Striving for Sustainable Solutions: Optimizing Utility Properties of Recycled Paper with the Addition of Wet Strength Resin
Abstract
:1. Introduction
2. Materials
2.1. Fibrous Material
2.2. Wet Strength Agent—Polyamide-Epichlorohydrin Resin
3. Methods
3.1. Preparation of Pulps for Research
3.2. Washing of Wastepaper
3.3. Preparation of Paper Sheets
3.4. Analysis of the Paper Properties
- IB: breaking length [m];
- FB: tensile force at break [N];
- σTb: width-related force at break [N·m−1];
- σTW: force at break index [Nm·g−1];
- εT: strain at break [%];
- WTb: energy absorption [J·m−2];
- WTW: energy absorption index [J·g−1];
- Eb: tensile stiffness [N·m−1];
- Ew: tensile stiffness index [Nm·g−1];
- E*: Young’s modulus [MPa].
4. Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wohlert, M.; Benselfelt, T.; Wågberg, L.; Furó, I.; Berglund, L.; Wohlert, J. Cellulose and the role of hydrogen bonds: Not in charge of everything. Cellulose 2022, 29, 1–23. [Google Scholar] [CrossRef]
- Dankovich, T.; Gray, D. Contact angle measurements on smooth nanocrystalline cellulose (I) thin films. J. Adhes. Sci. Technol. 2011, 25, 699–708. [Google Scholar] [CrossRef]
- Lee, D.; Owens, V.N.; Boe, A.; Jeranyama, P. Composition of Herbaceous Biomass Feedstocks; South Dakota State University Publication: SGINC1-07, Brookings, SD: Washington, DC, USA, 2007. [Google Scholar]
- Goudarzi, A.; Lin, L.T.; Ko, F.K. X-ray diffraction analysis of kraft lignins and lignin derived carbon nanofibers. J. Nanotechnol. Eng. Med. 2014, 5, 021006. [Google Scholar] [CrossRef]
- Hubbe, M.; Douglas, J.; Wei, S. Contact angles and wettability of cellulosic surfaces: A review of proposed mechanisms and test strategies. BioResources 2015, 10, 8657–8749. [Google Scholar] [CrossRef]
- Chen, Y.R.; Sarkanen, S. X-ray powder diffraction analyses of kraft lignin-based thermoplastic polymer blends. In Characterization of Lignocellulosic Materials; Hu, T.Q., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2009; pp. 301–315. [Google Scholar]
- Ganicz, T. Perspektywy rozwoju technik hydrofobizacji papieru. Przeg. Pap. 2021, 77, 53–61. [Google Scholar] [CrossRef]
- Hubbe, M. Paper’s resistance to wetting—A review of internal sizing chemicals and their effects. BioResources 2007, 2, 106–145. [Google Scholar]
- Alava, M.; Niskanen, K. The physics of paper. Rep. Prog. Phys. 2006, 69, 669–723. [Google Scholar] [CrossRef]
- Wulz, P.; Waldner, C.; Krainer, S.; Kontturi, E.; Hirn, U.; Spirk, S. Surface hydrophobization of pulp fibers in paper sheets via gas phase reactions. Int. J. Biol. Macromol. 2021, 180, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Borch, J.; Lyne, M.; Mark, R.; Habeger, C. Handbook of Physical Testing of Paper; Marcel Dekker Inc.: New York, NY, USA, 2002. [Google Scholar]
- Andersson, C. New ways to enhance the functionality of paperboard by surface treatment—A review. Packag. Technol. Sci. 2008, 21, 339–373. [Google Scholar] [CrossRef]
- Espy, H. The mechanism of wet-strength development in paper: A review. Tappi J. 1995, 78, 90–99. [Google Scholar]
- Francolini, I.; Galantini, L.; Rea, F.; Di Cosimo, C.; Di Cosimo, P. Polymeric wet-strength agents in the paper industry: An overview of mechanisms and current challenges. Int. J. Mol. Sci. 2023, 24, 9268. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Stimpson, T.C.; Soucy, J.; Esser, A.; Pelton, R.H. Increasing wet adhesion between cellulose surfaces with polyvinylamine. Cellulose 2019, 26, 341–353. [Google Scholar] [CrossRef]
- Pelton, R.; Hong, J. Some properties of newsprint impregnated with polyvinylamine. Tappi J. 2002, 1, 21–26. [Google Scholar]
- Kurita Europe GmbH. Innovative Wet Strength Technology Giluton. Available online: https://d3pcsg2wjq9izr.cloudfront.net/files/5206/download/724596/042018_WetStrengthTechnology-shortcut.pdf. (accessed on 21 April 2024).
