Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machine Learning Alhgorithm
2.2. Experimental Setup
2.2.1. Electrical Connection
2.2.2. Cutting Path and Parameters
2.3. Materials and Equipment
3. Results and Discussion
3.1. Energy Data Analysis
3.2. Statistical Analysis
3.3. Machine Learning Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Error for the Decision Tree | E | Total energy consumed | |
Count of incorrectly categorized data entries | Baseline or initial power consumption | ||
Penalty complexity of the model | Specific milling energy for a given workpiece material | ||
Total number of training records | Q | Material removal rate | |
Number of nodes in the Decision Tree | Cutting time | ||
Number of training records classified by node t | Dependent variable | ||
Count data entries for node t | Parameter estimation for Linear Regression | ||
takes values from 1 to (inclusive) | Independent variables | ||
Fluctuations | Observed value of dependent variable | ||
Unobserved random error for the i-th observation | i-th observation of the j-th predictor variable | ||
Number of predictors | Sample size |
References
- Javaid, M.; Abid, H.; Pratap Singh, R.; Rab, S.; Suman, R. Upgrading the manufacturing sector via applications of Industrial Internet of Things (IIoT). Sens. Int. 2021, 2, 100129. [Google Scholar] [CrossRef]
- Karmakar, A.; Dey, N.; Baral, T.; Chowdhury, M.; Rehan, M. Industrial Internet of Things: A Review. In Proceedings of the 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata, India, 18–20 March 2019; pp. 1–6. [Google Scholar]
- Kashpruk, N.; Piskor-Ignatowicz, C.; Baranowski, J. Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements. Appl. Sci. 2023, 13, 12374. [Google Scholar] [CrossRef]
- Xu, K.; Luo, M.; Tang, K. Machine based energy-saving tool path generation for five-axis end milling of freeform surfaces. J. Clean. Prod. 2016, 139, 1207–1223. [Google Scholar] [CrossRef]
- Hu, L.; Zha, J.; Kan, F.; Long, H.; Chen, Y. Research on a Five-Axis Machining Center Worktable with Bionic Honeycomb Lightweight Structure. Materials 2021, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Elahi, M.; Afolaranmi, S.O.; Martinez Lastra, J.L.; Perez Garcia, J.A. A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discov. Artif. Intell. 2023, 3, 43. [Google Scholar] [CrossRef]
- Sah, S.; Krishnan, M.; Elangovan, R. Optimization of energy consumption for indoor climate control using Taguchi technique and utility concept. Sci. Technol. Built Environ. 2021, 27, 1473–1491. [Google Scholar] [CrossRef]
- Yang, H.; Ran, M.; Feng, H. Improved Data-Driven Building Daily Energy Consumption Prediction Models Based on Balance Point Temperature. Buildings 2023, 13, 1423. [Google Scholar] [CrossRef]
- Ramos, D.; Faria, P.; Morais, A.; Vale, Z. Using decision tree to select forecasting algorithms in distinct electricity consumption context of an office building. Energy Rep. 2022, 8, 417–422. [Google Scholar] [CrossRef]
- Pan, J.; Li, C.; Tang, Y.; Li, W.; Li, X. Energy Consumption Prediction of a CNC Machining Process with Incomplete Data. IEEE/CAA J. Autom. Sin. 2021, 8, 987. [Google Scholar] [CrossRef]
- Brillinger, M.; Wuwer, M.; Abdul Hadi, M.; Haas, F. Energy prediction for CNC machining with machine learning. CIRP J. Manuf. Sci. Technol. 2021, 35, 715–723. [Google Scholar] [CrossRef]
- Cao, J.; Xia, X.; Wang, L.; Zhang, Z.; Liu, X. A Novel CNC Milling Energy Consumption Prediction Method Based on Program Parsing and Parallel Neural Network. Sustainability 2021, 13, 13918. [Google Scholar] [CrossRef]
- Tercan, H.; Meisen, T. Machine learning and deep learning based predictive quality in manufacturing: A systematic review. J. Intell. Manuf. 2022, 33, 1879–1905. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Qin, J.; Hu, F.; Liu, Y.; Witherell, P.; Wang, C.C.L.; Rosen, D.W.; Simpson, T.W.; Lu, Y.; Tang, Q. Research and application of machine learning for additive manufacturing. Addit. Manuf. 2022, 52, 102691. [Google Scholar] [CrossRef]
