Biodiversity-Centric Habitat Networks for Green Infrastructure Planning: A Case Study in Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ecological Network
2.3. Selection of Target Species and Habitats
2.4. Assigning Habitat Crossing Costs
2.5. Building the Ecological Network
2.6. Anthropic Impacts
- (1)
- Intensive agriculture (CORINE code 82.1);
- (2)
- Intensive agricultural areas with semi-natural patches (CORINE codes 82.2 and 82.3);
- (3)
- Permanent crops (CORINE codes 83.11, 83.15, 83.21, 83.31 and 83.321);
- (4)
- Habitats dominated by invasive plant species (CORINE codes 83.324, 87.2a, and 87.2b).
- -
- The percentage area of sealed soil (i.e., urban areas) within nodes, corridors, and stepping stones;
- -
- The percentage area of corridors covered by other impactful land use types (intensive agriculture, intensive agriculture with seminatural residuals, perennial crops, alien vegetation);
- -
- The total length and density of linear barriers within corridors, nodes, and stepping stones.
3. Results
3.1. Ecological Network Infrastructure Features
3.2. Anthropic Pressures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape Perspectives on Agricultural Intensification and Biodiversity—Ecosystem Service Management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of Functional Diversity under Land Use Intensification across Multiple Taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Virués, S.; Perović, D.J.; Gossner, M.M.; Börschig, C.; Blüthgen, N.; de Jong, H.; Simons, N.K.; Klein, A.-M.; Krauss, J.; Maier, G.; et al. Landscape Simplification Filters Species Traits and Drives Biotic Homogenization. Nat. Commun. 2015, 6, 8568. [Google Scholar] [CrossRef] [PubMed]
- Halfwerk, W.; Slabbekoorn, H. Pollution Going Multimodal: The Complex Impact of the Human-Altered Sensory Environment on Animal Perception and Performance. Biol. Lett. 2015, 11, 20141051. [Google Scholar] [CrossRef] [PubMed]
- Conway, G.R.; Pretty, J.N. Unwelcome Harvest: Agriculture and Pollution; Cambridge University Press (CUP): Cambridge, UK, 2013. [Google Scholar]
- Gutiérrez, J.L.; Jones, C.G.; Sousa, R. Toward an Integrated Ecosystem Perspective of Invasive Species Impacts. Acta Oecologica 2014, 54, 131–138. [Google Scholar] [CrossRef]
- Boscutti, F.; Lami, F.; Pellegrini, E.; Buccheri, M.; Busato, F.; Martini, F.; Sibella, R.; Sigura, M.; Marini, L. Urban Sprawl Facilitates Invasions of Exotic Plants across Multiple Spatial Scales. Biol. Invasions 2022, 24, 1497–1510. [Google Scholar] [CrossRef]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; van Ruijven, J.; et al. High Plant Diversity Is Needed to Maintain Ecosystem Services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Grassein, F.; Hölzel, N.; Klaus, V.H.; et al. Land Use Intensification Alters Ecosystem Multifunctionality via Loss of Biodiversity and Changes to Functional Composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Power, A.G. Ecosystem Services and Agriculture: Tradeoffs and Synergies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Capra-Ribeiro, F.; Moscardó, V.; del Pino, L.E.B.; Mayor-Vitoria, F.; Gallardo, L.O.; Carracedo, P.; Dietrich, K. A Systematic Review on the Ecosystem Services Provided by Green Infrastructure. Urban. For. Urban. Green. 2023, 127998. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the Council, The European Parliament, The Economic and Social Committee and the Committee of Regions—Green Infrastructure (GI)—Enhancing Europe’s Natural Capital; Kluwer Law International BV: Alphen aan den Rijn, The Netherlands, 2013; Volume 1. [Google Scholar]
