Sustainability in Aquatic Ecosystem Restoration: Combining Classical and Remote Sensing Methods for Effective Water Quality Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. The Terrain Conditions
2.1.2. Microbiological Bioremediation Assumptions
2.1.3. Selection of Sampling Areas
2.2. Data
2.2.1. Land Cover Data
2.2.2. Satellite Images
2.3. Methodology
2.3.1. Analytical Methods of In Situ Data
2.3.2. NDR Modeling
2.3.3. Satellite Data Processing and Analysis
- B4, B5, and B6 represent the spectral reflectance in a given spectral channel,
- ΛB4 = 0.665 nm, λB5 = 0.705 nm, and λB6 = 0.740 nm represent the central wavelengths of the corresponding bands of Sentinel-2.
3. Results and Discussion
3.1. Analytical Methods of In Situ Data Elaboration
Monitoring of Physical and Chemical Parameters and Water Quality
3.2. Land Cover
3.3. NDR Modeling
3.4. Satellite Analysis Results
4. Conclusions
- An improvement in the studied water quality parameters was observed after microbiological remediation processes were carried out in 2013–2014. Additionally, an odor reduction was noted. The results of the analysis carried out and the observations made indicate a possible, strong influence of the conducted reclamation processes on the environmental and recreational values and services of the reservoirs.
- The effect of improved water quality persisted until 2015, but in subsequent seasons, a gradual recurrence of water blooms resulting from the intensive eutrophication of the reservoir was observed. Therefore, reclamation treatments with biopreparations were applied once more in 2016–2017. Sudden improvements in water quality were again observed after the treatments. The reduction in reservoir algal blooms appears to be a direct consequence of the use of biopreparations.
- Remote sensing evaluation methods based on satellite images have proven to be highly effective in assessing the effects of reclamation processes. Remote sensing studies using Sentinel-2 satellite images indicated the successive occurrences of water blooms in the reservoirs from 2015 onward, as well as an improvement in water quality (reduction in algal blooms) after microbiological reclamation treatment.
- The performed analyses indicate that the microbiological reclamation method represents an interesting and effective (non-invasive to aquatic ecosystems) biotechnology for cleaning polluted water reservoirs or parts thereof, such as bathing areas. However, it takes considerable time to achieve the effects of reclamation.
- Reducing the inflow of pollutants into the reservoir and biological enclosure of the littoral zone can also contribute to accelerating and maintaining the treatment effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Spatial Resolution (m) | Band Number | Sentinel-2A | Sentinel-2B | ||
---|---|---|---|---|---|
Central Wavelength (nm) | Bandwidth (nm) | Central Wavelength (nm) | Bandwidth (nm) | ||
10 | 2 | 492.4 | 66 | 492.1 | 66 |
3 | 559.8 | 36 | 559.0 | 36 | |
4 | 664.6 | 31 | 664.9 | 31 | |
8 | 832.8 | 106 | 832.9 | 106 | |
20 | 5 | 704.1 | 15 | 703.8 | 16 |
6 | 740.5 | 15 | 739.1 | 15 | |
7 | 782.8 | 20 | 779.7 | 20 | |
8a | 864.7 | 21 | 864.0 | 22 | |
11 | 1613.7 | 91 | 1610.4 | 94 | |
12 | 2202.4 | 175 | 2185.7 | 185 | |
60 | 1 | 442.7 | 21 | 442.2 | 21 |
9 | 945.1 | 20 | 943.2 | 21 | |
10 | 1373.5 | 31 | 1376.9 | 30 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
15.06.2013 and 10.07.2013 | 8 | 13 | 0.700140042 | 0.48384036 |
10.07.2013 and 10.09.2013 | 9 | 3 | 2.31016062 | 0.0208798948 |
10.09.2013 and 10.10.2013 | 7 | 0 | 2.36643191 | 0.0179610673 |
