Mapping Urban Changes Through the Spatio-Temporal Analysis of Vegetation and Built-Up Areas in Iași, Romania
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Methodological Framework
3.2.1. Data Acquisition
3.2.2. Used Methods
4. Results
4.1. Spatio-Temporal Evaluation of the Indicators
4.1.1. Vegetation Dynamics
4.1.2. Built-Up Space Dynamics
4.1.3. Land Surface Temperature
4.1.4. Population Density
4.2. Spatio-Temporal Patterns of Changes in the Urban and Peri-Urban Fabric
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J. Urban Sustainability: An Inevitable Goal of Landscape Research. Landsc. Ecol. 2010, 25, 1–4. [Google Scholar] [CrossRef]
- United Nations. 2018 Revision of World Urbanization Prospects. Available online: https://www.un.org/en/desa/2018-revision-world-urbanization-prospects (accessed on 11 November 2024).
- Rydin, Y.; Bleahu, A.; Davies, M.; Dávila, J.D.; Friel, S.; De Grandis, G.; Groce, N.; Hallal, P.C.; Hamilton, I.; Howden-Chapman, P.; et al. Shaping Cities for Health: Complexity and the Planning of Urban Environments in the 21st Century. Lancet 2012, 379, 2079–2108. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Thapa, S.; Hu, X.; Luo, Z.; Gibson, D.J. The Relationship between Urban Green Space and Urban Expansion Based on Gravity Methods. Sustainability 2022, 14, 5396. [Google Scholar] [CrossRef]
- Addas, A. The Importance of Urban Green Spaces in the Development of Smart Cities. Front. Environ. Sci. 2023, 11, 1206372. [Google Scholar] [CrossRef]
- Kahn, M.E. Green Cities: Urban Growth and the Environment; Brookings Institution Press: Washington, DC, USA, 2006. [Google Scholar]
- Inostroza, L. The Circularity of the Urban Ecosystem Material Productivity: The Transformation of Biomass into Technomass in Southern Patagonia. Sustain. Cities Soc. 2018, 39, 335–343. [Google Scholar] [CrossRef]
- Jaeger, J.A.G.; Bertiller, R.; Schwick, C.; Kienast, F. Suitability Criteria for Measures of Urban Sprawl. Ecol. Indic. 2010, 10, 397–406. [Google Scholar] [CrossRef]
- Burchfield, M.; Overman, H.G.; Puga, D.; Turner, M.A. Causes of Sprawl: A Portrait from Space. Q. J. Econ. 2006, 121, 587–633. [Google Scholar] [CrossRef]
- Schneider, A.; Woodcock, C.E. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth in Twenty-Five Global Cities Using Remotely Sensed Data, Pattern Metrics and Census Information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Brueckner, J.K. Urban Sprawl: Diagnosis and Remedies. Int. Reg. Sci. Rev. 2000, 23, 160–171. [Google Scholar] [CrossRef]
- Guastella, G.; Pareglio, S. Spatial Analysis of Urbanization Patterns: The Case of Land Use and Population Density in the Milan Metropolitan Area. Rev. Urban Reg. Dev. 2017, 29, 89–102. [Google Scholar] [CrossRef]
- Naeem, S.; Cao, C.; Waqar, M.M.; Wei, C.; Acharya, B.K. Vegetation Role in Controlling the Ecoenvironmental Conditions for Sustainable Urban Environments: A Comparison of Beijing and Islamabad. J. Appl. Rem. Sens. 2018, 12, 016013. [Google Scholar] [CrossRef]
- Cegielska, K.; Piotr, P.; Kukulska-Kozieł, A. Urban Green Spaces: How Geospatial Information Can Help Identify Diversity. A Case Study from Eastern Lesser Poland. Bull. Geography. Socio-Econ. Ser. 2022, 58, 7–29. [Google Scholar] [CrossRef]
- Rumora, L.; Majić, I.; Miler, M.; Medak, D. Spatial Video Remote Sensing for Urban Vegetation Mapping Using Vegetation Indices. Urban Ecosyst. 2021, 24, 21–33. [Google Scholar] [CrossRef]
- Couch, C.; Karecha, J.; Nuissl, H.; Rink, D. Decline and Sprawl: An Evolving Type of Urban Development–Observed in Liverpool and Leipzig. Eur. Plan. Stud. 2005, 13, 117–136. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Al-Hilali, A.A.; Ahmed, A.M.; Falah, M.W.; Abed, S.A.; Falih, K.T.; Khedher, K.M.; Scholz, M.; Yaseen, Z.M. Assessment of Urban Green Space Dynamics Influencing the Surface Urban Heat Stress Using Advanced Geospatial Techniques. Agronomy 2022, 12, 2129. [Google Scholar] [CrossRef]