- da Silva, J.M.C.; Wheeler, E. Ecosystems as Infrastructure. Perspect. Ecol. Conserv. 2017, 15, 32–35. [Google Scholar] [CrossRef]
- Mell, I.C. Aligning Fragmented Planning Structures through a Green Infrastructure Approach to Urban Development in the UK and USA. Urban. For. Urban. Green. 2014, 13, 612–620. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Monteiro, R.; Silva, V.R. Planning a Green Infrastructure Network from Theory to Practice: The Case Study of Setúbal, Portugal. Sustainability 2021, 13, 8432. [Google Scholar] [CrossRef]
- Parker, J.; de Baro, M.E.Z. Green Infrastructure in the Urban Environment: A Systematic Quantitative Review. Sustainability 2019, 11, 3182. [Google Scholar] [CrossRef]
- Snäll, T.; Lehtomäki, J.; Arponen, A.; Elith, J.; Moilanen, A. Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services. Environ. Manag. 2016, 57, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.S.; Bell, T. Reducing Horizontal and Vertical Diversity in a Foodweb Triggers Extinctions and Impacts Functions. Ecol. Lett. 2009, 12, 1016–1028. [Google Scholar] [CrossRef] [PubMed]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.-S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the Evidence for Biodiversity Effects on Ecosystem Functioning and Services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef]
- Ward, M.; Rhodes, J.R.; Watson, J.E.M.; Lefevre, J.; Atkinson, S.; Possingham, H.P. Use of Surrogate Species to Cost-Effectively Prioritize Conservation Actions. Conserv. Biol. 2020, 34, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Roberge, J.-M.; Angelstam, P. Usefulness of the Umbrella Species Concept as a Conservation Tool. Conserv. Biol. 2004, 18, 76–85. [Google Scholar] [CrossRef]
- Hilty, J.A.; Lidicker, W.Z., Jr.; Merenlender, A.M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- APAT. Gestione Delle Aree Di Collegamento Ecologico Funzionale—Indirizzi e Modalità Operative per l’Adeguamento Degli Strumenti. 2003. Available online: https://www.isprambiente.gov.it/contentfiles/00003500/3500-gestecolog-funz.pdf (accessed on 12 November 2019).
- Ministry for the Environment Land and Sea. Italy’s Fifth National Report to the Convention on Biological Diversity; Ministry for the Environment Land and Sea: Roma, Italy, 2013. [Google Scholar]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in Land-Use/Land-Cover Patterns in Italy and Their Implications for Biodiversity Conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Maiorano, L.; Falcucci, A.; Garton, E.O.; Boitani, L. Contribution of the Natura 2000 Network to Biodiversity Conservation in Italy. Conserv. Biol. 2007, 21, 1433–1444. [Google Scholar] [CrossRef]
- Poldini, L.; Oriolo, G.; Vidali, M.; Tomasella, M.; Stoch, F.; Orel, G. Manuale Degli Habitat Del Friuli Venezia Giulia. Strumento a Supporto Della Valutazione d’impatto Ambientale (VIA), Ambientale Strategica (VAS) e d’incidenza Ecologica (VIEc); Region. Autonoma Friuli Venezia Giulia–Direz. Centrale Ambiente e Lavori Pubblici–Servizio Valutazione Impatto Ambientale; Univ. Studi Trieste–Dipart. Biologia: Trieste, Italy, 2006. [Google Scholar]
