The Nonlinear Effect of the Built Environment on Bike–Metro Transfer in Different Times and Transfer Flows Considering Spatial Dependence
Abstract
:1. Introduction
2. Literature Review
3. Study Area and Datasets
3.1. Study Area
3.2. Data Collection
- (1)
- Metro smart card records and DBS data: Data from 1 February 2021 to 5 February 2021, covering metro smart card entries/exits and concurrent DBS ride origin–destination (OD) data (Table 1). During this period, the weather in Shenzhen was clear and the temperature was moderate.
- (2)
- Built environment data: This dataset includes road network data, streetscape imagery, points of interest (POI) data, urban building census data, and urban land use types. Road network data cover highways, primary and secondary roads, and dedicated bike lanes. Streetscape imagery involves collecting Baidu Map street view images at 50 m intervals. The required data and their specific formats for computing the built environment are outlined in Table 2 and Table 3.
4. Methodology
4.1. Framework
4.2. Bike–Metro Transfer Volume Calculation
4.3. Spatial Dependence Analysis
4.4. Measurement of the Variables
4.5. Machine Learning Models and Interpretation Methods
4.5.1. Model Construction
4.5.2. Model Evaluation
4.5.3. Interpretation Methods
5. Empirical Results
5.1. Descriptive Statistics
5.2. Analysis of Overall Model Performance
5.3. Spatial Insights into Variable Contributions
6. Discussion
6.1. Analysis of Bike–Metro Transfer Patterns
6.2. Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibraeva, A.; de Almeida Correia, G.; Silva, C.; Antunes, A. Transit-oriented development: A review of research achievements and challenges. Transp. Res. Part A Policy Pract. 2020, 132, 110–130. [Google Scholar] [CrossRef]
- Aghaabbasi, M.; Chalermpong, S. A meta-analytic review of the association between the built environment and integrated usage of rail transport and bike-sharing. Transp. Res. Interdiscip. Perspect. 2023, 21, 100860. [Google Scholar] [CrossRef]
- van Marsbergen, A.; Ton, D.; Nijënstein, S.; Annema, J.; van Oort, N. Exploring the role of bicycle sharing programs in relation to urban transit. Case Stud. Transp. Policy 2022, 10, 529–538. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Z.; Chen, J.; Ni, L.; Dong, J. Investigating travel flow differences between peak hours with spatial model with endogenous weight matrix using automatic vehicle identification data. J. Adv. Transp. 2022, 2022, 7729068. [Google Scholar] [CrossRef]
- Zhou, X.; Dong, Q.; Huang, Z.; Yin, G.; Zhou, G.; Liu, Y. The spatially varying effects of built environment characteristics on the integrated usage of dockless bike-sharing and public transport. Sustain. Cities Soc. 2023, 89, 104348. [Google Scholar] [CrossRef]
- van Mil, J.F.; Leferink, T.S.; Annema, J.A.; van Oort, N. Insights into factors affecting the combined bicycle-transit mode. Public Transp. 2021, 13, 649–673. [Google Scholar] [CrossRef]
- Morton, C.; Kelley, S.; Monsuur, F.; Hui, T. A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London. J. Transp. Geogr. 2021, 94, 103125. [Google Scholar] [CrossRef]
- Jaber, A.; Abu Baker, L.; Csonka, B. The influence of public transportation stops on bike-sharing destination trips: Spatial analysis of Budapest City. Future Transp. 2022, 2, 688–697. [Google Scholar] [CrossRef]