- Guastella, G.; Oueslati, W.; Pareglio, S. Patterns of Urban Spatial Expansion in European Cities. Sustainability 2019, 11, 2247. [Google Scholar] [CrossRef]
- Inostroza, L. Informal Urban Development in Latin American Urban Peripheries. Spatial Assessment in Bogotá, Lima and Santiago de Chile. Landsc. Urban Plan. 2017, 165, 267–279. [Google Scholar] [CrossRef]
- Basu, T.; Das, A.; Das, K.; Pereira, P. Urban Expansion Induced Loss of Natural Vegetation Cover and Ecosystem Service Values: A Scenario-Based Study in the Siliguri Municipal Corporation (Gateway of North-East India). Land Use Policy 2023, 132, 106838. [Google Scholar] [CrossRef]
- Shahfahad; Talukdar, S.; Naikoo, M.W.; Rahman, A. Urban Expansion and Vegetation Dynamics: The Role of Protected Areas in Preventing Vegetation Loss in a Growing Mega City. Habitat Int. 2024, 150, 103129. [Google Scholar] [CrossRef]
- Zenouzi, A.S.; Yenneti, K.; Teimouri, R.; Abbasiyan, F.; Palme, M. Analysis of Changes in Vegetation Index during the Rapid Urban Spatial Development Period (1990–2020) in Tehran Metropolis, Iran. Atmosphere 2022, 13, 2010. [Google Scholar] [CrossRef]
- Hunter, A.M.; Williams, N.S.G.; Rayner, J.P.; Aye, L.; Hes, D.; Livesley, S.J. Quantifying the Thermal Performance of Green Façades: A Critical Review. Ecol. Eng. 2014, 63, 102–113. [Google Scholar] [CrossRef]
- Aram, F.; Higueras García, E.; Solgi, E.; Mansournia, S. Urban Green Space Cooling Effect in Cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Hien, W.N. Thermal Benefits of City Parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Song, Y.; Song, X.; Shao, G. Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial–Temporal Scales. Sustainability 2020, 12, 6850. [Google Scholar] [CrossRef]
- Mears, M.; Brindley, P. Measuring Urban Greenspace Distribution Equity: The Importance of Appropriate Methodological Approaches. ISPRS Int. J. Geo-Inf. 2019, 8, 286. [Google Scholar] [CrossRef]
- Vargas-Hernández, J.G.; Zdunek-Wielgołaska, J. Urban Green Infrastructure as a Tool for Controlling the Resilience of Urban Sprawl. Environ. Dev. Sustain. 2021, 23, 1335–1354. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M. Urban Nature in a Time of Crisis: Recreational Use of Green Space Increases during the COVID-19 Outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Van Herzele, A.; Wiedemann, T. A Monitoring Tool for the Provision of Accessible and Attractive Urban Green Spaces. Landsc. Urban Plan. 2003, 63, 109–126. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Li, Z. A near Real-Time Flood-Mapping Approach by Integrating Social Media and Post-Event Satellite Imagery. Ann. GIS 2018, 24, 113–123. [Google Scholar] [CrossRef]
- Uy, P.D.; Nakagoshi, N. Analyzing Urban Green Space Pattern and Eco-Network in Hanoi, Vietnam. Landsc. Ecol. Eng. 2007, 3, 143–157. [Google Scholar] [CrossRef]
- Acheampong, M.; Yu, Q.; Enomah, L.D.; Anchang, J.; Eduful, M. Land Use/Cover Change in Ghana’s Oil City: Assessing the Impact of Neoliberal Economic Policies and Implications for Sustainable Development Goal Number One–A Remote Sensing and GIS Approach. Land Use Policy 2018, 73, 373–384. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping Global Urban Areas Using MODIS 500-m Data: New Methods and Datasets Based on ‘Urban Ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Aabeyir, R.; Peprah, K.; Hackman, K.O. Spatio-Temporal Pattern of Urban Vegetation in the Central Business District of the Wa Municipality of Ghana. Trees For. People 2022, 8, 100261. [Google Scholar] [CrossRef]