- Lee, J.A.; Sagong, M.J.; Jung, J.; Kim, E.S.; Kim, H.S. Explainable machine learning for understanding and predicting geometry and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturing. J. Mater. Res. Technol. 2023, 22, 413–423. [Google Scholar] [CrossRef]
- Çınar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Härdle, W.K.; Prastyo, D.D. Chapter 7—Embedded Predictor Selection for Default Risk Calculation: A Southeast Asian Industry Study. In Handbook of Asian Finance; Gregoriou, G.N., Chuen, D.L.K., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 131–148. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Society. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Andriopoulos, V.; Kornaros, M. LASSO Regression with Multiple Imputations for the Selection of Key Variables Affecting the Fatty Acid Profile of Nannochloropsis oculata. Mar Drugs 2023, 21, 483. [Google Scholar] [CrossRef]
- Schreiber-Gregory, D. Ridge Regression and Multicollinearity: An In-Depth Review. Model Assist. Stat. Appl. 2018, 13, 359–365. [Google Scholar] [CrossRef]
- Enwere, K.; Nduka, E.; Ogoke, U. Comparative Analysis of Ridge, Bridge and Lasso Regression Models in the Presence of Multicollinearity. IPS Intelligentsia Multidiscip. J. 2023, 3, 1–8. [Google Scholar] [CrossRef]
- Debeljak, M.; Džeroski, S. Decision Trees in Ecological Modelling. In Modelling Complex Ecological Dynamics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 197–209. [Google Scholar]
- Camana, M.; Ahmed, S.; García, C.; Koo, I. Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks. IEEE Access 2020, 8, 19921–19933. [Google Scholar] [CrossRef]
- Lindner, C. Chapter 1—Automated Image Interpretation Using Statistical Shape Models. In Statistical Shape and Deformation Analysis; Zheng, G., Li, S., Székely, G., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 3–32. [Google Scholar]
- Schonlau, M.; Zou, R. The random forest algorithm for statistical learning. Stata J. Promot. Commun. Stat. Stata 2020, 20, 3–29. [Google Scholar] [CrossRef]
- Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A Survey of Optimization Methods From a Machine Learning Perspective. IEEE Trans. Cybern. 2020, 50, 3668–3681. [Google Scholar] [CrossRef] [PubMed]
- Aminzadeh, M.; Mahmoodi, A.; Sabzehparvar, M. Optimal Motion-Cueing Algorithm Using Motion System Kinematics. Eur. J. Control 2012, 18, 363–375. [Google Scholar] [CrossRef]
- Sharma, N.; Chawla, V.; Chauhan, N. Comparison of machine learning algorithms for the automatic programming of computer numerical control machine. Int. J. Data Netw. Sci. 2020, 4, 1–14. [Google Scholar] [CrossRef]
- Dittrich, M.-A.; Uhlich, F.; Denkena, B. Self-optimizing tool path generation for 5-axis machining processes. CIRP J. Manuf. Sci. Technol. 2019, 24, 49–54. [Google Scholar] [CrossRef]
- Ghosh, T.; Martinsen, K. Generalized approach for multi-response machining process optimization using machine learning and evolutionary algorithms. Eng. Sci. Technol. Int. J. 2020, 23, 650–663. [Google Scholar] [CrossRef]
- Ahrens, A.; Hansen, C.B.; Schaffer, M.E. lassopack: Model selection and prediction with regularized regression in Stata. Stata J. 2020, 20, 176–235. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Machine Learning. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Awad, M., Khanna, R., Eds.; Apress: Berkeley, CA, USA, 2015; pp. 1–18. [Google Scholar]
- Mehbodniya, A.; Khan, I.R.; Chakraborty, S.; Karthik, M.; Mehta, K.; Ali, L.; Nuagah, S.J. Data Mining in Employee Healthcare Detection Using Intelligence Techniques for Industry Development. J. Health Eng. 2022, 2022, 6462657. [Google Scholar] [CrossRef]
- Sarker, I.H.; Kayes, A.S.M.; Watters, P. Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. J. Big Data 2019, 6, 57. [Google Scholar] [CrossRef]
- IEC 62053-21; Electricity metering equipment–particular requirements–Part 21: Static meters for AC active energy (classes 0.5, 1 and 2). The International Electrotechnical Commission (IEC) Publication: Geneva, Switzerland, 2020.
