Mech. Eng. 2021, 182–187. [Google Scholar]
- Wu, J.; Jin, C.; Zhang, L.; Zhang, L.; Li, M.; Dong, X. Emotionally Sustainable Design Toolbox: A Card-Based Design Tool for Designing Products with an Extended Life Based on the User’s Emotional Needs. Sustainability 2021, 13, 10152. [Google Scholar] [CrossRef]
- Schifferstein, H.N.J.; Zwartkruis-Pelgrim, E.P.H. Consumer-Product Attachment: Measurement and Design Implications. Int. J. Des. 2018, 2, 1–14. [Google Scholar]
- Agost, M.-J.; Vergara, M. Principles of Affective Design in Consumers’ Response to Sustainability Design Strategies. Sustainability 2020, 12, 10573. [Google Scholar] [CrossRef]
- Rognoli, V.; Rausse, E. Emotional Engagement with Materials: Observation on Material Dialogue Between Potter and Clay. Diseña 2020, 17, 160–181. [Google Scholar] [CrossRef]
- Ritzen, L.; Sprecher, B.; Bakker, C.A.; Balkenende, R. Bio-based plastics in a circular economy: A review of recovery pathways and implications for product design. Resour. Conserv. Recycl. 2023, 199, 107268. [Google Scholar] [CrossRef]
- Azman, M.A.; Asyraf, M.R.M.; Khalina, A.; Petrů, M.; Ruzaidi, C.M.; Sapuan, S.M.; Wan Nik, W.B.; Ishak, M.R.; Ilyas, R.A.; Suriani, M.J. Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers 2021, 13, 1917. [Google Scholar] [CrossRef] [PubMed]
- Camere, S.; Schifferstein, H.N.J.; Bordegoni, M. From Abstract to Tangible: Supporting the Materialization of Experiential Visions with the Experience Map. Int. J. Des. 2018, 12, 51–73. [Google Scholar]
- Karana, E.; Hekkert, P.; Kandachar, P. A Tool for Meaning Driven Materials Selection. Mater. Des. 2010, 31, 2932–2941. [Google Scholar] [CrossRef]
- Issuu Inc. EcoDesign 2009. Available online: https://issuu.com/mainostoimistovalooy/docs/ed09_pokkari_175x250 (accessed on 29 January 2023).
- Issuu Inc. EcoDesign 2010. Available online: https://issuu.com/mainostoimistovalooy/docs/ecodesign_10 (accessed on 19 January 2023).
- Liu, X.; Zhang, J.; Zhong, F. Sustainable Design, 1st ed.; Tsinghua University Press: Beijing, China, 2022. [Google Scholar]
- Emotion Studio. Premo. Available online: https://emotion.studio/knowledge-center/premo/ (accessed on 21 February 2023).
- Delft Institute of Positive Design. Premo (Emotion Measurement Instrument). Available online: https://diopd.org/premo/ (accessed on 29 January 2023).
- Desmet, P.M.A.; Hekkert, P.; Jacobs, J.J. When a Car Makes You Smile: Development and Application of an Instrument to Measure Product Emotions. ACR N. Am. Adv. 2000, 27, 111–117. [Google Scholar]
- Ferraro, V. Designing with and for Emerging Materials: Framework, Tools, and Context of a Unique Design Method, Materialising the Future; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar]
- Thomson, D.M.H.; Crocker, C.; Marketo, C.G. Linking Sensory Characteristics to Emotions: An Example Using Dark Chocolate. Food Qual. Prefer. 2010, 21, 1117–1125. [Google Scholar] [CrossRef]
- Giaccardi, E.; Karana, E. Foundations of Materials Experience. Hum. Factors Comput. Syst. 2015, 2447–2456. [Google Scholar]
- Holling, C. Resilience of ecosystems: Local surprise and global change. In Global Change; Roederer, J.G., Malone, T.F., Eds.; Cambridge University Press: Cambridge, UK, 1985; Volume 5, pp. 228–269. [Google Scholar]
- Gutjar, S.; de Graaf, C.; Kooijman, V.; de Wijk, R.A.; Nys, A.; ter Horst, G.J.; Jager, G. The Role of Emotions in Food Choice and Liking. Food Res. Int. 2015, 76, 216–223. [Google Scholar] [CrossRef]
- Aktaş, B.M.; Mäkelä, M. Negotiation between the Maker and Material: Observations on Material Interactions in Felting Studio. Int. J. Des. 2019, 13, 55–67. [Google Scholar]
- Malafouris, L. Creativethinging. Creat. Cogn. Mater. Cult. 2014, 22, 140–158. [Google Scholar] [CrossRef]
- Wilson, A.V.; Bellezza, S. Consumer Minimalism. J. Consum. Res. 2021, 48, 796–816. [Google Scholar] [CrossRef]
- Cranford, S. Nature MADE: A Simple Guide to Biological Design Rules. Matter 2020, 2, 782–785. [Google Scholar] [CrossRef]
- McEvoy, M.A.; Correll, N. Materials That Couple Sensing, Actuation, Computation, and Communication. Science 2015, 347, 1261689. [Google Scholar] [CrossRef] [PubMed]
- ALOthman, Z.A.; Rodriguez-Padron, D.; Puente-Santiago, A.; Osman, S.M.; Luque, R. Benign-By-Design Nature-Inspired Bionanoconjugates for Energy Conversion and Storage Applications. Curr. Opin. Green Sustain. Chem. 2020, 26, 100373. [Google Scholar] [CrossRef]
- Bioreceptivity for Biomonitoring. Available online: https://healing-materialities.design/bioreceptivity4biomonitoring/ (accessed on 17 February 2023).