- Fabre, S.; Elger, A.; Riviere, T. Exploitation of Sentinel-2 Images for Long-Term Vegetation Monitoring at a Former Ore Processing Site. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 1533–1537. [Google Scholar] [CrossRef]
- Esau, I.; Miles, V.V.; Davy, R.; Miles, M.W.; Kurchatova, A. Trends in Normalized Difference Vegetation Index (NDVI) Associated Withurban Development in Northern West Siberia. Atmos. Chem. Phys. 2016, 16, 9563–9577. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An Extended AVHRR 8-km NDVI Dataset Compatible with MODIS and SPOT Vegetation NDVI Data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Adamiak, M.; Będkowski, K.; Bielecki, A. Generative Adversarial Approach to Urban Areas NDVI Estimation: A Case Study of Łódź, Poland. Quaest. Geogr. 2023, 42, 87–105. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yu, W.; Pickett, S.T.A. Quantifying Spatiotemporal Pattern of Urban Greenspace: New Insights from High Resolution Data. Landsc. Ecol. 2015, 30, 1165–1173. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the Relationship between Land Use Land Cover Change and Land Surface Temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Marković, M.; Cheema, J.; Teofilović, A.; Čepić, S.; Popović, Z.; Tomićević-Dubljević, J.; Pause, M. Monitoring of Spatiotemporal Change of Green Spaces in Relation to the Land Surface Temperature: A Case Study of Belgrade, Serbia. Remote Sens. 2021, 13, 3846. [Google Scholar] [CrossRef]
- Bradley, B.A.; Jacob, R.W.; Hermance, J.F.; Mustard, J.F. A Curve Fitting Procedure to Derive Inter-Annual Phenologies from Time Series of Noisy Satellite NDVI Data. Remote Sens. Environ. 2007, 106, 137–145. [Google Scholar] [CrossRef]
- Kong, D.; Zhang, Q.; Singh, V.P.; Shi, P. Seasonal Vegetation Response to Climate Change in the Northern Hemisphere (1982–2013). Glob. Planet. Change 2017, 148, 1–8. [Google Scholar] [CrossRef]
- Macarof, P.; Statescu, F. Comparasion of NDBI and NDVI as Indicators of Surface Urban Heat Island Effect in Landsat 8 Imagery: A Case Study of Iasi. Present Environ. Sustain. Dev. 2017, 11, 141–150. [Google Scholar] [CrossRef]
- Sfîcă, L.; Crețu, C.-Ș.; Ichim, P.; Hrițac, R.; Breabăn, I.-G. Surface Urban Heat Island of Iași City (Romania) and Its Differences from in Situ Screen-Level Air Temperature Measurements. Sustain. Cities Soc. 2023, 94, 104568. [Google Scholar] [CrossRef]
- Xiong, Y.; Peng, F.; Zou, B. Spatiotemporal Influences of Land Use/Cover Changes on the Heat Island Effect in Rapid Urbanization Area. Front. Earth Sci. 2019, 13, 614–627. [Google Scholar] [CrossRef]
- Richards, D.R.; Passy, P.; Oh, R.R.Y. Impacts of Population Density and Wealth on the Quantity and Structure of Urban Green Space in Tropical Southeast Asia. Landsc. Urban Plan. 2017, 157, 553–560. [Google Scholar] [CrossRef]
- McDonald, R.I.; Aronson, M.F.J.; Beatley, T.; Beller, E.; Bazo, M.; Grossinger, R.; Jessup, K.; Mansur, A.V.; Puppim De Oliveira, J.A.; Panlasigui, S.; et al. Denser and Greener Cities: Green Interventions to Achieve Both Urban Density and Nature. People Nat. 2023, 5, 84–102. [Google Scholar] [CrossRef]
- Xiao, S.; Fügener, T.; Wende, W.; Yan, W.; Chen, H.; Syrbe, R.; Xue, B. The Dynamics of Vegetation and Implications for Ecosystem Services in the Context of Urbanisation: An Example from Huangyan-Taizhou, China. Ecol. Eng. 2022, 179, 106614. [Google Scholar] [CrossRef]
- Loures, L.; Santos, R.; Panagopoulos, T. Urban Parks and Sustainable City Planning-The Case of Portimão, Portugal. Environ. Dev. 2007, 15, 171–180. [Google Scholar]
