Phosphate Removal Efficiency and Life Cycle Assessment of Different Anode Materials in Electrocoagulation Treatment of Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulated Wastewater
2.2. Experimental Apparatus and Method for Electrocoagulation
2.3. Sample Analysis and Calculation Methods
2.4. Life Cycle Assessment
3. Results and Discussion
3.1. Effect of Different Process Conditions
3.1.1. Electrode Distance
3.1.2. Initial pH
3.1.3. Current Density
3.1.4. Sludge Analysis
3.2. Operating Costs
3.3. Kinetic Analysis
3.4. Life Cycle Assessment of Electrocoagulation Using Different Electrodes
3.4.1. Life Cycle Assessment
3.4.2. Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Wang, C.; Xu, M.; Zhang, F. Phosphorus removal by iron–carbon microelectrolysis: A new way to achieve phosphorus recovery. Green Process. Synth. 2023, 12, 20228120. [Google Scholar] [CrossRef]
- Zhao, H. Research progress on treatment of low phosphorus wastewater. Environ. Prot. Chem. Ind. 2023, 43, 292–297. [Google Scholar]
- Wu, S.; Chen, W. The Mechanism and Calamitousness of Eutrophication. J. Catastrophology 2004, 19, 13–17. [Google Scholar]
- Tong, S.; Zhao, Y.; Zhu, M.; Li, J.; Liu, S.; Chen, S. Current situation and research progress of slaughter and meat processing wastewater treatment. Ind. Water Treat. 2019, 39, 6–10. [Google Scholar]
- Ng, M.; Dalhatou, S.; Wilson, J.; Kamdem, B.P.; Temitope, M.B.; Paumo, H.K.; Djelal, H.; Assadi, A.A.; Phuong, N.T.; Kane, A. Characterization of Slaughterhouse Wastewater and Development of Treatment Techniques: A Review. Processes 2022, 10, 1300. [Google Scholar] [CrossRef]
- Chen, F.Y.; Wu, Z.Y.; Gupta, S.; Rivera, D.J.; Lambeets, S.V.; Pecaut, S.; Kim, J.Y.T.; Zhu, P.; Finfrock, Y.Z.; Meira, D.M.; et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.M.; Pan, Y.L.; Su, C.; Duan, X.G.; Sun, H.Q.; Liu, S.M.; Wang, S.B.; Shao, Z.P. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. Acs Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Su, Y.; Li, G. Research progress on modified adsorbent applied in phosphorus removal from wastewater. New Chem. Mater. 2021, 49, 266–270. [Google Scholar]
- Liu, R.T.; Sui, Y.M.; Wang, X.Z. Metal-organic framework-based ultrafiltration membrane separation with capacitive-type for enhanced phosphate removal. Chem. Eng. J. 2019, 371, 903–913. [Google Scholar] [CrossRef]
- Unuabonah, E.I.; Agunbiade, F.O.; Alfred, M.O.; Adewumi, T.A.; Okoli, C.P.; Omorogie, M.O.; Akanbi, M.O.; Ofomaja, A.E.; Taubert, A. Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water. J. Clean. Prod. 2017, 164, 652–663. [Google Scholar] [CrossRef]
- Zhang, H.L.; Elskens, M.; Chen, G.X.; Chou, L. Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs. Chemosphere 2019, 225, 352–359. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.H.; Ok, Y.S.; Tsang, D.C.W.; Tsang, Y.F.; Giri, B.S.; Singh, R.S. Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci. Total Environ. 2018, 616, 1242–1260. [Google Scholar] [CrossRef]
- Cui, H.J.; Cai, J.K.; Zhao, H.; Yuan, B.L.; Ai, C.L.; Fu, M.L. Fabrication of magnetic porous Fe-Mn binary oxide nanowires with superior capability for removal of As(III) from water. J. Hazard. Mater. 2014, 279, 26–31. [Google Scholar] [CrossRef]
- Bacelo, H.; Pintor, A.M.A.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chem. Eng. J. 2020, 381, 122566. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, R.; Tao, Z.; Jing, Z. Progress in enhanced phosphorus removal from sanitary sewage. Appl. Chem. Ind. 2021, 50, 821–824. [Google Scholar]