- Lee, W. A Study on the Characteristics of Eco-friendly Expression Elements in Package Design—Focusing on Bottle Design. J. Commun. Des. 2016, 57, 475–484. [Google Scholar]
- Wang, M.; Sun, L.-L.; Hou, J.-D. How Emotional Interaction Affects Purchase Intention in Social Commerce: The Role of Perceived Usefulness and Product Type. Psychol. Res. Behav. Manag. 2021, 14, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Niu, Y.; Wang, L. How to win the green market? Exploring the satisfaction and sentiment of Chinese consumers based on text mining. Comput. Hum. Behav. 2023, 148, 107890. [Google Scholar] [CrossRef]
- Nathan, A.; Ahnood, A.; Cole, M.T.; Lee, S.; Suzuki, Y.; Hiralal, P.; Bonaccorso, F.; Hasan, T.; Garcia-Gancedo, L.; Dyadyusha, A.; et al. Flexible Electronics: The next Ubiquitous Platform. Proc. IEEE 2012, 100, 1486–1517. [Google Scholar] [CrossRef]
Concept | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Associativity | 3.2727 | 3.0000 | 3.2727 | 3.5455 |
Uniqueness | 3.1818 | 3.5455 | 4.0909 | 4.0909 |
Biophilicity | 3.7273 | 3.0909 | 3.0909 | 3.5455 |
Total | 10.1818 | 9.6364 | 10.4545 | 11.1818 |
Concept | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Foresight, planning, and design | 2.7273 | 2.7273 | 3.2727 | 3.6364 |
Selection of materials | 3.4545 | 3.000 | 3.2727 | 3.6364 |
Production process | 3.4545 | 3.0909 | 2.6364 | 3.1818 |
Package and logistics | 3.9091 | 2.6364 | 2.6364 | 2.3636 |
Use, durability, and maintainability | 2.8182 | 3.0000 | 3.0000 | 3.0000 |
Recyclability | 4.5455 | 2.2727 | 3.8182 | 4.0909 |
Total | 3.4848 | 2.7879 | 3.1061 | 3.3182 |
Concept | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Pride | 1 | 0 | 0 | 0 |
Admiration | 13 | 11 | 11 | 14 |
Joy | 22 | 14 | 12 | 23 |
Hope | 19 | 8 | 18 | 10 |
Satisfaction | 6 | 1 | 0 | 3 |
Desire | 13 | 16 | 7 | 20 |
Fascination | 21 | 25 | 27 | 19 |
Shame | 0 | 4 | 0 | 2 |
Contempt | 0 | 0 | 1 | 1 |
Sadness | 0 | 0 | 0 | 0 |
Fear | 3 | 0 | 5 | 4 |
Anger | 0 | 2 | 1 | 1 |
Disgust | 0 | 1 | 4 | 1 |
Boredom | 1 | 7 | 3 | 2 |
Total | 91 | 61 | 61 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, L.; Zhang, L. A Case Study in Natural Fibre Material (Luffa Sponge) Development Using E2-Material-Driven Design. Sustainability 2024, 16, 3490. https://doi.org/10.3390/su16083490
Li C, Wang L, Zhang L. A Case Study in Natural Fibre Material (Luffa Sponge) Development Using E2-Material-Driven Design. Sustainability. 2024; 16(8):3490. https://doi.org/10.3390/su16083490
Chicago/Turabian StyleLi, Chao, Luzhen Wang, and Le Zhang. 2024. "A Case Study in Natural Fibre Material (Luffa Sponge) Development Using E2-Material-Driven Design" Sustainability 16, no. 8: 3490. https://doi.org/10.3390/su16083490
APA StyleLi, C., Wang, L., & Zhang, L. (2024). A Case Study in Natural Fibre Material (Luffa Sponge) Development Using E2-Material-Driven Design. Sustainability, 16(8), 3490. https://doi.org/10.3390/su16083490