- Tockner, K.; Schiemer, F.; Ward, J.V. Conservation by Restoration: The Management Concept for a River-Floodplain System on the Danube River in Austria. Aquat. Conserv. 1998, 8, 71–86. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Schiemer, F. Biodiversity of Floodplain River Ecosystems: Ecotones and Connectivity1. Regul. Rivers Res. Manag. 1999, 15, 125–139. [Google Scholar] [CrossRef]
- Nowicki, P.; Marczyk, J.; Kajzer-Bonk, J. Metapopulations of Endangered Maculinea Butterflies Are Resilient to Large-scale Fire. Ecohydrology 2015, 8, 398–405. [Google Scholar] [CrossRef]
- Balletto, L.; Bonelli, S.; Cassulo, L. Mapping the Italian Butterfly Diversity for Conservation. In Studies on the Ecology and Conservation of Butterflies in Europe Vol. 1. General Concepts and Case Studies; Kühn, E., Feldmann, R., Thomas, J.A., Settele, J., Eds.; Pensoft Publ. Co.: Sofia, Bulgaria; Moscow, Russia, 2005; pp. 71–76. [Google Scholar]
- Lai, B.-C.G.; Pullin, A.S. Phylogeography, Genetic Diversity and Conservation of the Large Copper Butterfly Lycaena Dispar in Europe. J. Insect Conserv. 2004, 8, 27–36. [Google Scholar] [CrossRef]
- Santovito, A.; Audisio, M.; Bonelli, S. A Micronucleus Assay Detects Genotoxic Effects of Herbicide Exposure in a Protected Butterfly Species. Ecotoxicology 2020, 29, 1390–1398. [Google Scholar] [CrossRef]
- Nowicki, P.; Witek, M.; Skórka, P.; Settele, J.; Woyciechowski, M. Population Ecology of the Endangered Butterflies Maculinea Teleius and M. Nausithous and the Implications for Conservation. Popul. Ecol. 2005, 47, 193–202. [Google Scholar] [CrossRef]
- Assessorato alle infrastrutture e Territorio Regione Friuli Venezia Giulia. Piano Paesaggistico Regionale del Friuli Venezia Giulia. In Scheda Ambito Di Paesaggio 8: Alta. Pianura Friulana e Isontina; 2018; Available online: https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/ambiente-territorio/pianificazione-gestione-territorio/FOGLIA21/allegati/BUR/18_SO25_1_DPR_111_19_ALL19.pdf (accessed on 4 December 2023).
- Moss, D.; Wyatt, B.K. The CORINE Biotopes Project: A Database for Conservation of Nature and Wildlife in the European Community. Appl. Geogr. 1994, 14, 327–349. [Google Scholar] [CrossRef]
- Directorate-General for Environment (Europaean Commission). CORINE Biotopes Manual:A Method to Identify and Describe Consistently Sites of Major Importance for Nature Conservation. Volume III, Data Specifications, Part II.; Publications Office: Luxembourg, 1991. [Google Scholar]
- Rivas-Martinez, S. Notions on Dynamic-Catenal Phytosociology as a Basis of Landscape Science. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2005, 139, 135–144. [Google Scholar] [CrossRef]
- Blasi, C. La Vegetazione d’Italia Con Carta Delle Serie Di Vegetazione in Scala 1:500.000; Palombi Editori: Roma, Italy, 2010. [Google Scholar]
- Tolman, T. Collins Field Guide—Butterflies of Britain and Europe; HarperCollins: New York, NY, USA, 2004. [Google Scholar]
- Massa, B.; Fontana, P.; Buzzetti, F.M.; Kleukers, R.; Baudewijn, O. Fauna d’ Italia—Vol XLVIII—Orthoptera; Edagricole: Bologna, Italy, 2012. [Google Scholar]
- Fanin, Y.; Tami, F.; Guzzon, C.; Candotto, S.; Merluzzi, P. Nuove Località Di Zeuneriana Marmorata (Fieber, 1853) (Insecta Orthoptera) in Friuli Venezia Giulia (Italia Nord-Orientale). Gortania. Bot. Zool. 2016, 37, 35–41. [Google Scholar]
- Paolucci, P. Le Farfalle Dell’Italia Nordorientale. Guida al Riconoscimento; Cierre Edizioni: Caselle, Italy, 2010. [Google Scholar]