- Qian, J.; Song, L.; Zhang, D.; Xu, D.; Xie, Z. The buried wastewater treatment plant in Zhouzhuang Ancient Town. J. Hefei Polytech. Univ. Nat. Ed. 2005, 28, 940–943. [Google Scholar]
- Guo, L.; Chen, Y.; Liu, C.; Shang, H.; Li, C. Recovery of concentrated ammoniacal nitrogen from rare earth ammonium sulfate wastewater by magnesium ammonium sulfate precipitation method. Mod. Chem. Ind. 2018, 38, 73–76+78. [Google Scholar]
- Song, X.; Ren, T.; Ma, C.; Bai, J.; Lin, L. Research progress of chemical agents on technology of removal phosphorus in urban sewage treatment plants. Appl. Chem. Ind. 2020, 49, 2056–2057+2062. [Google Scholar]
- Hou, J.L.; Yong, K. Research progress of biological removal of nitrogen and phosphorus in municipal sewage. Chem. Ind. Eng. Prog. 2007, 26, 366–370+376. [Google Scholar]
- Mao, Y.L.; Xiong, R.W.; Gao, X.F.; Jiang, L.; Peng, Y.C.; Xue, Y. Analysis of the Status and Improvement of Microalgal Phosphorus Removal from Municipal Wastewater. Processes 2021, 9, 1486. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, X.; Jiang, Z.; Wang, L.; He, Y.; Bao, Z. Growth characteristics and removal efficiency of nitrogen and phosphorus of two kinds of non-toxic microalgae under different nitrogen and phosphorus concentrations. Chin. J. Environ. Eng. 2015, 9, 559–566. [Google Scholar]
- Hellal, M.S.; Doma, H.S.; Abou-Taleb, E.M. Techno-economic evaluation of electrocoagulation for cattle slaughterhouse wastewater treatment using aluminum electrodes in batch and continuous experiment. Sustain. Environ. Res. 2023, 33, 2. [Google Scholar] [CrossRef]
- Potrich, M.C.; Duarte, E.d.S.A.; Sikora, M.d.S.; Costa da Rocha, R.D. Electrocoagulation for nutrients removal in the slaughterhouse wastewater: Comparison between iron and aluminum electrodes treatment. Environ. Technol. 2022, 43, 751–765. [Google Scholar] [CrossRef]
- Zhu, H. Research Progress of Electrocoagulation Integration Technology and Application. Technol. Water Treat. 2023, 49, 7–10+33. [Google Scholar]
- Hakizimana, J.N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination 2017, 404, 1–21. [Google Scholar] [CrossRef]
- Li, J.H.; Bai, J.; Huang, K.; Zhou, B.X.; Wang, Y.H.; Hu, X.F. Removal of trivalent chromium in the complex state of trivalent chromium passivation wastewater. Chem. Eng. J. 2014, 236, 59–65. [Google Scholar] [CrossRef]
- Durante, C.; Cuscov, M.; Isse, A.A.; Sandonà, G.; Gennaro, A. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA. Water Res. 2011, 45, 2122–2130. [Google Scholar] [CrossRef]
- An, C.J.; Huang, G.; Yao, Y.; Zhao, S. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Sci. Total Environ. 2017, 579, 537–556. [Google Scholar] [CrossRef]
- Akarsu, C.; Bilici, Z.; Dizge, N. Treatment of vegetable oil wastewater by a conventional activated sludge process coupled with electrocoagulation process. Water Environ. Res. 2022, 94, e10692. [Google Scholar] [CrossRef]
- Sandi; Afriani, F.; Tiandho, Y. Application of electrocoagulation for textile wastewater treatment: A review. In Proceedings of the 2nd International Conference on Green Energy and Environment (ICoGEE), Bangka Belitung Islands, Indonesia, 8 October 2020; IOP Science: Bristol, UK, 2020. [Google Scholar]
- Yánes, A.; Pinedo-Hernández, J.; Marrugo-Negrete, J. Continuous Flow Electrocoagulation as a Hospital Wastewater Treatment. Port. Electrochim. Acta 2021, 39, 403–413. [Google Scholar] [CrossRef]
- Eryuruk, K.; Un, U.T.; Ogutveren, U.B. Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes. J. Clean. Prod. 2018, 172, 1089–1095. [Google Scholar] [CrossRef]