- Tobler, W. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Thomas, T.; Brussel, M.; van Maarseveen, M. Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China. J. Transp. Geogr. 2017, 58, 59–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.-J.; Gao, S.; Gong, Y.; Liu, Y. Integrating smart card records and dockless bike-sharing data to understand the effect of the built environment on cycling as a feeder mode for metro trips. J. Transp. Geogr. 2024, 121, 103995. [Google Scholar] [CrossRef]
- Deng, Y.; He, R.; Liu, Y. Crime risk prediction incorporating geographical spatiotemporal dependency into machine learning models. Inf. Sci. 2023, 646, 119414. [Google Scholar] [CrossRef]
- Ghimire, S.; Bardaka, E. Do low-income households walk and cycle to reduce their transport costs? Insights from the 2017 US National Household Travel Survey. Int. J. Sustain. Transp. 2024, 18, 421–436. [Google Scholar] [CrossRef]
- Yin, Z.; Guo, Y.; Zhou, M.; Wang, Y.; Tang, F. Integration between Dockless Bike-Sharing and Buses: The Effect of Urban Road Network Characteristics. Land 2024, 13, 1209. [Google Scholar] [CrossRef]
- Hu, S.H.; Chen, M.Y.; Jiang, Y.; Sun, W.; Xiong, C.F. Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bike sharing systems. J. Transp. Ge-Ography 2022, 98, 103271. [Google Scholar] [CrossRef]
- Bi, H.; Gao, H.; Li, A.; Ye, Z. Using topic modeling to unravel the nuanced effects of built environment on bicycle-metro integrated usage. Transp. Res. Part A Policy Pract. 2024, 185, 104120. [Google Scholar] [CrossRef]
- Cascajo, R.; Lopez, E.; Herrero, F.; Monzon, A. User perception of transfers in multimodal urban trips: A qualitative study. Int. J. Sustain. Transp. 2019, 13, 393–406. [Google Scholar] [CrossRef]
- Ulak, M.; Yazici, A.; Aljarrah, M. Value of convenience for taxi trips in New York City. Transp. Res. Part A Policy Pract. 2020, 142, 85–100. [Google Scholar] [CrossRef]
- Gilliland, J.; Maltby, M.; Xu, X.; Luginaah, I.; Shah, T. Influence of the natural and built environment on personal exposure to fine particulate matter (PM2.5) in cyclists using city designated bicycle routes. Urban Sci. 2018, 2, 120. [Google Scholar] [CrossRef]
- Cervero, R.; Sarmiento, O.; Jacoby, E.; Gomez, L.; Neiman, A. Influences of built environments on walking and cycling: Lessons from Bogotá. Int. J. Sustain. Transp. 2009, 3, 203–226. [Google Scholar] [CrossRef]
- Cervero, R.; Denman, S.; Jin, Y. Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns. Transp. Policy 2018, 74, 153–164. [Google Scholar] [CrossRef]
- Nielsen, T.; Skov-Petersen, H. Bikeability–Urban structures supporting cycling. Effects of local, urban and regional scale urban form factors on cycling from home and workplace locations in Denmark. J. Transp. Geogr. 2018, 69, 36–44. [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Gong, Y.; Kang, Y.; Yang, L.; Gou, Z. The impacts of the built environment on bicycle-metro transfer trips: A new method to delineate metro catchment area based on people’s actual cycling space. J. Transp. Geogr. 2021, 97, 103215. [Google Scholar] [CrossRef]
- Shin, H.; Cagnina, C.; Basiri, A. The impact of built environment on bike commuting: Utilising strava bike data and geographically weighted models. AGILE: GIScience Ser. 2022, 3, 15. [Google Scholar] [CrossRef]
- Mix, R.; Hurtubia, R.; Raveau, S. Optimal location of bike-sharing stations: A built environment and accessibility approach. Transp. Res. Part A Policy Pract. 2022, 160, 126–142. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Q. Spatial heterogeneity and nonlinearity study of bike-sharing to subway connections from the perspective of built environment. Sustain. Cities Soc. 2024, 114, 105766. [Google Scholar] [CrossRef]