- Wågberg, L.; Björklund, M. On the mechanism behind wet strength development in paper containing wet strength resins. Nord. Pulp Pap. Res. J. 1992, 8, 53–58. [Google Scholar] [CrossRef]
- Ntifafa, Y.; Ji, Y.; Hart, P.W. Polyamidoamine epichlorohydrin (PAAE) wet-strength agent: Generations, application, performance, and recyclability in paperboard and linerboard. BioResources 2024, 19. [Google Scholar] [CrossRef]
- Keim, G. Cationic Thermosetting Polyamide-Epichlorohydrin Resins and Process of Making Same. U.S. Patent 2,926,154, 23 February 1960. [Google Scholar]
- Diack, A.J. Wet Strength Innovations for Regulatory Compliances, World Pulp & Paper—The International Review for The Pulp and Paper Industry. 2015; pp. 39–44. Available online: http://www.remproductions.co.uk/flipbook-4/files/inc/08dba1d5ec.pdf (accessed on 22 April 2024).
- Wet Strength Resin Technology and its Benefits for Paper Industry. Available online: https://balajichemsolutions.com/wet-strength-resin-technology-and-its-benefits-for-paper-industry/ (accessed on 9 March 2024).
- The Many Benefits of Wet Strength Resins. Available online: https://www.paperindustryworld.com/many-benefits-wet-strength-resins/ (accessed on 15 March 2024).
- Żywice Syntetyczne Wodoutrwalające. Available online: https://tsc.com.pl/oferta/dzia%C5%82-chemikali%C3%B3w/chemikalia/zywice-syntetyczne-wodoutrwalajace?switch=true (accessed on 9 March 2024).
- Siqueira, E.J. Polyamidoamine Epichlorohydrin-Based Papers: Mechanisms of Wet Strength Development and Paper Repulping. Available online: https://theses.hal.science/tel-00952991/document (accessed on 27 April 2024).
- PN-EN 643:2014-03. Available online: https://sklep.pkn.pl/pn-en-643-2014-03e.html (accessed on 13 February 2024).
- Małachowska, E.; Lipkiewicz, A.; Dubowik, M.; Przybysz, P. Which wastepaper should not be processed? Sustainability 2023, 15, 2850. [Google Scholar] [CrossRef]
- ISO 5263-1:2004; Pulps, Laboratory Wet Disintegration, Part 1: Disintegration of Chemical Pulps. ISO: Geneva, Switzerland, 2004.
- PN-EN ISO 5269-2 (2007); Masy Włókniste—Przygotowanie Arkusików Laboratoryjnych do Badań Fizycznych—Część 2: Metoda Rapid-Kothen. Polish Committee for Standardization: Warsaw, Poland, 2007.
- ISO 536:2019; Paper and Board, Determination of Grammage. ISO: Geneva, Switzerland, 2019.
- ISO 187:2022; Paper, Board and Pulps, Standard Atmosphere for Conditioning and Testing and Procedure for Monitoring the Atmosphere and Conditioning of Samples. ISO: Geneva, Switzerland, 2022.
- ISO 8791-2:2013—TMI 58-27; Paper and Board, Determination of Roughness/Smoothness (Air Leak Methods), Part 2: Bendtsen method. ISO: Geneva, Switzerland, 2013.