10.10.2013 and 15.05.2014 | 9 | 20.5 | 0.236939551 | 0.812703838 |
15.05.2014 and 20.06.2014 | 10 | 9 | 1.88569461 | 0.0593370109 |
20.06.2014 and 15.07.2014 | 10 | 4 | 2.3953418 | 0.0166054475 |
15.07.2014 and 10.10.2014 | 6 | 7.5 | 0.628970902 | 0.529368555 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
15.06.2013 and 10.07.2013 | 10 | 10 | 1.78376517 | 0.0744627595 |
10.07.2013 and 10.09.2013 | 10 | 8 | 1.98762405 | 0.0468541307 |
10.09.2013 and 10.10.2013 | 10 | 19 | 0.866400225 | 0.38627137 |
10.10.2013 and 15.05.2014 | 10 | 20 | 0.764470787 | 0.444587303 |
15.05.2014 and 20.06.2014 | 10 | 12 | 1.57990629 | 0.114129316 |
20.06.2014 and 15.07.2014 | 10 | 2 | 2.59920068 | 0.0093445408 |
15.07.2014 and 10.10.2014 | 9 | 4.5 | 2.13245596 | 0.0329701375 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
15.06.2013 and 10.07.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.07.2013 and 10.09.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.09.2013 and 10.10.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.10.2013 and 15.05.2014 | 10 | 0 | 2.80305955 | 0.0050623364 |
15.05.2014 and 20.06.2014 | 10 | 1 | 2.70113011 | 0.00691079318 |
20.06.2014 and 15.07.2014 | 10 | 1 | 2.70113011 | 0.00691079318 |
15.07.2014 and 10.10.2014 | 10 | 3 | 2.49727124 | 0.0125158163 |
10.10.2014 and 21.11.2014 | 10 | 0 | 2.80305955 | 0.0050623364 |
21.11.2014 and 16.04.2015 | 10 | 24 | 0.356753034 | 0.721276934 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
15.06.2013 and 10.07.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.07.2013 and 10.09.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.09.2013 and 10.10.2013 | 10 | 23 | 0.458682472 | 0.646462514 |
10.10.2013 and 15.05.2014 | 10 | 0 | 2.80305955 | 0.0050623364 |
15.05.2014 and 20.06.2014 | 10 | 10 | 1.78376517 | 0.0744627595 |
20.06.2014 and 15.07.2014 | 10 | 10 | 1.78376517 | 0.0744627595 |
15.07.2014 and 10.10.2014 | 10 | 14.5 | 1.3250827 | 0.18514467 |
10.10.2014 and 21.11.2014 | 9 | 7 | 1.83628152 | 0.0663169473 |
21.11.2014 and 16.04.2015 | 10 | 17.5 | 1.01929438 | 0.308064 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
15.06.2013 and 10.07.2013 | 9 | 4.5 | 2.13245596 | 0.0329701375 |
10.07.2013 and 10.09.2013 | 10 | 24.5 | 0.305788315 | 0.759766025 |
10.09.2013 and 10.10.2013 | 10 | 8 | 1.98762405 | 0.0468541307 |
10.10.2013 and 15.05.2014 | 10 | 17 | 1.0702591 | 0.284503505 |
15.05.2014 and 20.06.2014 | 10 | 3.5 | 2.44630652 | 0.0144333573 |
20.06.2014 and 15.07.2014 | 9 | 1.5 | 2.48786529 | 0.0128517444 |
15.07.2014 and 10.10.2014 | 10 | 12 | 1.57990629 | 0.114129316 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
15.06.2013 and 10.07.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.07.2013 and 10.09.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.09.2013 and 15.05.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
15.05.2014 and 10.07.2014 | 7 | 0 | 2.36643191 | 0.0179610673 |
15.07.2014 and 10.10.2014 | 10 | 0 | 2.80305955 | 0.0050623364 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
15.06.2013 and 10.07.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.07.2013 and 10.09.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
10.09.2013 and 15.05.2013 | 10 | 0 | 2.80305955 | 0.0050623364 |
15.05.2014 and 10.07.2014 | 10 | 0 | 2.80305955 | 0.0050623364 |
15.07.2014 and 10.10.2014 | 10 | 0 | 2.80305955 | 0.0050623364 |
References
- Haase, D. Reflections about blue ecosystem services in cities. Sustain. Water Qual. Ecol. 2015, 5, 77–83. [Google Scholar] [CrossRef]