- Bhat, C. A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation. Transportation 2015, 42, 879–914. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Schimohr, K.; Doebler, P.; Scheiner, J. Prediction of bike-sharing trip counts: Comparing parametric spatial regression models to a geographically weighted XGBoost algorithm. Geogr. Anal. 2023, 55, 651–684. [Google Scholar] [CrossRef]
- RK, P.; M. AboRas, K.; Youssef, A. Application of an ensemble CatBoost model over complex dataset for vehicle classification. PLoS ONE 2024, 19, e0304619. [Google Scholar] [CrossRef]
- Ganji, A.; Youssefi, O.; Xu, J.; Mallinen, K.; Lloyd, M.; Wang, A.; Bakhtari, A.; Weichenthal, S.; Hatzopoulou, M. Design, calibration, and testing of a mobile sensor system for air pollution and built environment data collection: The urban scanner platform. Environ. Pollut. 2023, 317, 120720. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S. Nonlinear relationships and interaction effects of an urban environment on crime incidence: Application of urban big data and an interpretable machine learning method. Sustain. Cities Soc. 2023, 91, 104419. [Google Scholar] [CrossRef]
- Hatami, F.; Rahman, M.; Nikparvar, B.; Thill, J. Non-linear associations between the urban built environment and commuting modal split: A random forest approach and SHAP evaluation. IEEE Access 2023, 11, 12649–12662. [Google Scholar] [CrossRef]
- Kiely, T.; Bastian, N. The spatially conscious machine learning model. Stat. Anal. Data Min. ASA Data Sci. J. 2020, 13, 31–49. [Google Scholar] [CrossRef]
- Hu, S.; Xiong, C.; Chen, P.; Schonfeld, P. Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models. Transp. Res. Part A Policy Pract. 2023, 174, 103743. [Google Scholar] [CrossRef]
- Soltani, A.; Heydari, M.; Aghaei, F.; Pettit, C. Housing price prediction incorporating spatio-temporal dependency into machine learning algorithms. Cities 2022, 131, 103941. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, D.; Guan, X. Co-evolution of the built environment and travel behaviour in Shenzhen, China. Transp. Res. Part D Transp. Environ. 2022, 107, 103291. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, Y.; He, B.; Nie, K.; Tu, W.; Du, Q.; Li, Q. A Bayesian spatio-temporal model to analyzing the stability of patterns of population distribution in an urban space using mobile phone data. Int. J. Geogr. Inf. Sci. 2020, 35, 116–134. [Google Scholar] [CrossRef]
- Agnihotri, V.; Paul, S.K. Housing market shifts favouring transit-oriented development in emerging economies: The link between metro rails and housing price dynamics in Delhi. Int. J. Hous. Mark. Anal. 2024, 17, 8–31. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Cardozo, O.; García-Palomares, J. Transit ridership forecasting at station level: An approach based on distance-decay weighted regression. J. Transp. Geogr. 2011, 19, 1081–1092. [Google Scholar] [CrossRef]
- Moran, P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- AlQuhtani, S.; Anjomani, A. Do rail transit stations affect the population density changes around them? The case of Dallas-Fort Worth Metropolitan Area. Sustainability 2021, 13, 3355. [Google Scholar] [CrossRef]
- Kumakoshi, Y.; Koizumi, H.; Yoshimura, Y. Diversity and density of urban functions in station areas. Comput. Environ. Urban Syst. 2021, 89, 101679. [Google Scholar] [CrossRef]