- Grigoraș, G.; Urițescu, B. Land Use/Land Cover Changes Dynamics and Their Effects on Surface Urban Heat Island in Bucharest, Romania. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 115–126. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.; Savastru, D.; Tautan, M.N.; Penache, A.C. Spatiotemporal Changes of Urban Land Surface Albedo Impact on Thermal Environment in Bucharest Metropolitan City. WSEAS Trans. Environ. Dev. 2023, 19, 1037–1044. [Google Scholar] [CrossRef]
- Zhao, S.; Da, L.; Tang, Z.; Fang, H.; Song, K.; Fang, J. Ecological Consequences of Rapid Urban Expansion: Shanghai, China. Front. Ecol. Environ. 2006, 4, 341–346. [Google Scholar] [CrossRef]
- Wolff, M.; Haase, D. Mediating Sustainability and Liveability—Turning Points of Green Space Supply in European Cities. Front. Environ. Sci. 2019, 7, 61. [Google Scholar] [CrossRef]
- Nae, M.; Turnock, D. The New Bucharest: Two Decades of Restructuring. Cities 2011, 28, 206–219. [Google Scholar] [CrossRef]
- Suditu, B. Urban Sprawl–the Legal Context and Territorial Practices in Romania. J. Stud. Res. Hum. Geogr. 2012, 6, 73–77. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Grigorescu, I.; Kucsicsa, G.; Popovici, E.-A.; Mitrică, B.; Mocanu, I.; Dumitraşcu, M. Modelling Land Use/Cover Change to Assess Future Urban Sprawl in Romania. Geocarto Int. 2021, 36, 721–739. [Google Scholar] [CrossRef]
- Kerekes, A.-H.; Alexe, M. Evaluating Urban Sprawl and Land-Use Change Using Remote Sensing, GIS Techniques and Historical Maps. Case Study: The City of Dej, Romania. Analele Univ. Oradea Ser. Geogr. 2019, 29, 52–63. [Google Scholar] [CrossRef]
- Burghelea, G.-B.; Mărmureanu, L.; Iorga, G.; Antonescu, B. Comparison of PM10 Levels in Three of the Most Polluted Cities in Romania over the Periods Related to Lower Traffic—Implications for Human Health. Appl. Sci. 2024, 14, 8169. [Google Scholar] [CrossRef]
- Nouri, H.; Nagler, P.; Chavoshi Borujeni, S.; Barreto Munez, A.; Alaghmand, S.; Noori, B.; Galindo, A.; Didan, K. Effect of Spatial Resolution of Satellite Images on Estimating the Greenness and Evapotranspiration of Urban Green Spaces. Hydrol. Process. 2020, 34, 3183–3199. [Google Scholar] [CrossRef]
- Klimavičius, L.; Rimkus, E.; Stonevičius, E.; Mačiulytė, V. Seasonality and Long-Term Trends of NDVI Values in Different Land Use Types in the Eastern Part of the Baltic Sea Basin. Oceanologia 2023, 65, 171–181. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Ivan, K.; Benedek, J. The Assessment Relationship between Land Surface Temperature (LST) and Built-up Area in Urban Agglomeration. Case Study: Cluj-Napoca, Romania. Geogr. Tech. 2017, 12, 64–74. [Google Scholar] [CrossRef]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.; Syrris, V.; Soille, P. Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef]
- Melchiorri, M. The Global Human Settlement Layer Sets a New Standard for Global Urban Data Reporting with the Urban Centre Database. Front. Environ. Sci. 2022, 10, 1003862. [Google Scholar] [CrossRef]
- Gerten, C.; Fina, S.; Rusche, K. The Sprawling Planet: Simplifying the Measurement of Global Urbanization Trends. Front. Environ. Sci. 2019, 7, 140. [Google Scholar] [CrossRef]
- Melchiorri, M.; Pesaresi, M.; Florczyk, A.J.; Corbane, C.; Kemper, T. Principles and Applications of the Global Human Settlement Layer as Baseline for the Land Use Efficiency Indicator—SDG 11.3.1. ISPRS Int. J. Geo-Inf. 2019, 8, 96. [Google Scholar] [CrossRef]
- Freire, S.; Doxsey-Whitfield, E.; MacManus, K.; Mills, J.; Pesaresi, M. Development of New Open and Free Multi-Temporal Global Population Grids at 250 m Resolution. Population 2016, 250, 33. [Google Scholar]