- Jakubiak, M.; Chmielowski, K. Identification of urban water bodies ecosystem services. Acta Sci. Pol. Form. Circumiectus 2020, 19, 73–82. [Google Scholar] [CrossRef]
- Jakubiak, M.; Bojarski, B. Impact of point source pollutants on the distribution of selected water parameters in the Vistula River in Puławy, Poland. J. Water Land Dev. 2021, 51, 50–55. [Google Scholar] [CrossRef]
- Higa, T.; Parr, J.F. Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment; International Nature Farming Research Center: Atami, Japan, 1994; pp. 1–16. [Google Scholar]
- Park, H.D.; Noguera, D.R. Characterization of a drinking water bacterial community by ultrahigh-throughput sequencing. Appl. Environ. Microbiol. 2008, 74, 2825–2833. [Google Scholar] [CrossRef]
- Zamorska, J.; Kiełb-Sotkiewicz, I. A biological method of treating surface water contaminated with industrial waste leachate. Water 2021, 13, 3644. [Google Scholar] [CrossRef]
- Mazur, R.; Jakubiak, M.; Santos, L. Environmental Factors Affecting the Efficiency of Water Reservoir Restoration Using Microbiological Biotechnology. Sustainability 2024, 16, 266. [Google Scholar] [CrossRef]
- Mazurkiewicz, J.; Mazur, A.; Mazur, R.; Chmielowski, K.; Czekała, W.; Janczak, D. The process of microbiological remediation of the polluted Słoneczko reservoir in Poland: For reduction of water pollution and nutrients management. Water 2020, 12, 3002. [Google Scholar] [CrossRef]
- Dondajewska, R.; Kozak, A.; Rosińska, J.; Gołdyn, R. Water quality and phytoplankton structure changes under the influence of effective microorganisms (EM) and barley straw—Lake restoration case study. Sci. Total Environ. 2019, 660, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Safwat, S.M.; Matta, M.E. Environmental applications of effective microorganisms: A review of current knowledge and recommendations for future directions. J. Eng. Appl. Sci. 2021, 68, 48. [Google Scholar] [CrossRef]
- Tomczyk, P.; Wierzchowski, P.S.; Dobrzyński, J.; Kulkova, I.; Wróbel, B.; Wiatkowski, M.; Kuriqi, A.; Skorulski, W.; Kabat, T.; Prycik, M.; et al. Effective microorganism water treatment method for rapid eutrophic reservoir restoration. Environ. Sci. Pollut. Res. 2024, 31, 2377–2393. [Google Scholar] [CrossRef]
- Frak, M.; Karczmarczyk, A.; Nowosielski, J. Stan zanieczyszczenia zbiornika nr II w Siemiatyczach a jego walory użytkowe. Infrastrukt. Ekol. Teren. Wiej. 2012, 3, 79–87. [Google Scholar]
- Szatyłowicz, E.; Siemieinuk, A. Evaluation of the trophic status of the Siemiatycze reservoir water in terms of protecting utility values. Ecol. Eng. Environ. Technol. 2018, 19, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Sitarek, M.; Napiórkowska-Krzebietke, A.; Mazur, R.; Czarnecki, B.; Pyka, J.P.; Stawecki, K.; Olech, M.; Sołtysiak, S.; Kapusta, A. Application of Effective Microorganisms Technology as a lake restoration tool-A case study of Muchawka Reservoir. J. Elem. 2017, 22, 529–543. [Google Scholar] [CrossRef]
- Zakaria, Z.; Gairola, S.; Shariff, N.M. Effective microorganisms (EM) technology for water quality restoration and potential for sustainable water resources and management. In Proceedings of the 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 1 July 2010. [Google Scholar]
- Dobrzyński, J.; Kulkova, I.; Wierzchowski, P.S.; Wróbel, B. Response of Physicochemical and Microbiological Properties to the Application of Effective Microorganisms in the Water of the Turawa Reservoir. Water 2021, 14, 12. [Google Scholar] [CrossRef]