- Arch Meter Corporation. PA310 Clip-on CT Power Meter. Available online: https://www.archmeter.com/en/product-303005/Clip-on-CT-Power-Meter-PA310.html (accessed on 26 November 2022).
- Rausser, G.; Strielkowski, W.; Streimikiene, D. Smart meters and household electricity consumption: A case study in Ireland. Energy Environ. 2017, 29, 131–146. [Google Scholar] [CrossRef]
- Harford 5 Axis AI Vertical Machining Center. Available online: https://www.hartford.com.tw/en/product/5A-40R (accessed on 25 December 2023).
- Precision Cutting Tools. S220 Carbide EX3 6*18C. Available online: http://www.cmtec.com.tw/admin/product_en/front/product.php?upid=4 (accessed on 20 January 2023).
- Li, S.; Sui, J.; Ding, F.; Wu, S.; Chen, W.; Wang, C. Optimization of Milling Aluminum Alloy 6061-T6 using Modified Johnson-Cook Model. Simul. Model. Pract. Theory 2021, 111, 102330. [Google Scholar] [CrossRef]
- Zaidi, S.R.; Ul Qadir, N.; Jaffery, S.H.; Khan, M.A.; Khan, M.; Petru, J. Statistical Analysis of Machining Parameters on Burr Formation, Surface Roughness and Energy Consumption during Milling of Aluminium Alloy Al 6061-T6. Materials 2022, 15, 8065. [Google Scholar] [CrossRef] [PubMed]
- Karakoç, E.; Çakır, O. Examination of surface roughness values of 6061-T6 aluminum material after machining and after anodizing process. Mater. Today Proc. 2023, 80, 32–39. [Google Scholar] [CrossRef]
- Ayuba, S.; Araoyinbo, A.; Elewa, R.; Biodun, M. Effect of Machining of Aluminium Alloys with Emphasis on Aluminium 6061 Alloy—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012157. [Google Scholar]
- Poznak, A.; Freiberg, D.; Sanders, P. Automotive Wrought Aluminium Alloys. In Fundamentals of Aluminium Metallurgy; Woodhead Publishing: Sawston, UK, 2018; pp. 333–386. [Google Scholar]
- Shin, J.; Kim, T.; Kim, D.; Kim, D.; Kim, K. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications. J. Alloys Compd. 2017, 698, 577–590. [Google Scholar] [CrossRef]
- Joseph, O.O.; Babaremu, K.O. Agricultural Waste as a Reinforcement Particulate for Aluminum Metal Matrix Composite (AMMCs): A Review. Fibers 2019, 7, 33. [Google Scholar] [CrossRef]
- Atif Wahid, M.; Siddiquee, A.; Khan, Z. Aluminum alloys in marine construction: Characteristics, application, and problems from a fabrication viewpoint. Mar. Syst. Ocean Technol. 2019, 15, 70–80. [Google Scholar] [CrossRef]
- Furberg, A.; Arvidsson, R.; Molander, S. Environmental life cycle assessment of cemented carbide (WC-Co) production. J. Clean. Prod. 2019, 209, 1126–1138. [Google Scholar] [CrossRef]
Subject | Detail Specification |
---|---|
Voltage input | 10–480 V |
Current input | Internal CT: 5 A, Clip-on CT: CT Φ10 (10 mA~10 A or 30 mA~60 A), optional in CT Φ16 (50 mA~120 A) Φ24 (80 mA~200 A, Φ31.6 (0.5 A~400) Φ50.8 (1 A~1000 A) |
AUX. Power (X/Y/Z/A/C) | 100–240 VAC, 1 A, 5 VA |
kWh Accuracy | pf = 1, <0.5%, pf = 0.5, <1%, better than IEC 1036 |
Subject | Detail Specification |
---|---|
Electric Power Consumption | 20 kva |