- Wang, J.; Zhou, W.; Wang, J.; Yu, W. Spatial Distribution of Urban Greenspace in Response to Urban Development from a Multi-Scale Perspective. Environ. Res. Lett. 2020, 15, 064031. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ren, Z.; Pu, R.; Zheng, H.; Zhang, D.; He, X. Spatiotemporal Analyses of Urban Vegetation Structural Attributes Using Multitemporal Landsat TM Data and Field Measurements. Ann. For. Sci. 2017, 74, 54. [Google Scholar] [CrossRef]
- Yao, X.; Chen, Y.; Zhang, Q.; Mou, Z.; Yao, X.; Ou, C. Assessment of the Urban Expansion and Its Impact on the Eco-Environment—A Case Study of Hefei Municipal Area. Sustainability 2022, 14, 10613. [Google Scholar] [CrossRef]
- Mihăilă, D.; Bistricean, P.-I.; Sfîcă, L.; Horodnic, V.-D.; Prisăcariu, A.; Amihăesei, V.-A. Summer Discrepancies between 2 m Air Temperature and Landsat LST in Suceava City, Northeastern Romania. Remote Sens. 2024, 16, 2967. [Google Scholar] [CrossRef]
- Sfîcă, L.; Corocăescu, A.-C.; Crețu, C.-Ș.; Amihăesei, V.-A.; Ichim, P. Spatiotemporal Features of the Surface Urban Heat Island of Bacău City (Romania) during the Warm Season and Local Trends of LST Imposed by Land Use Changes during the Last 20 Years. Remote Sens. 2023, 15, 3385. [Google Scholar] [CrossRef]
- Jones, M.S.; Brown, Z.S. Food for Thought: Assessing the Consumer Welfare Impacts of Deploying Irreversible, Landscape-Scale Biotechnologies. Food Policy 2023, 121, 102529. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem Services and Agriculture: Tradeoffs and Synergies. Phil. Trans. R. Soc. B 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Tratalos, J.; Fuller, R.A.; Warren, P.H.; Davies, R.G.; Gaston, K.J. Urban Form, Biodiversity Potential and Ecosystem Services. Landsc. Urban Plan. 2007, 83, 308–317. [Google Scholar] [CrossRef]
- Nalej, M. Agricultural Land Cover Changes in Metropolitan Areas of Poland for the Period 1990–2012. Misc. Geogr. 2016, 20, 39–45. [Google Scholar] [CrossRef]
- Solecka, I.; Sylla, M.; Świąder, M. Urban Sprawl Impact on Farmland Conversion in Suburban Area of Wroclaw, Poland. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072002. [Google Scholar] [CrossRef]
- Morar, C.; Lukić, T.; Valjarević, A.; Niemets, L.; Kostrikov, S.; Sehida, K.; Telebienieva, I.; Kliuchko, L.; Kobylin, P.; Kravchenko, K. Spatiotemporal Analysis of Urban Green Areas Using Change Detection: A Case Study of Kharkiv, Ukraine. Front. Environ. Sci. 2022, 10, 823129. [Google Scholar] [CrossRef]
- Hirt, S. Whatever Happened to the (Post)Socialist City? Cities 2013, 32, S29–S38. [Google Scholar] [CrossRef]
- Sýkora, L.; Bouzarovski, S. Multiple Transformations: Conceptualising the Post-Communist Urban Transition. Urban Stud. 2012, 49, 43–60. [Google Scholar] [CrossRef]
- Tsenkova, S. Managing Change: The Comeback of Post-Socialist Cities. Urban Res. Pract. 2008, 1, 291–310. [Google Scholar] [CrossRef]
- Li, S.; Sun, Z.; Tan, M.; Li, X. Effects of Rural–Urban Migration on Vegetation Greenness in Fragile Areas: A Case Study of Inner Mongolia in China. J. Geogr. Sci. 2016, 26, 313–324. [Google Scholar] [CrossRef]
- Kuo, F.E.; Sullivan, W.C. Environment and Crime in the Inner City: Does Vegetation Reduce Crime? Environ. Behav. 2001, 33, 343–367. [Google Scholar] [CrossRef]
- Cook, E.A. Ecological Networks in Urban Landscapes; Wageningen University and Research: Wageningen, The Netherlands, 2000. [Google Scholar]
- Bănică, A.; Roșu, L.; Șerban, L.; Muntele, I. Children’s Playgrounds for Urban Sustainability: (In)Accessibility, (Un)Attractiveness and Social (in)Equity in Iași and Bacău Municipalities (Romania). Present Environ. Sustain. Dev. 2023, 17, 371–389. [Google Scholar] [CrossRef]
- Jucu, I.S. Romanian Post-Socialist Industrial Restructuring at the Local Scale: Evidence of Simultaneous Processes of De-/Reindustrialization in the Lugoj Municipality of Romania. J. Balk. Near East. Stud. 2015, 17, 408–426. [Google Scholar] [CrossRef]