- ISO 5636-3:2013—TMI 58-27; Paper and Board, Determination of Air Permeance (Medium Range), Part 3: Bendtsen method. ISO: Geneva, Switzerland, 2013.
- ISO 2470-1:2016; Paper, Board and Pulps, Measurement of Diffuse Blue Reflectance Factor, Part 1: Indoor Daylight Conditions (ISO brightness). ISO: Geneva, Switzerland, 2016.
- PN-EN ISO 1924-2:2010; Papier i Tektura—Oznaczanie Właściwości Przy Działaniu Sił Rozciągających—Część 2: Badanie Przy Stałej Prędkości Rozciągania (20 mm/min). ISO: Geneva, Switzerland, 2010.
- Andreasson, B.; Wågberg, L. 7. On the mechanisms behind the action of wet strength and wet strength agents. In Paper Products Physics and Technology; De Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Su, J.; Mosse, W.K.J.; Sharman, S.; Batchelor, W.; Garnier, G. Paper strength development and recyclability with polyamideamine-epichlorohydrin (PAE). BioResources 2012, 7, 913–924. [Google Scholar] [CrossRef]
- Xing, Q.Q.; Zhao, C.S.; Han, W.J. Manufacture and application of PAE as wet strength agent. Adv. Mat. Res. 2012, 557–559, 1070–1073. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, D.; Hou, C.; Zhang, N.; Yang, M.; Liu, L. A Novel Development and Application of Self Crosslinking Strengthening for Polyamide Epichlorohydrin (PAE) Resin in Polyacrylonitrile (PAN) Sheet. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Liang, S.B.; Ning, X.; Fu, Q.-J.; Liu, Q.; Yao, C.L. The use of a PAE/bentonite binary system to improve the wet strength of paper. BioResources 2020, 15, 8449–8458. [Google Scholar] [CrossRef]
- Husić, E.; Botonjić, Š. Effect of addition of wet-strength agent on tensile strength of paper. JST&M 2023, 3, 30–35. [Google Scholar]
Wastepaper | Non-Fibrized Substances | Ash | Extractives | Dissolved Substances | Holocellulose | Kappa Number | Polymerization Degree |
---|---|---|---|---|---|---|---|
[%] | [%] | [%] | [%] | [%] | [-] | [-] | |
White 1.3 | 0.00 | 16.71 | 0.22 | 3.28 | 78.33 | 5.34 | 840 |
White 3.2 | 0.35 | 16.90 | 0.41 | 0.65 | 79.59 | 13.60 | 643 |
Resin Addition [%] | Air Permeability | Roughness | ||
---|---|---|---|---|
[mL/min] | [mL/min] | |||
1.3 | 3.2 | 1.3 | 3.2 | |
Ref. | 5000 | 5000 | 406 | 553 |
0.05 | 5000 | 5000 | 556 | 741 |
0.10 | 5000 | 5000 | 551 | 758 |
0.1875 | 5000 | 5000 | 593 | 739 |
0.25 | 5000 | 5000 | 676 | 794 |
0.50 | 4220 | 5000 | 490 | 771 |
0.75 | 5000 | 5000 | 549 | 717 |
1.25 | 5000 | 4122 | 576 | 617 |
1.875 | 2824 | 3231 | 396 | 554 |