Machine Weight | 3300 kg |
Motor Rated Output (X/Y/Z/A/C) | Spindle Drive Motor 7.5 kw X-, Y-, Z-, A-, C-Axis Drive Motor 2.18 kw/2.18 kw/3.5 kw/1.2 kw/1.7 kw |
Stroke | X-axis (longitudinal travel): 350 mm Y-axis (cross-travel): 300 mm Z-axis (vertical travel): 250 mm A-axis (inclined): −120°~+30° C-axis (rotation): 360° |
Feed (Rapid Traverse) (X/Y/Z/A/C) | 36,000 (OP: 40,000) mm/min |
Spindle Speed | 12,000 rpm |
Subject | Value |
---|---|
Tool Type | Square |
Diameter (mm) | 6 |
Number Of Cutting Flutes | 3 |
Shank Diameter (mm) | 6 |
Cutting Length (mm) | 18 |
Property | Value |
---|---|
Density (g/cc) | 2.7 |
Hardness (Brinell) | 95 |
Tensile Yield Strength (MPa) | 276 |
Modulus of Elasticity (GPa) | 68.9 |
Fatigue Strength (MPa) | 96.5 |
Shear Modulus (GPa) | 26 |
Shear Strength (MPa) | 207 |
Thermal Conductivity (W/m-K) | 167 |
Spindle Speed (rpm) | Feed Rate (mm/min) | Width of Cut (mm) | Depth of Cuth (mm) | Machining Time (minutes) | Energy Cons (Wh) |
---|---|---|---|---|---|
4000 | 300 | 1 | 0.5 | 15 | 50.46 |
4000 | 500 | 2 | 1.0 | 20 | 47.56 |
4000 | 700 | 3 | 1.5 | 25 | 40.62 |
6000 | 300 | 2 | 1.5 | 18 | 21.38 |
6000 | 500 | 3 | 0.5 | 22 | 47.57 |
6000 | 700 | 1 | 1.0 | 16 | 33.20 |
8000 | 300 | 3 | 1.0 | 12 | 12.74 |
8000 | 500 | 1 | 1.5 | 19 | 22.81 |
8000 | 700 | 2 | 0.5 | 14 | 26.39 |
Term | Experiment 1 | Experiment 2 | Experiment 3 | |||
---|---|---|---|---|---|---|
Coef. | T-Value | Coef. | T-Value | Coef. | T-Value | |
Constant | 80.5 | 5.87 * | 63.2 | 4.60 * | 76.5 | 4.38 * |
Spindle Speed | −0.006 | −4.56 * | −0.004 | −3.55 * | −0.006 | −3.41 * |
Feed Rate | 0.013 | 0.93 | 0.003 | 0.22 | 0.008 | 0.46 |
Width of Cut | −0.920 | −0.33 | −0.280 | −0.10 | −3.400 | −0.95 |
Depth of Cut | −13.20 | −2.35 ** | −6.020 | −1.07 | −4.600 | −0.64 |
R-Square | 87.21% | 77.52% | 76.72% | |||
R-Square (Adj) | 74.43% | 55.03% | 53.44% |
Model | RMSE | MSE | MAE | Rsq |
---|---|---|---|---|
Linear Regression | 5.98 | 35.78 | 4.71 | 0.74 |
Lasso Regression | 6.31 | 39.78 | 5.03 | 0.72 |
Ridge Regression | 5.99 | 35.91 | 4.72 | 0.74 |
Decision Tree Regressor | 4.24 | 17.97 | 3.23 | 0.87 |
Random Forest Regressor | 4.28 | 18.28 | 3.33 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugrahanto, I.; Gunawan, H.; Chen, H.-Y. Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency. Sustainability 2024, 16, 3569. https://doi.org/10.3390/su16093569
Nugrahanto I, Gunawan H, Chen H-Y. Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency. Sustainability. 2024; 16(9):3569. https://doi.org/10.3390/su16093569
Chicago/Turabian StyleNugrahanto, Indrawan, Hariyanto Gunawan, and Hsing-Yu Chen. 2024. "Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency" Sustainability 16, no. 9: 3569. https://doi.org/10.3390/su16093569
APA StyleNugrahanto, I., Gunawan, H., & Chen, H.-Y. (2024). Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency. Sustainability, 16(9), 3569. https://doi.org/10.3390/su16093569