- Guo, Q.; Fan, J.; Zou, K.; Qiu, B.; Zheng, Z. Influence of plant diversity and spatial pattern of urban green spaces on socioeconomic activities: Insights from Xiamen, China. Int. J. Sustain. Dev. World Ecol. 2024, 31, 330–347. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, T.; Shi, Z.; He, M. Understanding the route choice behaviour of metro-bikeshare users. Transp. Res. Part A Policy Pract. 2022, 166, 460–475. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R. Introduction to spatial econometrics. In Boca Raton, 1st ed.; Chapman and Hall/CRC: London, UK, 2009. [Google Scholar] [CrossRef]
- Yang, C.; Chen, M.; Yuan, Q. The geography of freight-related accidents in the era of E-commerce: Evidence from the Los Angeles metropolitan area. J. Transp. Geogr. 2021, 92, 102989. [Google Scholar] [CrossRef]
- Ahn, J.M.; Kim, J.; Kim, K. Ensemble machine learning of gradient boosting (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM for harmful algal blooms forecasting. Toxins 2023, 15, 608. [Google Scholar] [CrossRef]
- Belete, D.; Huchaiah, M. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int. J. Comput. Appl. 2022, 44, 875–886. [Google Scholar] [CrossRef]
- Conrow, L.; Mooney, S.; Wentz, E. The association between residential housing prices, bicycle infrastructure and ridership volumes. Urban Stud. 2021, 58, 787–808. [Google Scholar] [CrossRef]
- Kucukpehlivan, T.; Cetin, M.; Aksoy, T.; Kurkcuoglu, M.A.S.; Cabuk, S.N.; Pekkan, O.I.; Dabanli, A.; Cabuk, A. Determination of the impacts of urban-planning of the urban land area using GIS hotspot analysis. Comput. Electron. Agric. 2023, 210, 107935. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, K.; Yin, L.; Zhang, F. Investigating evolutions of metro station functions in Shenzhen with long-term smart card data. In Proceedings of the Geoinformatics in Sustainable Ecosystem and Society: 7th International Conference, Guangzhou, China, 21–25 November 2019; Springer: Singapore, 2020; pp. 33–53. [Google Scholar] [CrossRef]
- Alexander, C.; Ishikawa, S.; Silverstein, M. A Pattern Language: Towns, Buildings, Construction; Oxford University Press: New York, NY, USA, 1977. [Google Scholar]
- Mehaffy, M.W.; Kryazheva, Y.; Rudd, A.; Salingaros, N.A.; Gren, A.; Mehaffy, L.; Mouzon, S.; Petrella, L.; Porta, S.; Qamar, L.; et al. A New Pattern Language for Growing Regions: Places, Networks, Processes; Sustasis Press: Portland, OR, USA; Centre for the Future of Places KTH Royal Institute of Technology: Stockholm, Sweden; UN-Habitat: New York, NY, USA, 2020. [Google Scholar]
- Gao, F.; Yang, L.; Han, C.; Tang, J.; Li, Z. A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership. J. Transp. Geogr. 2022, 105, 103472. [Google Scholar] [CrossRef]
- Cortina, M.; Chiabaut, N.; Leclercq, L. Fostering synergy between transit and autonomous mobility-on-demand systems: A dynamic modeling approach for the morning commute problem. Transp. Res. Part A Policy Pract. 2023, 170, 103638. [Google Scholar] [CrossRef]
- El-Assi, W.; Salah Mahmoud, M.; Nurul Habib, K. Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto. Transportation 2017, 44, 589–613. [Google Scholar] [CrossRef]
- Piatkowski, D.; Marshall, W. Not all prospective bicyclists are created equal: The role of attitudes, socio-demographics, and the built environment in bicycle commuting. Travel Behav. Soc. 2015, 2, 166–173. [Google Scholar] [CrossRef]
- Alexander, C. A Vision of a Living World. In The Nature of Order: An Essay on the Art of Building and the Nature of the Universe; Center for Environmental Structure: Berkeley, CA, USA, 2005; Volume 3. [Google Scholar]
- Mehaffy, M.W. Health and happiness in the new urban agenda: The central role of public space. Sustainability 2021, 13, 5891. [Google Scholar] [CrossRef]
