Study on River Protection and Improvement Based on a Comprehensive Statistical Model in a Coastal Plain River Network
Abstract
:1. Introduction
2. Analysis of Multiple Attributes of the River Network
3. Methodology
3.1. Comprehensive Model
3.2. Evaluation Model of River Network Structure and Connectivity
- (1)
- The evaluation model of the river network structure is given based on previous research. The water surface ratio Rr, river length density Rd and river number density Rp are selected as the key indicators to evaluate the river network structure. Generally, the calculation model is given as:
- (2)
- The river network connectivity evaluation model is given based on the connectivity degree of the landscape ecology; the junction points of rivers are defined as nodes, and the rivers between nodes are defined as river chains. Network closure (index α), line point rate (index β, defined as the ratio of local river nodes and chains) and river network connectivity (index γ) are calculated in the river network connectivity evaluation model, which is given as:
4. Case Study
4.1. Location and Characteristics
4.2. Simulation Coefficients
- (1)
- The flux control index in the study area
- (2)
- Storage capacity and water surface ratio control
4.3. Evaluation of River Network Structure and Connectivity Based on Dynamic Balance Equilibrium
4.4. Evaluation of River Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical down scaling methods suited for wildfire applications. Int. J. Climatol. 2012, 780, 772–780. [Google Scholar] [CrossRef]
- Anandhi, A.; Frei, A.; Pierson, D.C.; Schneiderman, E.M.; Zion, M.S.; Lounsbury, D.; Matonse, A.H. Examination of change factor methodologies for climate change impact assessment. Water Resour. Res. 2011, 47, W03501. [Google Scholar] [CrossRef]
- González-Zeas, D.; Rosero-López, D.; Walter, T.; Flecker, A.; Lloret, P.; De Bièvre, B. Designing eco-friendly water intake portfolios in a tropical Andean stream network. Water Resour. Res. 2019, 55, 6946–6967. [Google Scholar] [CrossRef]
- Burger, G.; Sobie, S.R.; Cannon, A.J.; Werner, A.T.; Murdock, T.Q. Downscaling Extremes: An Intercomparison of Multiple Methods for Future Climate (Text 1). J. Clim. 2013, 26, 3429–3449. [Google Scholar] [CrossRef]
- Carolina, N.; Hole, W.; Drive, B. Climate Change Scenarios for the U.S. National Assessment. Bull. Am. Meteorol. Soc. 2003, 84, 1711–1723. [Google Scholar]
- Yu, H.; Ai, T.; Yang, M.; Li, J.; Wang, L.; Gao, A.; Zhou, Z. Integrating domain knowledge and graph convolutional neural networks to support river network selection. Trans. GIS 2023, 27, 1898–1927. [Google Scholar] [CrossRef]
- Dong, H.; He, Z.; Jia, L. Study on the mechanism of the diversion of flow and sediment in the complex Estuarine River network. River Res. Appl. 2024, 1–14. [Google Scholar] [CrossRef]
- Zanetti, F.; Botter, G.; Camporese, M. Stream network dynamics of non-perennial rivers: Insights from integrated surface-subsurface hydrological modeling of two virtual catchments. Water Resour. Res. 2024, 60, 3331–3356. [Google Scholar] [CrossRef]
- Farzan, K.; Wang, G.; Silander, J.; Wilson, A.M.; Allen, J.M.; Horton, R.; Anyah, R. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U. S. northeast. Glob. Planet. Chang. 2013, 100, 320–332. [Google Scholar]
- Hamududu, B.H. Impacts of Climate Change on Water Resources and Hydropower Systems in Central and Southern Africa. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2012. [Google Scholar]
- Jones, R.G.; Noguer, M.; Hassell, D.C.; Hudson, D.; Wilson, S.; Jenkins, G.; Mitchell, J.F.B. Generating High Resolution Climate Change Scenarios Using PRECIS; Met Office Hadley Centre: Exeter, UK, 2004.