- Buijs, A.E.; Mattijssen, T.J.; Van Der Jagt, A.P.; Ambrose-Oji, B.; Andersson, E.; Elands, B.H.; Steen Møller, M. Active Citizenship for Urban Green Infrastructure: Fostering the Diversity and Dynamics of Citizen Contributions through Mosaic Governance. Curr. Opin. Environ. Sustain. 2016, 22, 1–6. [Google Scholar] [CrossRef]
- Gong, Z.X.; Deng, Y. Planning Vegetation on Rural-Urban Fringes for the Green Space System of Extended Built-up Area: Strategies and Measures. Adv. Mater. Res. 2011, 368–373, 1858–1861. [Google Scholar] [CrossRef]
- Andersson, E.; Bodin, Ö. Practical Tool for Landscape Planning? An Empirical Investigation of Network Based Models of Habitat Fragmentation. Ecography 2009, 32, 123–132. [Google Scholar] [CrossRef]
- Xun, B.; Yu, D.; Wang, X. Prioritizing Habitat Conservation Outside Protected Areas in Rapidly Urbanizing Landscapes: A Patch Network Approach. Landsc. Urban Plan. 2017, 157, 532–541. [Google Scholar] [CrossRef]
- Boakes, E.H.; Fuller, R.A.; McGowan, P.J.K. The Extirpation of Species Outside Protected Areas. Conserv. Lett. 2019, 12, e12608. [Google Scholar] [CrossRef]
Acquisition Date | Satellite | Bands Used for NDVI Calculation |
---|---|---|
21 July 1987 14 June 1991 28 August 1995 7 August 1999 19 September 2003 28 July 2007 24 August 2011 | Landsat 4–5 | RED—band 3, NIR—band 4 |
3rd August 2015 14 August 2019 17 July 2023 | Landsat 8–9 | RED—band 4, NIR—band 5 |
Number | Name | Attributes | Surface | On-Field Areas |
---|---|---|---|---|
1 | Persistent hot spot | Forests, scarcely altered by human influence, partially protected by various legal forms | 8.46% 9462.06 ha | Natura 2000 Sites of Community Importance (SCIs) (Bârnova-Repedea, Mârzești, and Uricani Forests), avi-faunistic protection sites (SPAs) (Ciurbești Lake, Bârca hayfield, Jijia Pond and Miletin Pond, Uricani Forest), Cetățuia, Galata, Bucium, Vlădiceni, C. A. Rosetti |
2 | Intensifying hot spot | Isolated areas inside forests | 1.24% 1385.64 ha | Forests around Păun and Breazu |
3 | Diminishing hot spot | Edge forests at close contact with built-up area | 0.04% 40.14 ha | Copou, C. A. Rosetti, Ciric |
4 | Consecutive hot spot | Isolated areas in forests or green agricultural terrains | 1.03% 1151.64 ha | Botanical Garden, Bucium, Rediu |
5 | Oscillating hot spot | Agricultural fields that were green in most of the new Landsat scene | 11.23% 12,562.29 ha | |
6 | New hot spot | Agricultural fields that were green in the most recent Landsat scene and derelict transport areas that used to serve the industrial platforms; ecological restoration (of forests) | 2.59% 2897.46 ha | Socola railway, vineyards in Bucium and Copou, CUG, urban designated green spaces, C.A. Rosetti |
7 | Sporadic hot spot | Forest edges and interstitial green spaces between residential ensembles | 13.25% 14,829.12 ha | All forests and peri-urban neighborhoods, including UGSs inside the urban area |
8 | Sporadic cold spot | Agricultural fields, isolated new residential complexes, small newly built parcels inside the city area, river floodplain | 4.67% 5230.35 ha | Iași, Bucium, Vlădiceni, CUG, Valea Adâncă, Miroslava, Bahlui River |
9 | Diminishing cold spot | Urban green spaces, derelict industrial platforms, railways | 0.17% 195.3 ha | Copou neighborhood |
10 | New cold spot | Very recent residential housing estates built on previously green land parcels | 0.15% 165.06 ha | Bucium, Vișani, Miroslava, Lunca Cetățuii, Valea Lupului, Breazu, Tomești, Copou |
11 | No pattern | Agricultural fields, low-density villages, most UGSs inside the city | 43.26% 48,402.81 ha | |