- Kaszycki, P.; Pawlik, M.; Petryszak, P.; Koloczek, H. Aerobic process for in situ bioremediation of petroleum-derived contamination of soil: A field study based on laboratory microcosm tests. Ecol. Chem. Eng. A 2010, 17, 405–414. [Google Scholar]
- Paul, B.; Purkayastha, K.D.; Bhattacharya, S.; Gogoi, N. Eco-bioengineering tools in ecohydrological assessment of eutrophic water bodies. Ecotoxicology 2022, 31, 581–601. [Google Scholar] [CrossRef] [PubMed]
- Alarifia, I.M.; Uddin, M.K.; Awand, A.B.; Naushad, M.; Alharbif, A.R.; Asmatulu, R. Synthesis of PAN-nanofibers for the separation of aqueous pollutants andperformance of the net-zero energy water treatment plant. Desalin. Water Treat. 2020, 200, 90–108. [Google Scholar] [CrossRef]
- Siuda, W.; Chróst, R.J. Decomposition and utilization of particulate organic matter by bacteria in lakes of different trophic status. Pol. J. Environ. Stud. 2002, 11, 53–66. [Google Scholar]
- Kim, M.S.; Kim, D.H.; Lee, J.K. Biohydrogen. In Comprehensive Biotechnology, 2nd ed.; Murray, M.-Y., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 115–125. ISBN 9780080885049. [Google Scholar] [CrossRef]
- Ting, A.S.Y.; Rahman, N.H.A.; Isa, M.I.H.M.; Tan, W.S. Investigating metal removal potential by Effective Microorganisms (EM) in alginate-immobilized and free-cell forms. Bioresour. Technol. 2013, 147, 636–639. [Google Scholar] [CrossRef]
- Gao, J.; Shao, N.; Sun, Y.; Nie, Z.; Yang, X.; Dai, F.; Xu, G.; Xu, P. Impact of effective microorganisms and Chlorella vulgaris on Eriocheir sinensis and water microbiota in ponds experiencing cyanobacterial blooms. Sustainability 2023, 15, 7362. [Google Scholar] [CrossRef]
- Copernicus. Available online: https://land.copernicus.eu/en/products/corine-land-cover (accessed on 30 November 2023).
- ESA. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath (accessed on 30 November 2023).
- PN-86 C-05560/02; Water and Waste Water. Tests for Chlorophyll in Surface Water, Determination of Chlorophyll a in Planktonic Algae by Spectrophotometric Monochromatic Method with Correction for Pheopigments Alpha. Polish Committee for Standardisation: Warsaw, Poland, 1986. (In Polish)
- PN-EN ISO 10523:2012; Water quality—Determination of pH. Polish Committee for Standardisation: Warsaw, Poland, 2012. (In Polish)
- PN-ISO 15705:2005; Water Quality—Determination of the Chemical Oxygen Demand Index (ST-COD). Small-Scale Sealed-Tube method. Polish Committee for Standardisation: Warsaw, Poland, 2005. (In Polish)
- PN-EN 1899-2:2002; Water Quality—Determination of Biochemical Oxygen Demand after n Days (BODn). Polish Committee for Standardisation: Warsaw, Poland, 2002. (In Polish)
- PN-EN ISO 15681-2:2019-02; Water Quality—Determination of Orthophosphate and Total Phosphorus Contents by Flow Analysis (FIA and CFA). Part 2: Method by Continuous Flow Analysis (CFA). Polish Committee for Standardisation: Warsaw, Poland, 2019. (In Polish)
- PN-EN 11905-1:2001; Water Quality—Determination of Nitrogen. Part 1: Method Using Oxidative Digestion with Peroxodisulfate. Polish Committee for Standardisation: Warsaw, Poland, 2001. (In Polish)
- PN-EN 872:2007; Water Quality—Determination of Suspended Solids—Method by Filtration through Glass Fibre Filters. Polish Committee for Standardisation: Warsaw, Poland, 2007. (In Polish)
- Tallis, H.; Ricketts, T.H.; Daily, G.C.; Polasky, S. Natural Capital: Theory and Practice of Mapping Ecosystem Services; Oxford University Press: Oxford, UK, 2011; p. 392. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T. InVEST 3.5.0 User Guide [Internet]. Stanford, CA, USA. 2018. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/en/index.html (accessed on 15 April 2023).