- Li, Z.; Jin, J. Evaluating Climate Change Impacts on Streamflow Variability Based on a Multisite Multivariate GCM Downscaling Method in the Jing River of China. Hydrol. Earth Syst. Sci. 2017, 21, 5531–5546. [Google Scholar] [CrossRef]
- Rostamian, R.; Jaleh, A.; Afyuni, M.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K. Application of a SWAT Model for Estimating Runoff and Sediment in Two Mountainous Basins in Central Iran. Hydrol. Sci. J. 2010, 53, 977–988. [Google Scholar] [CrossRef]
- Taylor, K.E.; STouffer, R.J.; Meehl, G. An Overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Wang, Z.; Ficklin, D.L.; Zhang, Y.; Zhang, M. Impact of Climate Change on Stream Flow in the Arid Shiyang River Basin of Northwest China. Environ. Sci. 2012, 26, 2733–2744. [Google Scholar]
- Feld, S.; Prajamwong, S.; Sherman, S. Proposed integrated land and water resources management system (ILWRMS) for the Bang Pakong River basin: Lessons from a user needs assessment. J. Water Supply Res. 2003, 52, 435–442. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Gurung, P.; Bharati, L.; Karki, S. Application of SWAT Model to assess the climate change impact on water balance over the cereal crops in the West Seti River Basin. In Proceedings of the International SWAT Conference, Paul Sabatier University, Toulouse, France, 15–19 July 2013. [Google Scholar]
- Herazo, S.; Berrouet, L.; Hernández-Atilano, E.; Agudelo-Echavarría, D.M. Coevolution of flood dynamics and economical production in tropical wetlands: Insights from Bayesian Networks in Ayapel Wetland, Colombia. J. Geophys. Res.-Biogeosci. 2023, 128, e2023JG007416. [Google Scholar] [CrossRef]
- Hunukumbura, P.B.; Tachikawa, Y. River discharge projection under climate change in the Chao Phraya River basin, Thailand, using the MRI-GCM3.1S dataset. J. Meteorol. Soc. Jpn. 2012, 90, 137–150. [Google Scholar] [CrossRef]
- Ligaray, M.; Kim, H.; Sthiannopkao, S.; Lee, S.; Cho, K.H.; Kim, J.H. Assessment on hydrologic response by climate change in the Chao Phraya River basin, Thailand. Water 2015, 7, 6892–6909. [Google Scholar] [CrossRef]
- Limjirakan, S.; Limsakul, A.; Sriburi, T. Trends in temperature and rainfall extreme changes in Bangkok Metropolitan area. J. Environ. Res. 2009, 32, 31–48. [Google Scholar]
- DeLisle, C.; Yanites, B.J. Rethinking variability in bedrock rivers: Sensitivity of hillslope sediment supply to precipitation events modulates bedrock incision during floods. J. Geophys. Res.-Earth 2023, 29, 1094–1105. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; Zabalza, J.; Rahman, K.; Gago-Silva, A.; López-Moreno, J.I.; VicenteSerrano, S.; Lehmann, A.; Tague, C.L.; Beniston, M. Senstitivity of water balance components to environmental changes in a mountainous watershed: Uncertainty assessment based on models comparison. Hydrol. Earth Syst. Sci. 2013, 10, 11983–12026. [Google Scholar]