2.50 | 1358 | 1746 | 359 | 504 |
Conditions | Resin Addition | IB | FB | σTb | σTW | εT | WTb | WTW | Eb | Ew | E* |
---|---|---|---|---|---|---|---|---|---|---|---|
[%] | [m] | [N] | [N/m] | [Nm/g] | [%] | [J/m2] | [J/g] | [N/m] | [Nm/g] | [MPa] | |
Dry | Ref. | 2700 | 30.9 | 2095 | 26.4 | 1.60 | 22.1 | 0.278 | 320,667 | 4033 | 2915 |
0.05 | 2450 | 28.1 | 1933 | 23.9 | 1.53 | 23.3 | 0.288 | 277,267 | 3424 | 2488 | |
0.1 | 2800 | 31.9 | 2200 | 27.2 | 1.58 | 21.2 | 0.262 | 266,350 | 3289 | 2390 | |
0.1875 | 2650 | 29.9 | 2058 | 25.4 | 1.45 | 23.2 | 0.286 | 269,467 | 3328 | 2417 | |
0.25 | 2450 | 27.9 | 2048 | 23.9 | 1.37 | 21.3 | 0.254 | 279,645 | 3518 | 2544 | |
0.5 | 2600 | 30.9 | 2067 | 25.7 | 1.38 | 18.5 | 0.230 | 297,167 | 3702 | 2703 | |
0.75 | 3100 | 35.1 | 2416 | 29.8 | 1.60 | 24.0 | 0.297 | 287,367 | 3549 | 2578 | |
1.25 | 2300 | 27.2 | 1845 | 22.4 | 1.25 | 14.4 | 0.176 | 282,167 | 3422 | 2568 | |
1.875 | 3550 | 40.2 | 2769 | 34.2 | 1.68 | 30.4 | 0.376 | 328,833 | 4061 | 2950 | |
2.5 | 3950 | 46.2 | 3120 | 38.7 | 1.82 | 36.2 | 0.449 | 349,333 | 4328 | 3172 | |
Wet | Ref. | – | – | – | – | – | – | – | – | – | – |
0.05 | 250 | 3.0 | 206 | 2.5 | 0.42 | 0.6 | 0.007 | 103,400 | 1277 | 928 | |
0.1 | 500 | 5.9 | 405 | 5.0 | 0.47 | 1.0 | 0.013 | 111,267 | 1374 | 998 | |
0.1875 | 400 | 4.8 | 327 | 4.0 | 0.52 | 0.8 | 0.009 | 113,217 | 1398 | 1016 | |
0.25 | 400 | 3.5 | 290 | 3.7 | 0.55 | 0.8 | 0.010 | 117,250 | 1488 | 1069 | |
0.5 | 700 | 7.0 | 569 | 7.1 | 0.73 | 2.2 | 0.028 | 157,333 | 1958 | 1432 | |
0.75 | 900 | 10.4 | 716 | 8.8 | 0.82 | 4.3 | 0.053 | 161,500 | 1994 | 1449 | |
1.25 | 750 | 7.9 | 597 | 7.2 | 0.68 | 2.1 | 0.026 | 162,333 | 1970 | 1473 | |
1.875 | 1100 | 12.7 | 876 | 10.8 | 0.98 | 5.0 | 0.062 | 169,667 | 2095 | 1522 | |
2.5 | 1400 | 15.1 | 1102 | 13.7 | 1.01 | 6.7 | 0.083 | 172,333 | 2138 | 1568 |
Conditions | Resin Addition | IB | FB | σTb | σTW | εT | WTb | WTW | Eb | Ew | E* |
---|---|---|---|---|---|---|---|---|---|---|---|
[%] | [m] | [N] | [N/m] | [Nm/g] | [%] | [J/m2] | [J/g] | [N/m] | [Nm/g] | [MPa] | |
Dry | Ref. | 3750 | 42.6 | 2932 | 36.2 | 2.53 | 54.2 | 0.669 | 408,133 | 5040 | 3662 |
0.05 | 3650 | 41.2 | 2840 | 35.1 | 2.30 | 51.9 | 0.641 | 400,117 | 4941 | 3590 | |
0.1 | 3750 | 42.5 | 2925 | 36.1 | 2.42 | 55.4 | 0.684 | 384,183 | 4744 | 3447 | |
0.1875 | 3650 | 41.6 | 2862 | 35.3 | 2.48 | 56.1 | 0.693 | 400,167 | 4942 | 3590 | |
0.25 | 3600 | 40.8 | 2811 | 34.7 | 2.53 | 49.4 | 0.610 | 400,267 | 4943 | 3591 | |