(a) Smart card records data on 4 February 2021 | ||||
User ID | Start Station ID | End Station ID | Start time | End time |
0221581 ****** | 1262003000 | 1262005000 | 12:10:12 | 12:14:23 |
0226554 ****** | 1260037000 | 1260032000 | 08:46:02 | 08:58:31 |
(b) DBS data on 4 February 2021 | ||||
User ID | Start point coordinates | Endpoint coordinates | Start time | End time |
81a5fd1 ****** | 114.13024793704399, 22.6039433644229 | 114.125328188566, 22.5993130539815 | 08:18:55 | 08:25:14 |
35df4e5 ****** | 113.95979000243601, 22.585468002646998 | 113.95289207820299, 22.581118946767504 | 19:18:53 | 19:38:53 |
Classification | Data Name | Data Shape | Data Type | Data Format | |
---|---|---|---|---|---|
Built Environment | Cycling Route | Road intersection | Point | Vector | SHP |
Bus stop | Point | Vector | SHP | ||
Bike lane | Line | Vector | SHP | ||
Slope | Area | Vector | SHP | ||
Street view recognition result data | Point | Vector | CSV | ||
Urban Space | Land use status data | Area | Vector | SHP | |
POI data | Point | Vector | SHP | ||
House age | Area | Raster | TIF | ||
House price | Area | Raster | TIF | ||
PM2.5 | Area | Raster | TIF |
(a) Road intersection | (b) Bus stop | |||||
Name | Longitude | Latitude | Name | Route | Longitude | Latitude |
Democracy Avenue | 113.930182 | 22.797852 | Qiangxia Bus Stop | Route 21 | 113.962306 | 22.807132 |
Fuzhou Avenue | 113.811377 | 22.782892 | Traffic Management Bus Stop | Baozhang Line | 113.954753 | 22.801905 |
(c) Bike lane | (d) Slope | |||||
Name | Class | Length | ObjectID | Length | Area | Slope |
Yangtai Mountain Greenway | Cycleway | 1.10971 km | 20 | 2000 m | 250,000 m2 | 18.551986 |
Yangtai Mountain Greenway | Cycleway | 3.992617 km | 21 | 2000 m | 250,000 m2 | 21.960523 |
(e) Street View Recognition Result Data | ||||||
File_name | Vegetation | Sky | Longitude | Latitude | ||
11 | 16.244175 | 11.1237 | 114.109224100000010 | 22.541624600300000 | ||
12 | 22.947625000000002 | 18.8075 | 114.107974900000000 | 22.541463299699998 | ||
(f) POI data | ||||||
Name | Broad Category | Intermediate Category | Specific Category | Address | Longitude | Latitude |
Yanchuan Cultural Square | Scenic Spots and Historic Sites | Parks and Squares | Urban Square | Yanchuan Village, Songgang Town | 113.8602551 | 22.80112634 |
Shenzhen Huayu Zhongyingwen School | Science, Education, and Cultural Services | School | Primary School | No. 2 Wuyuan Road | 113.8409507 | 22.80668578 |
Variable Name | Variable Description | Mean | Variance | Max | Min | |
---|---|---|---|---|---|---|
Dependent Variables | ||||||
Morning Access | Bike–metro transfer count entering metro stations from 7:00–9:00 on weekdays | 117.080 | 163.603 | 1197 | 0 | |
Morning Egress | Bike–metro transfer count exiting metro stations from 7:00–9:00 on weekdays | 102.165 | 125.057 | 746 | 0 | |
Evening Access | Bike–metro transfer count entering metro stations from 17:30–19:30 on weekdays | 32.478 | 41.398 | 326.4 | 0 | |
Evening Egress | Bike–metro transfer count exiting metro stations from 17:30–19:30 on weekdays | 37.981 | 52.794 | 398.8 | 0 | |
Independent Variables | ||||||
Trip Characteristics | Morning access metro trip distance (km) | 9.006 | 4.880 | 35.355 | 0 | |
Morning access bike trip distance (km) | 2.918 | 163.441 | 145.090 | 0 | ||
Morning access transfer distance (km) | 0.073 | 0.002 | 0.226 | 0 | ||
Morning egress metro trip distance (km) | 8.935 | 3.655 | 27.294 | 0 | ||
Morning egress bike trip distance (km) | 1.466 | 23.651 | 73.737 | 0 | ||
Morning egress transfer distance (km) | 0.077 | 0.002 | 0.207 | 0 | ||