- Szuster, B.W.; Flaherty, M. Cumulative environmental effects of low salinity shrimp farming in Thailand. Impact Assess. Proj. Apprais. 2002, 20, 189–200. [Google Scholar] [CrossRef]
- Beilfuss, R. A Risky Climate for Southern African Hydro; International Rivers: Berkely, CA, USA, 2012; pp. 1–46. [Google Scholar]
- Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X.Y. A review of SWAT studies in Southeast Asia: Applications, challenges and future directions. Water 2019, 11, 914. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geogr. Compass 2010, 4, 834–860. [Google Scholar] [CrossRef]
- Uniyal, B.; Jha, M.K.; Verma, A.K. Assessing climate change impact on water balance components of a River Basin using SWAT model. Water Resour. Manag. 2015, 29, 4767–4785. [Google Scholar] [CrossRef]
- Chimalakonda, D.; Chisholm, R.A. Patterns of species diversity in a network of artificial islands. Divers. Distrib. 2023, 29, 1094–1105. [Google Scholar] [CrossRef]
Zones | County-Level Rivers | Town-Level Rivers | Village-Level Rivers | Total Channel Length (km) | Total | ||||
---|---|---|---|---|---|---|---|---|---|
Water Area (km2) | Number | Water Area (km2) | Number | Water Area (km2) | Number | Water Area (km2) | Storage Capacity (109 m3) | ||
A | 2.53 | 11 | 0.61 | 10 | 2.56 | 330 | 197.85 | 6.18 | 0.191 |
B | 0.89 | 5 | 1.19 | 16 | 2.79 | 281 | 232.75 | 4.88 | 0.127 |
C | 0.58 | 4 | 0.74 | 9 | 2.51 | 290 | 162.98 | 3.83 | 0.099 |
D | 0.52 | 3 | 0.98 | 14 | 3.69 | 368 | 288.27 | 5.19 | 0.093 |
E | 1.03 | 3 | 1.47 | 25 | 2.51 | 460 | 319.24 | 5.01 | 0.149 |
F | 1.07 | 7 | 0.67 | 6 | 2.28 | 350 | 233.94 | 4.01 | 0.115 |
G | 0.88 | 7 | 1.08 | 11 | 4.26 | 451 | 237.64 | 6.22 | 0.143 |
H | 1.42 | 11 | 0.81 | 15 | 4.73 | 528 | 411.61 | 6.97 | 0.147 |
I | 0.54 | 5 | 0.88 | 18 | 1.31 | 250 | 174.83 | 2.74 | 0.062 |
In total | 9.46 | 56 | 8.43 | 124 | 26.64 | 3308 | 2259.11 | 45.03 | 1.126 |
Zones | County-Level Rivers | Town-Level Rivers | Village-Level Rivers | Total Length of Rivers (km2) | |||
---|---|---|---|---|---|---|---|
Water Area (km2) | Number | Water Area (km2) | Number | Water Area (km2) | Number | ||
A | 0.38 | 0 | 0.1 | 0 | −0.27 | −23 | −1.73 |
B | 0.23 | 1 | 0.19 | 1 | −0.31 | −26 | −23.63 |
C | 0.09 | 1 | 0.15 | 1 | −0.12 | −10 | 0.77 |
D | 0.2 | 1 | −0.15 | 0 | −0.50 | −42 | 31.85 |
E | 0.08 | 0 | 0.08 | 0 | −0.21 | −18 | −5.63 |
F | 0.07 | −1 | 0.1 | 0 | −0.13 | −11 | 2.44 |
G | 0.35 | 0 | 0.03 | 0 | −0.02 | −2 | −9.34 |
H | 0.29 | −1 | 0.08 | 1 | −0.46 | −30 | −40.65 |
I | −0.09 | −1 | 0.14 | 1 | −0.56 | −56 | −16.34 |
In total | 1.86 | 0 | 0.72 | 4 | −2.58 | −218 | −27.84 |
Zones | Before | After | Differentials | ||||||
---|---|---|---|---|---|---|---|---|---|
Water Surface Ratio (%) | River Length Density (km/km2) | River Network Density (R/km2) | Water Surface Ratio (%) | River Length Density (km/km2) | River Network Density (R/km2) | Water Surface Ratio (%) | River Length Density (km/km2) | River Network Density (R/km2) | |
A | 12.41 | 3.95 | 7 | 13.9 | 3.91 | 6.54 | 1.49 | −0.04 | −0.46 |