0.5 | 3700 | 42.2 | 2904 | 35.9 | 2.43 | 55.8 | 0.689 | 418,017 | 5162 | 3750 | |
0.75 | 4300 | 48.9 | 3366 | 41.6 | 2.57 | 59.4 | 0.733 | 402,717 | 4973 | 3613 | |
1.25 | 4450 | 50.7 | 3492 | 43.1 | 2.60 | 62.7 | 0.775 | 415,617 | 5132 | 3729 | |
1.875 | 4950 | 56.1 | 3863 | 47.7 | 2.65 | 73.7 | 0.911 | 420,917 | 5198 | 3776 | |
2.5 | 5500 | 62.4 | 4296 | 53.1 | 2.85 | 87.7 | 1.083 | 445,117 | 5497 | 3993 | |
Wet | Ref. | – | – | – | – | – | – | – | – | – | – |
0.05 | 350 | 4.2 | 292 | 3.6 | 0.62 | 1.3 | 0.017 | 133,400 | 1647 | 1197 | |
0.1 | 500 | 5.6 | 389 | 4.8 | 0.72 | 1.7 | 0.022 | 142,300 | 1757 | 1277 | |
0.1875 | 600 | 6.6 | 455 | 5.6 | 0.78 | 2.0 | 0.024 | 144,467 | 1784 | 1296 | |
0.25 | 550 | 6.2 | 424 | 5.2 | 0.85 | 1.8 | 0.023 | 149,567 | 1847 | 1342 | |
0.5 | 1000 | 11.6 | 800 | 9.9 | 1.13 | 5.3 | 0.065 | 198,767 | 2455 | 1783 | |
0.75 | 1250 | 14.0 | 960 | 11.9 | 1.25 | 9.1 | 0.113 | 201,750 | 2491 | 1810 | |
1.25 | 1350 | 15.4 | 1058 | 13.1 | 1.50 | 11.0 | 0.135 | 202,433 | 2500 | 1816 | |
1.875 | 1600 | 18.1 | 1245 | 15.4 | 1.40 | 14.0 | 0.172 | 213,850 | 2641 | 1919 | |
2.5 | 2000 | 22.5 | 1552 | 19.2 | 1.73 | 16.6 | 0.205 | 219,200 | 2707 | 1967 |
ΔE in CIELab Color Space | ||
---|---|---|
1.3 White wastepaper +0.25% resin addition | 1.3 White wastepaper after 14 days | 1.3 White wastepaper +0.25% resin addition after 14 days |
2.67 | 0.47 | 3.87 |
3.2 White wastepaper +0.25% resin addition | 3.2 White wastepaper after 14 days | 3.2 White wastepaper +0.25% resin addition after 14 days |
4.03 | 0.27 | 3.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małachowska, E. Striving for Sustainable Solutions: Optimizing Utility Properties of Recycled Paper with the Addition of Wet Strength Resin. Sustainability 2024, 16, 3752. https://doi.org/10.3390/su16093752
Małachowska E. Striving for Sustainable Solutions: Optimizing Utility Properties of Recycled Paper with the Addition of Wet Strength Resin. Sustainability. 2024; 16(9):3752. https://doi.org/10.3390/su16093752
Chicago/Turabian StyleMałachowska, Edyta. 2024. "Striving for Sustainable Solutions: Optimizing Utility Properties of Recycled Paper with the Addition of Wet Strength Resin" Sustainability 16, no. 9: 3752. https://doi.org/10.3390/su16093752
APA StyleMałachowska, E. (2024). Striving for Sustainable Solutions: Optimizing Utility Properties of Recycled Paper with the Addition of Wet Strength Resin. Sustainability, 16(9), 3752. https://doi.org/10.3390/su16093752