- Li, R.; Li, R.; Zheng, H.; Yang, Y.; Ouyang, Z. Quantifying Ecosystem Service Trade-Offs to Inform Spatial Identification of Forest Restoration. Forests 2000, 11, 563. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency. Nutrient Reduction Strategy. Available online: https://www.pca.state.mn.us/water/nutrient-reduction-strategy (accessed on 30 November 2023).
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef]
- Sieber, I.M.; Hinsch, M.; Vergílio, M.H.; Gil, A.J.F.; Burkhard, B. Assessing the effects of different land-use/land-cover input datasets on modelling and mapping terrestrial ecosystem services: Case study Terceira Island (Azores, Portugal). One Ecosyst. 2021, 6, e69119. [Google Scholar] [CrossRef]
- Yang, X.; Ji, G.; Wang, C.; Zuo, J.; Yang, H.; Xu, J.; Chen, R. Modeling nitrogen and phosphorus export with InVEST model in Bosten Lake basin of Northwest China. PLoS ONE 2019, 14, e0220299. [Google Scholar] [CrossRef] [PubMed]
- University of Wisconsin-Madison. Understanding the Nutrient Delivery Ratio Model. Available online: https://fyi.extension.wisc.edu/nutrientmanagement/understanding-the-nutrient-delivery-ratio-model/ (accessed on 30 November 2023).
- USGS. A Nutrient Delivery Model for Streams in the Chesapeake Bay Watershed. Available online: https://pubs.usgs.gov/sir/2014/5154/pdf/sir2014-5154.pdf (accessed on 30 November 2023).
- Natural Resources Institute Finland. Nutrient Delivery Modelling. Available online: https://www.luke.fi/en/services/environmental-analysis/nutrient-delivery-modelling/ (accessed on 30 November 2023).
- EPA. Nutrient Pollution. Available online: https://www.epa.gov/nutrientpollution (accessed on 30 November 2023).
- Michigan State University. Nutrient Management in Watersheds. Available online: https://www.canr.msu.edu/resources/nutrient-management-in-watersheds (accessed on 30 November 2023).
- Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Proc. Int. J. Remote Sens. 2008, 29, 3209–6216. [Google Scholar] [CrossRef]
- Mazur, R.; Sitarek, M. Microbiological bioremediation of the Kamienna Góra dam reservoir. Acta Sci. Pol. Form. Circumiectus 2020, 19, 47–59. [Google Scholar] [CrossRef]
- Simon, M.; Joshi, H. A review on green technologies for the rejuvenation of polluted surface water bodies: Field-scale feasibility, challenges, and future perspectives. J. Environ. Chem. Eng. 2021, 9, 105763. [Google Scholar] [CrossRef]
- Gosz, J.R.; Likens, G.E.; Bormann, F.H. Nutrient content of litter fall on the Hubbard Brook experimental forest, New Hampshire. Ecology 1972, 53, 769–784. [Google Scholar] [CrossRef]
- Ganesh, K. Bioremediation of Lakes-Myths and Realities. In Proceedings of the 12th World Lake Conference (Taal 2007), Jaipur, India, 28 October–2 November 2007; pp. 44–49. [Google Scholar]
- Ozkay, F.; Tas, I.; Ozkandan, H.; Gunal, A.C.; Yeter, T.; Gorgisen, C.; Cakir, B.I.; Kutlu, B.; Inan, M.S.; Ates, E. Use of active microorganism in improving pond water quality: Case study of Beytepe Pond. Curr. Trends Nat. Sci. 2022, 11, 399–407. [Google Scholar] [CrossRef]
- Jóźwiakowski, K.; Czernaś, K.; Szczurowska, A. Preliminary results of studies on the purification of water in a pond using the SCD Probiotics technology. Ecohydrol. Hydrobiol. 2009, 9, 307–312. [Google Scholar] [CrossRef]