- Shi, S. Experimental study of slaughterhouse wastewater treatment with reverse pulse electrocoagulation. Technol. Water Treat. 2010, 36, 104–107. [Google Scholar]
- Tanatti, N.P.; Sezer, M. Optimizing electrocoagulation for poultry slaughterhouse wastewater treatment: A fuzzy axiomatic design approach. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef]
- Teng, W.W.; Liu, S.J.; Zhang, X.; Zhang, F.; Yang, X.L.; Xu, M.X.; Hou, J.W. Reliability Treatment of Silicon in Oilfield Wastewater by Electrocoagulation. Water 2023, 15, 206. [Google Scholar] [CrossRef]
- Liu, M.H.; Ma, S.; Wang, X.; Wang, M.M.; Zhao, Y.T.; Yan, Z.P.; Wang, E.R.; Zhang, H.; Xue, T.Y. Effective removal of dissolved silica from white carbon black wastewater by iron electrode electrocoagulation: Process optimization and simulation. J. Water Process Eng. 2022, 47, 102812. [Google Scholar] [CrossRef]
- Omwene, P.I.; Kobya, M.; Can, O.T. Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecol. Eng. 2018, 123, 65–73. [Google Scholar] [CrossRef]
- Supriya, V.; Sohan Joshua, M.; Ram Kiran, B.; Guduru, N.; Rao Poiba, V.; Vangalapati, M. Investigation of experimental parameters and It’s optimization on iron plate electrodes for the removal of phosphates by electrocoagulation process using Box–Behnken design. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Dura, A.; Breslin, C.B. The removal of phosphates using electrocoagulation with Al—Mg anodes. J. Electroanal. Chem. 2019, 846, 113161. [Google Scholar] [CrossRef]
- Devlin, T.R.; Kowalski, M.S.; Pagaduan, E.; Zhang, X.; Wei, V.; Oleszkiewicz, J.A. Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes. J. Hazard. Mater. 2019, 368, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Omwene, P.I.; Kobya, M. Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study. Process Saf. Environ. Prot. 2018, 116, 34–51. [Google Scholar] [CrossRef]
- Bhoi, G.P.; Singh, K.S.; Connor, D.A. Optimization of phosphorus recovery using electrochemical struvite precipitation and comparison with iron electrocoagulation system. Water Environ. Res. 2023, 95, e10847. [Google Scholar] [CrossRef]
- Zaffar, A.; Krishnamoorthy, N.; Nagaraj, N.; Jayaraman, S.; Paramasivan, B. Optimization and kinetic modeling of phosphate recovery as struvite by electrocoagulation from source-separated urine. Environ. Sci. Pollut. Res. 2023, 30, 20721–20735. [Google Scholar] [CrossRef] [PubMed]
- García-Orozco, V.M.; Barrera-Díaz, C.E.; Roa-Morales, G.; Linares-Hernández, I. A Comparative Electrochemical-Ozone Treatment for Removal of Phenolphthalein. J. Chem. 2016, 2016, 8105128. [Google Scholar] [CrossRef]
- Safwat, S.M.; Mohamed, N.Y.; El-Seddik, M.M. Performance evaluation and life cycle assessment of electrocoagulation process for manganese removal from wastewater using titanium electrodes. J. Environ. Manag. 2023, 328, 116967. [Google Scholar] [CrossRef] [PubMed]
- da Costa, E.P.; Bottrel, S.E.C.; Starling, M.; Leao, M.M.D.; Amorim, C.C. Degradation of carbendazim in water via photo-Fenton in Raceway Pond Reactor: Assessment of acute toxicity and transformation products. Environ. Sci. Pollut. Res. 2019, 26, 4324–4336. [Google Scholar] [CrossRef] [PubMed]
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Amri, I.; Herman, S.; Ramadan, A.F.; Hamzah, N. Effect of electrode and electric current on peat water treatment with continuous electrocoagulation process. In Proceedings of the 2nd International Conference on Chemical Engineering and Applied Sciences (ICChEAS), Semarang, Indonesia, 3–4 November 2021; pp. S520–S525. [Google Scholar]