- Di Nicola, M.; Cavigioli, L.; Luiselli, L. Anfibi & Rettili d’Italia; Belvedere: Latina, Italy, 2019. [Google Scholar]
- Foltête, J.-C.; Vuidel, G.; Savary, P.; Clauzel, C.; Sahraoui, Y.; Girardet, X.; Bourgeois, M. Graphab: An Application for Modeling and Managing Ecological Habitat Networks. Softw. Impacts 2021, 8, 100065. [Google Scholar] [CrossRef]
- Adriaensen, F.; Chardon, J.P.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The Application of ‘Least-Cost’ Modelling as a Functional Landscape Model. Landsc. Urban. Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Pop, P.C.; Matei, O.; Sabo, C.; Petrovan, A. A Two-Level Solution Approach for Solving the Generalized Minimum Spanning Tree Problem. Eur. J. Oper. Res. 2018, 265, 478–487. [Google Scholar] [CrossRef]
- Baudron, F.; Giller, K.E. Agriculture and Nature: Trouble and Strife? Biol. Conserv. 2014, 170, 232–245. [Google Scholar] [CrossRef]
- Puig-Montserrat, X.; Stefanescu, C.; Torre, I.; Palet, J.; Fàbregas, E.; Dantart, J.; Arrizabalaga, A.; Flaquer, C. Effects of Organic and Conventional Crop Management on Vineyard Biodiversity. Agric. Ecosyst. Environ. 2017, 243, 19–26. [Google Scholar] [CrossRef]
- Salomaa, A.; Paloniemi, R.; Kotiaho, J.S.; Kettunen, M.; Apostolopoulou, E.; Cent, J. Can Green Infrastructure Help to Conserve Biodiversity? Environ. Plann C Gov. Policy 2017, 35, 265–288. [Google Scholar] [CrossRef]
- Joa, B.; Winkel, G.; Primmer, E. The Unknown Known—A Review of Local Ecological Knowledge in Relation to Forest Biodiversity Conservation. Land. Use Policy 2018, 79, 520–530. [Google Scholar] [CrossRef]
- Dudley, N.; Alexander, S. Agriculture and Biodiversity: A Review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Duelli, P.; Obrist, M.K. Regional Biodiversity in an Agricultural Landscape: The Contribution of Seminatural Habitat Islands. Basic. Appl. Ecol. 2003, 4, 129–138. [Google Scholar] [CrossRef]
- Öckinger, E.; Smith, H.G. Semi-Natural Grasslands as Population Sources for Pollinating Insects in Agricultural Landscapes. J. Appl. Ecol. 2007, 44, 50–59. [Google Scholar] [CrossRef]
- Holland, J.M.; Douma, J.C.; Crowley, L.; James, L.; Kor, L.; Stevenson, D.R.W.; Smith, B.M. Semi-Natural Habitats Support Biological Control, Pollination and Soil Conservation in Europe. A Review. Agron. Sustain. Dev. 2017, 37, 31. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but Variable Effects of Crop Diversification on Biodiversity and Ecosystem Services. Glob. Chang. Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef] [PubMed]
- Kolkman, A.; Dopagne, C.; Piqueray, J. Sown Wildflower Strips Offer Promising Long Term Results for Butterfly Conservation. J. Insect Conserv. 2022, 26, 387–400. [Google Scholar] [CrossRef]
- Ndakidemi, B.; Mtei, K.; Ndakidemi, P.A. Impacts of Synthetic and Botanical Pesticides on Beneficial Insects. Agric. Sci. 2016, 7, 364–372. [Google Scholar] [CrossRef]
- Rowen, E.K.; Regan, K.H.; Barbercheck, M.E.; Tooker, J.F. Is Tillage Beneficial or Detrimental for Insect and Slug Management? A Meta-Analysis. Agric. Ecosyst. Environ. 2020, 294, 106849. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban Green Space Network Development for Biodiversity Conservation: Identification Based on Graph Theory and Gravity Modeling. Landsc. Urban. Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the City: Key Challenges for Urban Green Space Management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from Gardens: Biodiversity Conservation in Urban Environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.L.W.; Shilling, F.M.; Perkins, S.E. The Value of Monitoring Wildlife Roadkill. Eur. J. Wildl. Res. 2020, 66, 18. [Google Scholar] [CrossRef]