- Ateia, M.; Yoshimura, C.; Nasr, M. In-situ biological water treatment technologies for environmental remediation: A review. J Bioremed. Biodegrad. 2016, 7, 348. [Google Scholar] [CrossRef]
- Escudero-López, H.J.; Serrano-Carrillo, K.A.; Jácome-Pilco, C.R.; Sanaguano-Salguero, H.D.R.; Bayas-Morejón, I.F. Bacterial selection of the Pseudomonas genus with the capacity to treat water and contaminated soils. J. Water Land Dev. 2022, 53, 238–241. [Google Scholar] [CrossRef]
- Annadotter, H.; Cronberg, G.; Aagren, R.; Lundstedt, B.; Nilsson, P.Ǻ.; Ströbeck, S. Multiple techniques for lake restoration. In The Ecological Bases for Lake and Reservoir Management, Proceedings of the Ecological Bases for Management of Lakes and Reservoirs Symposium, Leicester, UK, 19–22 March 1996; Springer: Dordrecht, The Netherlands, 1999; pp. 77–85. [Google Scholar]
- Reitzel, K.; Hansen, J.; Andersen, F.Ø.; Hansen, K.S.; Jensen, H.S. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environ. Sci. Technol. 2005, 39, 4134–4140. [Google Scholar] [CrossRef]
- Wiśniewski, R. The condition and potential methods of restoration of shallow, urban Lake Jelonek. Environ. Prot. Eng. 2007, 33, 231–240. [Google Scholar]
- Bańkowska, A. Efekty rekultywacji Jeziora Ełckiego metodą sztucznego napowietrzania i chemicznej dezaktywacji fosforu. Zesz. Probl. Postępów Nauk. Rolniczych. 2008, 532, 19–29. [Google Scholar]
- Morikawa-Sakura, M.S.; Casco-Robles, M.M.; Kim, M.; Shimizu, K.; Yang, Y.; Sugiura, N.; Zhang, Z. Application of Lactobacillus plantarum ATCC 8014 for Wastewater Treatment in Fisheries Industry Processing. Jpn. J. Water Treat. Biol. 2013, 49, 1–10. [Google Scholar] [CrossRef]
- O’Connor, J.E.; Duda, J.J.; Grant, G.E. 1000 dams down and counting. Science 2015, 348, 496–497. [Google Scholar] [CrossRef]
- Bailey, A.S.; Hornbeck, J.W.; Campbell, J.L.; Eagar, C. Hydrometeorological Database for Hubbard Brook Experimental Forest: 1955–2000; US Department of Agriculture Forest Service: Newtown Square, PA, USA, 2003; Volume 305, pp. 1–40. [Google Scholar] [CrossRef]
- Shah, N.W.; Baillie, B.R.; Bishop, K.; Ferraz, S.; Högbom, L.; Nettles, J. The effects of forest management on water quality. For. Ecol. Manag. 2022, 522, 120397. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of US freshwaters: Analysis of potential economic damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef]
- Apollo, M.; Jakubiak, M.; Nistor, S.; Lewinska, P.; Krawczyk, A.; Borowski, Ł.; Specht, M.; Krzykowska-Piotrowska, K.; Marchel, Ł.; Pęska-Siwik, A.; et al. Geodata in science—A review of selected scientific fields. Acta Sci. Pol. Form. Circumiectus 2023, 22, 17–40. [Google Scholar] [CrossRef]
Water Reservoir | Location | Date of Restoration | Surface Area [m2] | Volume [m3] | Maximum Depth [m] | Average Depth [m] | Water Flow Types | Flow Velocity | River Tributary |
---|---|---|---|---|---|---|---|---|---|
Siemiatycze Dam Reservoir | Siemiatycze | 2016–2017 | 274,000 | 548,000 | 5.1 | 2 | Exorheic reservoir | Slow | Kamionka and Mahomet |
Land Use/Land Cover | 1990 | 2000 | 2006 | 2012 | 2018 |
---|---|---|---|---|---|
The Mahomet River | |||||
Urban and Built-Up | 1.15% | 1.15% | 2.56% | 2.59% | 2.59% |