- Wu, Y.; Zhang, P.; Lu, J.; Xu, H.; Zhang, W.; Yu, W.; Jiang, G. Fe electrocoagulation technology for effective removal of molybdate from water: Main influencing factors, response surface optimization, and mechanistic analysis. J. Environ. Chem. Eng. 2024, 12, 112127. [Google Scholar] [CrossRef]
- Weiss, S.F.; Christensen, M.L.; Jorgensen, M.K. Mechanisms behind pH changes during electrocoagulation. Aiche J. 2021, 67, e17384. [Google Scholar] [CrossRef]
- Attour, A.; Touati, M.; Thin, M.; Ben Amor, M.; Lapicque, F.; Leclerc, J.P. Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep. Purif. Technol. 2014, 123, 124–129. [Google Scholar] [CrossRef]
- Mithra, S.S.; Ramesh, S.T.; Gandhimathi, R.; Nidheesh, P.V. Studies on the removal of phosphate from water by electrocoagulation with aluminium plate electrodes. Environ. Eng. Manag. J. 2017, 16, 2293–2301. [Google Scholar]
- He, C.C.; Hu, C.Y.; Lo, S.L. Integrating chloride addition and ultrasonic processing with electrocoagulation to remove passivation layers and enhance phosphate removal. Sep. Purif. Technol. 2018, 201, 148–155. [Google Scholar] [CrossRef]
- Carmona-Carmona, P.F.; Linares-Hernández, I.; Teutli-Sequeira, E.A.; López-Rebollar, B.M.; Alvarez-Bastida, C.; Mier-Quiroga, M.D.; Vázquez-Mejía, G.; Martínez-Miranda, V. Industrial wastewater treatment using magnesium electrocoagulation in batch and continuous mode. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2020, 56, 269–288. [Google Scholar] [CrossRef]
- Chen, P.; Li, J.F.; Xie, N.N. Study on Influencing Parameters of Total Phosphorus Degradation in Cattle Farm Wastewater by Electrocoagulation Using Magnesium, Aluminum, and Iron Electrodes. Water 2023, 15, 4134. [Google Scholar] [CrossRef]
- Garcia-Orozco, V.M.; Linares-Hernandez, I.; Natividad, R.; Balderas-Hernandez, P.; Alanis-Ramirez, C.; Barrera-Diaz, C.E.; Roa-Morales, G. Solar-photovoltaic electrocoagulation of wastewater from a chocolate manufacturing industry: Anodic material effect (aluminium, copper and zinc) and life cycle assessment. J. Environ. Chem. Eng. 2022, 10, 107969. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Xue, M.X.; Kang, X.S.; Wang, Y.; Gao, B.Y. Comparison of aluminum formate and traditional aluminum coagulants in structure, hydrolysates, coagulation behavior, and its corrosion resistance advantage. Sep. Purif. Technol. 2024, 335, 126065. [Google Scholar] [CrossRef]
- Ferreira, A.D.; Queiroz, H.M.; Otero, X.L.; Barcellos, D.; Bernardino, A.F.; Ferreira, T.O. Iron hazard in an impacted estuary: Contrasting controls of plants and implications to phytoremediation. J. Hazard. Mater. 2022, 428, 128216. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Nam, K.; Lee, J. Lessons from aluminum and magnesium scraps fires and explosions: Case studies of metal recycling industry. J. Loss Prev. Process Ind. 2022, 80, 104872. [Google Scholar] [CrossRef]
- Paraschiv, S.; Paraschiv, L.S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep. 2020, 6, 237–242. [Google Scholar] [CrossRef]
- Baz, K.; Xu, D.Y.; Ali, H.; Khan, U.; Cheng, J.H.; Abbas, K.; Ali, I. Nexus of minerals-technology complexity and fossil fuels with carbon dioxide emission: Emerging Asian economies based on product complexity index. J. Clean. Prod. 2022, 373, 133703. [Google Scholar] [CrossRef]