- Andersson, P.; Koffman, A.; Sjödin, N.E.; Johansson, V. Roads May Act as Barriers to Flying Insects: Species Composition of Bees and Wasps Differs on Two Sides of a Large Highway. Nat. Conserv. 2017, 18, 47–59. [Google Scholar] [CrossRef]
- Helldin, J.O.; Petrovan, S.O. Effectiveness of Small Road Tunnels and Fences in Reducing Amphibian Roadkill and Barrier Effects at Retrofitted Roads in Sweden. PeerJ 2019, 2019, e7518. [Google Scholar] [CrossRef] [PubMed]
- Glista, D.J.; Devault, T.L.; Dewoody, J.A. Vertebrate road mortality predominantly impacts amphibians. Herpetol. Conserv. Biol. 2008, 3, 77–87. [Google Scholar]
- Modica, G.; Praticò, S.; Laudari, L.; Ledda, A.; Di Fazio, S.; De Montis, A. Implementation of multispecies ecological networks at the regional scale: Analysis and multi-temporal assessment. J. Environ. Management. 2021, 289, 112494. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Niu, H.; Li, Y. A multi-species approach for protected areas ecological network construc-tion based on landscape connectivity. Glob. Ecol. Conserv. 2023, 46, e02569. [Google Scholar] [CrossRef]
- Delso, Á.; Fajardo, J.; Muñoz, J. Protected area networks do not represent unseen biodiversity. Sci. Rep. 2021, 11, 12275. [Google Scholar] [CrossRef]
Nodes | Corridors (Level I) | Corridors (Level II) | Corridors (Total) | Stepping Stones | |
---|---|---|---|---|---|
Area (ha) | 9605.1 | 1881.7 | 2295.8 | 4177.5 | 1139.9 |
Soil sealing (%) | 6.1 | 18.8 | 19.4 | 19.1 | 8.7 |
Intensive agriculture (%) | NA | 27.9 | 36.0 | 32.3 | NA |
Intensive agriculture with seminatural residuals (%) | NA | 13.0 | 9.5 | 11.0 | 53.4 |
Perennial crops (%) | NA | 15.0 | 15.0 | 15.0 | NA |
Alien vegetation (%) | NA | 8.5 | 5.3 | 6.7 | NA |
Land-based linear barrier density (m/ha) | 4.5 | 16 | 13.2 | 14.5 | 5.3 |
Water linear barrier density (m/ha) | 0.2 | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lami, F.; Boscutti, F.; Peccol, E.; Piani, L.; De Luca, M.; Zandigiacomo, P.; Sigura, M. Biodiversity-Centric Habitat Networks for Green Infrastructure Planning: A Case Study in Northern Italy. Sustainability 2024, 16, 3604. https://doi.org/10.3390/su16093604
Lami F, Boscutti F, Peccol E, Piani L, De Luca M, Zandigiacomo P, Sigura M. Biodiversity-Centric Habitat Networks for Green Infrastructure Planning: A Case Study in Northern Italy. Sustainability. 2024; 16(9):3604. https://doi.org/10.3390/su16093604
Chicago/Turabian StyleLami, Francesco, Francesco Boscutti, Elisabetta Peccol, Lucia Piani, Matteo De Luca, Pietro Zandigiacomo, and Maurizia Sigura. 2024. "Biodiversity-Centric Habitat Networks for Green Infrastructure Planning: A Case Study in Northern Italy" Sustainability 16, no. 9: 3604. https://doi.org/10.3390/su16093604
APA StyleLami, F., Boscutti, F., Peccol, E., Piani, L., De Luca, M., Zandigiacomo, P., & Sigura, M. (2024). Biodiversity-Centric Habitat Networks for Green Infrastructure Planning: A Case Study in Northern Italy. Sustainability, 16(9), 3604. https://doi.org/10.3390/su16093604