12 | Oscillating cold spot | New residential complexes, the new airport runway, the river floodplain, agricultural fields | 7.36% 8235.27 ha | Bucium, Miroslava, Lunca Cetățuii, Hlincea, Vișani, Valea Lupului, Royal Town, airport area, Bahlui River |
13 | Consecutive cold spot | Low-density neighborhoods inside the city, villages | 2.27% 2539.26 ha | Copou, Moara de Vânt, Galata, Nicolina, Bucium, Dancu, Holboca, Rediu, Antibiotice |
14 | Intensifying cold spot | Former or present-day industrialized and sealed areas, new high-rise and high-density neighborhoods, boulevards, aquatic areas | 0.98% 1096.38 ha | Silk District, Palas projects, Himson Residential, hypermarkets, parking areas |
15 | Persistent cold spot | High-rise neighborhoods, industrial areas, aquatic areas | 3.3% 3688.47 ha | Nicolina, CUG, Alexandru, Dacia, the Industrial Area, Tomești, Dancu, Antibiotice |
Cluster No. | Name | Explanation | On-Field Areas |
---|---|---|---|
1 | Light gray—constant built-up surface | Either areas that had been developed prior to the starting year of the analysis (1975), or that were never built | Historical city center, Alexandru cel Bun, Dacia, Păcurari, Nicolina, Poitiers, parts of the Industrial Area, most agricultural terrains and forests in the outskirts |
2 | Green—omnidirectional expansion of the socialist city | Quick growth rate during the socialist era, starting to slow down after 1990; neighborhoods for the industry workforce, built from scratch and located close to the industrial platforms; besides this, the low-density neighborhoods and the edges of the villages have been developed very recently | Industrial Area, CUG, Copou, Ciurea, Tomești, Bârnova |
3 | Dark gray—cores of the city and villages | Constant growth of the built-up ground surface, mostly present in high-rise neighborhoods starting with the systematization and the massive rural–urban migration during the socialist era, but also former extents of the villages | Podu Roș, Tătărași, Independenței, Canta, Bucium, Antibiotice, Dancu, Holboca, Tomești, Bârnova, Vânători |
4 | Orange—urban sprawl | First and widest wave of new buildings at the edge of the city, from 2000 to 2015, with a slower growth rate in the present day as well | Inside Iași Municipality: Bucium, Galata, Moara de Vânt; outside city’s administrative limits: Miroslava, Ciurea, Bârnova, Valea Lupului, Aroneanu |
5 | Blue—urban sprawl phase II | Significantly developing after 2010 and continuing today in the same rhythm | |
6 | Red—urban sprawl phase III | Most recent residential neighborhoods and tertiary complexes, developed in the last 15 years, with a significant growth since 2015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foșalău, C.-M.; Roșu, L.; Iațu, C.; Dinter, O.-V.; Cristodulo, P.-M. Mapping Urban Changes Through the Spatio-Temporal Analysis of Vegetation and Built-Up Areas in Iași, Romania. Sustainability 2025, 17, 11. https://doi.org/10.3390/su17010011
Foșalău C-M, Roșu L, Iațu C, Dinter O-V, Cristodulo P-M. Mapping Urban Changes Through the Spatio-Temporal Analysis of Vegetation and Built-Up Areas in Iași, Romania. Sustainability. 2025; 17(1):11. https://doi.org/10.3390/su17010011
Chicago/Turabian StyleFoșalău, Cristian-Manuel, Lucian Roșu, Corneliu Iațu, Oliver-Valentin Dinter, and Petru-Mihai Cristodulo. 2025. "Mapping Urban Changes Through the Spatio-Temporal Analysis of Vegetation and Built-Up Areas in Iași, Romania" Sustainability 17, no. 1: 11. https://doi.org/10.3390/su17010011
APA StyleFoșalău, C. -M., Roșu, L., Iațu, C., Dinter, O. -V., & Cristodulo, P. -M. (2025). Mapping Urban Changes Through the Spatio-Temporal Analysis of Vegetation and Built-Up Areas in Iași, Romania. Sustainability, 17(1), 11. https://doi.org/10.3390/su17010011