- Madkour, L.H. Heavy metals and free radical-induced cell death mechanisms. In Reactive Oxygen Species (ROS), Nanoparticles, and Endoplasmic Reticulum (ER) Stress-Induced Cell Death Mechanisms; Elsevier Science: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Mohankumar, T.; Venugopal, D.; Palaniyappan, J.; Beerappa, R.; Duraisamy, E.; Velu, S. 3—Environmental exposure to heavy metals in ambient air and its human health implications. In Spatial Modeling of Environmental Pollution and Ecological Risk; Shit, P.K., Datta, D.K., Bera, B., Islam, A., Adhikary, P.P., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 41–69. [Google Scholar]
- Liu, J.; Zhao, J.; Du, J.; Peng, S.; Wu, J.; Zhang, W.; Yan, X.; Lin, Z. Predicting the binding configuration and release potential of heavy metals on iron (oxyhydr)oxides: A machine learning study on EXAFS. J. Hazard. Mater. 2024, 468, 133797. [Google Scholar] [CrossRef]
- Xie, Y.; Mao, Y.; Zhong, P.; Zhang, Y.; Zhang, L.; Chen, W.; Qu, C.; Xing, X.; Cao, J.; Zhang, J. Seasonal variations and size-dependent distribution of heavy metals in particulate matter in Huangshi: Implications for human health risk assessment. Atmos. Environ. 2024, 322, 120384. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.W.; Li, S.S.; Yang, L.; Yan, W.; Xu, H. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications. Sci. Total Environ. 2024, 912, 169043. [Google Scholar] [CrossRef] [PubMed]
- Priyanka, P.; Srivastava, N.; Chattopadhyay, J. Chapter 5—Analysis of complex microbial communities in soil and wastewater treatment processes. In Functional Metagenomics; Shah, M.P., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 131–142. [Google Scholar]
Electrode Material | PFO | PSO | BMG | |||
---|---|---|---|---|---|---|
k1 | R2 | k2 | R2 | b | R2 | |
Al | 0.08583 | 0.98505 | 0.00106 | 0.96771 | 1.128 | 0.97864 |
Fe | 0.09259 | 0.99862 | 0.0014 | 0.99149 | 1.24892 | 0.98454 |
Mg | −0.00387 | 0.94607 | 2.97 × 10−6 | 0.94591 | 1.18849 | 0.70312 |
Inventory Item | Unit | Scenario 1 (Al) | Scenario 2 (Fe) | Scenario 3 (Mg) | Data Quality |
---|---|---|---|---|---|
Inputs | |||||
Wastewater | m3 | 1 | 1 | 1 | Experimental |
Electricity | kWh | 0.5463 | 0.5534 | 0.4697 | Experimental |
Anodic electrode material | kg | 0.0375 | 0.1375 | 0.0375 | Experimental |
Outputs | |||||
Treated wastewater | m3 | 1 | 1 | 1 | Experimental |
Sludge | g | 223.75 | 397.50 | 187.50 | Experimental |
Product | g | 18.75 | 23.75 | 16.25 | Experimental |
Al | Mg | Fe | |
---|---|---|---|
Electricity | 0.7222397 | 0.7222397 | 0.7222397 |
Mass | 1.3235912 | 24.0822278 | 2.6650087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zheng, B.; Zhang, W.; Liu, Q.; Li, M.; Zhang, H. Phosphate Removal Efficiency and Life Cycle Assessment of Different Anode Materials in Electrocoagulation Treatment of Wastewater. Sustainability 2024, 16, 3836. https://doi.org/10.3390/su16093836
Li G, Zheng B, Zhang W, Liu Q, Li M, Zhang H. Phosphate Removal Efficiency and Life Cycle Assessment of Different Anode Materials in Electrocoagulation Treatment of Wastewater. Sustainability. 2024; 16(9):3836. https://doi.org/10.3390/su16093836
Chicago/Turabian StyleLi, Guangpu, Bin Zheng, Wenqing Zhang, Qiaona Liu, Mingzheng Li, and Haibing Zhang. 2024. "Phosphate Removal Efficiency and Life Cycle Assessment of Different Anode Materials in Electrocoagulation Treatment of Wastewater" Sustainability 16, no. 9: 3836. https://doi.org/10.3390/su16093836
APA StyleLi, G., Zheng, B., Zhang, W., Liu, Q., Li, M., & Zhang, H. (2024). Phosphate Removal Efficiency and Life Cycle Assessment of Different Anode Materials in Electrocoagulation Treatment of Wastewater. Sustainability, 16(9), 3836. https://doi.org/10.3390/su16093836