B | 7.90 | 3.74 | 4.86 | 8.21 | 3.36 | 4.47 | 0.31 | −0.38 | −0.39 |
C | 9.65 | 4.08 | 7.59 | 9.19 | 4.1 | 7.64 | −0.46 | 0.02 | 0.05 |
D | 9.14 | 5.04 | 6.74 | 7.73 | 5.6 | 7.49 | −1.41 | 0.56 | 0.75 |
E | 6.62 | 4.19 | 6.41 | 7.08 | 4.12 | 6.17 | 0.46 | −0.07 | −0.24 |
F | 7.22 | 4.19 | 6.5 | 8.6 | 4.23 | 6.68 | 1.38 | 0.04 | 0.18 |
G | 13.53 | 5.14 | 10.14 | 12.03 | 4.94 | 10.19 | −1.50 | −0.20 | 0.05 |
H | 6.84 | 4.02 | 5.41 | 6.44 | 3.62 | 5.11 | −0.40 | −0.40 | −0.30 |
I | 4.28 | 2.71 | 4.24 | 4.35 | 2.46 | 3.06 | 0.07 | −0.25 | −1.18 |
In total | 8.17 | 4.07 | 6.29 | 8.17 | 4.02 | 5.77 | 0.00 | −0.05 | −0.52 |
Zone | Before | After | Differentials | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Node | Chain | River Network Structure | River-Node Ratio | River Network Connectivity | Nodes | Chain | River Network Structure | River-Node Ratio | River Network Connectivity | Node | Chain | River Network Structure | River-Node Ratio | River Network Connectivity | |
A | 124 | 363 | 0.99 | 2.93 | 0.99 | 115 | 345 | 1.03 | 3 | 1.02 | −9 | −18 | −0.04 | −0.07 | −0.03 |
B | 136 | 407 | 1.02 | 2.99 | 1.01 | 130 | 395 | 1.04 | 3.04 | 1.03 | −6 | −12 | −0.02 | −0.05 | −0.02 |
C | 121 | 359 | 1.01 | 2.97 | 1.01 | 113 | 344 | 1.05 | 3.04 | 1.03 | −8 | −15 | −0.04 | −0.07 | −0.02 |
D | 283 | 876 | 1.06 | 3.1 | 1.04 | 271 | 851 | 1.08 | 3.14 | 1.06 | −12 | −25 | −0.02 | −0.04 | −0.02 |
E | 265 | 793 | 1.01 | 2.99 | 1.01 | 246 | 754 | 1.05 | 3.07 | 1.03 | −19 | −39 | −0.04 | −0.08 | −0.02 |
F | 189 | 576 | 1.04 | 3.05 | 1.03 | 180 | 558 | 1.07 | 3.1 | 1.05 | −9 | −18 | −0.03 | −0.05 | −0.02 |
G | 171 | 508 | 1 | 2.97 | 1 | 171 | 506 | 1 | 2.96 | 1 | 0 | −2 | 0 | 0.01 | 0 |
H | 289 | 854 | 0.99 | 2.96 | 0.99 | 250 | 776 | 1.07 | 3.1 | 1.04 | −39 | −78 | −0.08 | −0.14 | −0.05 |
I | 107 | 318 | 1.01 | 2.97 | 1.01 | 89 | 281 | 1.12 | 3.16 | 1.08 | −18 | −37 | −0.11 | −0.19 | −0.07 |
In total | 1685 | 5054 | 1 | 3 | 1 | 1565 | 4810 | 1.04 | 3.07 | 1.03 | −120 | −244 | −0.04 | −0.07 | −0.03 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
Total water consumption (109 m3) | 2.33 | 2.23 | 2.22 | 2.22 | 2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Fu, L.; Lu, C.; Wang, S.; Zhu, Y.; Xu, Z.; Gui, Z. Study on River Protection and Improvement Based on a Comprehensive Statistical Model in a Coastal Plain River Network. Sustainability 2024, 16, 3518. https://doi.org/10.3390/su16093518
Wang J, Fu L, Lu C, Wang S, Zhu Y, Xu Z, Gui Z. Study on River Protection and Improvement Based on a Comprehensive Statistical Model in a Coastal Plain River Network. Sustainability. 2024; 16(9):3518. https://doi.org/10.3390/su16093518
Chicago/Turabian StyleWang, Junmin, Lei Fu, Cheng Lu, Shiwu Wang, Yongshu Zhu, Zeqi Xu, and Zihan Gui. 2024. "Study on River Protection and Improvement Based on a Comprehensive Statistical Model in a Coastal Plain River Network" Sustainability 16, no. 9: 3518. https://doi.org/10.3390/su16093518