Mixed Cover | 48.55% | 48.17% | 46.24% | 45.76% | 45.76% |
Pasture | 2.39% | 2.39% | 3.51% | 3.51% | 3.51% |
Complex Cultivation Patterns | 3.44% | 3.44% | 1.49% | 1.50% | 1.50% |
Land principally occupied by agriculture, with significant areas of natural vegetation | 11.57% | 11.98% | 9.84% | 10.17% | 10.17% |
Broad-leaved Forest | 15.33% | 15.33% | 6.27% | 6.27% | 6.27% |
Evergreen Needleleaf Forest | 11.99% | 12.18% | 12.47% | 12.46% | 12.54% |
Mixed Forest | 4.02% | 3.99% | 15.07% | 15.18% | 15.33% |
Deciduous Broadleaf Forest | 1.37% | 1.17% | 2.35% | 2.36% | 2.13% |
Water Bodies | 0.20% | 0.20% | 0.20% | 0.20% | 0.20% |
The Kamionka River | |||||
Urban and Built-Up | 1.04% | 1.05% | 3.35% | 3.35% | 3.35% |
Mixed Cover | 59.34% | 59.36% | 60.44% | 59.89% | 59.89% |
Pasture | 6.42% | 6.42% | 4.57% | 3.95% | 3.95% |
Complex Cultivation Patterns | 5.72% | 5.72% | 3.27% | 3.36% | 3.36% |
Land principally occupied by agriculture, with significant areas of natural vegetation | 12.78% | 12.78% | 12.62% | 12.71% | 12.71% |
Broad-leaved Forest | 2.17% | 2.17% | 1.66% | 1.76% | 1.76% |
Evergreen Needleleaf Forest | 9.22% | 11.45% | 7.76% | 7.86% | 8.19% |
Mixed Forest | 0.00% | 0.00% | 4.27% | 4.27% | 4.59% |
Deciduous Broadleaf Forest | 3.19% | 0.92% | 1.92% | 2.73% | 2.08% |
Water Bodies | 0.12% | 0.12% | 0.12% | 0.12% | 0.12% |
The Measured Parameters | Unit | Methods/Tools |
---|---|---|
Dissolved oxygen 2014–2018 | mg O2/dm3 | By portable Multi-Function Meter CX-401 with oxygen galvanic oxygen sensors COG-1 (made by Elmetron, Zabrze, Poland) |
Transparency | cm | Secchi disc methods |
Chlorophyll-a | mg/dm3 | Spectrophotometric method (PN-86/C-05560/02) [26] |
pH | - | PN-EN ISO 10523:2012 [27] |
Chemical Oxygen Demand (COD) | mg O2/dm3 | PN-ISO 15705:2005 [28] |
Biochemical Oxygen Demand (BOD5) | mg O2/dm3 | PN-EN 1899-2:2002 [29] |
Total phosphorus | mg/dm3 | PN-EN ISO 15681-2:2019-02 [30] |
Total nitrogen | mg/dm3 | PN-EN 11905-1:2001 [31] |
Suspended matter (SM) | mg/dm3 | PN-EN 872:2007 [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, R.; Kowalewski, Z.; Głowienka, E.; Santos, L.; Jakubiak, M. Sustainability in Aquatic Ecosystem Restoration: Combining Classical and Remote Sensing Methods for Effective Water Quality Management. Sustainability 2024, 16, 3716. https://doi.org/10.3390/su16093716
Mazur R, Kowalewski Z, Głowienka E, Santos L, Jakubiak M. Sustainability in Aquatic Ecosystem Restoration: Combining Classical and Remote Sensing Methods for Effective Water Quality Management. Sustainability. 2024; 16(9):3716. https://doi.org/10.3390/su16093716
Chicago/Turabian StyleMazur, Robert, Zbigniew Kowalewski, Ewa Głowienka, Luis Santos, and Mateusz Jakubiak. 2024. "Sustainability in Aquatic Ecosystem Restoration: Combining Classical and Remote Sensing Methods for Effective Water Quality Management" Sustainability 16, no. 9: 3716. https://doi.org/10.3390/su16093716
APA StyleMazur, R., Kowalewski, Z., Głowienka, E., Santos, L., & Jakubiak, M. (2024). Sustainability in Aquatic Ecosystem Restoration: Combining Classical and Remote Sensing Methods for Effective Water Quality Management. Sustainability, 16(9), 3716. https://doi.org/10.3390/su16093716