Evening access metro trip distance (km) | 8.731 | 3.571 | 24.984 | 0 | ||
Evening access bike trip distance (km) | 3.158 | 328.689 | 255.138 | 0 | ||
Evening access transfer distance (km) | 0.072 | 0.001 | 0.198 | 0 | ||
Evening egress metro trip distance (km) | 8.766 | 4.901 | 27.283 | 0 | ||
Evening egress bike trip distance (km) | 1.004 | 0.644 | 10.217 | 0 | ||
Evening egress transfer distance (km) | 0.075 | 0.002 | 0.207 | 0 | ||
Population Density | Residential population: density of residential population in the catchment area (people/km2) | 26,276.787 | 25,137.688 | 121,565.238 | 0 | |
Employment population: density of employment-population in the catchment area (people/km2) | 26,669.335 | 23,404.528 | 159,917.34 | 111.436 | ||
Built Environment | Station Location | Number of stations to the city center | 9.068 | 5.227 | 25 | 0 |
Number of stations to the district center | 4.426 | 3.610 | 20 | 0 | ||
Euclidean distance to the nearest metro station (km) | 0.928 | 0.429 | 3.063 | 0 | ||
X: longitude of the metro station | 114.020 | 0.108 | 114.276 | 113.793 | ||
Y: latitude of the metro station | 22.595 | 0.075 | 22.787 | 22.480 | ||
Economic Zone: whether the metro station is in the Shenzhen Special Economic Zone (1: yes, 0: no) | 0.582 | 0.494 | 1 | 0 | ||
Cycling Route | Road intersection: density of road intersections around the metro station (intersections/km2) | 12.263 | 162.684 | 79.021 | 0 | |
Bus stop: density of bus stops in the catchment area (stops/km2) | 7.268 | 17.971 | 34.918 | 0 | ||
Bike lane: density of bike lanes in the catchment area (km/km2) | 400.014 | 768,222.88 | 6162.929 | 0 | ||
Slope: average slope of roads in the catchment is (%) | 6.905 | 3.200 | 19.618 | 1.412 | ||
Green view index, percentage of green space in street view images (%) | 31.055 | 9.118 | 59.183 | 6.324 | ||
Sky view index, percentage of sky view in street view images (%) | 23.310 | 8.366 | 56.271 | 8.621 | ||
Urban Space | Urban community: percentage of urban community area in the catchment area | 0.322 | 0.236 | 0.907 | 0 | |
Urban village: percentage of urban village area in the catchment area | 0.114 | 0.121 | 0.553 | 0 | ||
Commercial POI: density of commercial POIs in the catchment area (POIs/km2) | 191.510 | 39,456.306 | 1262.536 | 0 | ||
Public POI: density of public POIs in the catchment area (POIs/km2) | 4.847 | 37.345 | 41.167 | 0 | ||
Landscape POI: density of landscape POIs in the catchment area (POIs/km2) | 3.818 | 22.795 | 50.019 | 0 | ||
Workplace POI: density of workplace POIs in the catchment area (POIs/km2) | 146.060 | 255.780 | 2109.568 | 0 | ||
Financial POI: density of financial POIs in the catchment area (POIs/km2) | 34.664 | 3222.043 | 391.976 | 0 | ||
Hospital POI: density of hospital POIs (POIs/km2) | 0.276 | 0.226 | 3.941 | 0 | ||
Cultural POI: density of cultural POIs in the catchment area (POIs/km2) | 55.085 | 3246.485 | 333.671 | 0 | ||
POI diversity: Shannon entropy index for POI diversity | 2.238 | 0.434 | 2.846 | 0 | ||
Plot ratio: average plot ratio in cat | 2.038 | 1.607 | 11.900 | 0.001 | ||
House age: average age of buildings in the catchment area (years) | 18.995 | 5.169 | 31.934 | 10.142 | ||
House price: average house price in the catchment area (CNY/km2) | 65,967.604 | 20,110.367 | 124,133.750 | 32,469.873 | ||
PM2.5: average PM2.5 concentration in the catchment area | 22.510 | 1.333 | 25.696 | 16.036 | ||
Spatial lag | Morning access spatial lag | 117.452 | 90.086 | 664.004 | 0 | |
Morning egress spatial lag | 101.786 | 60.896 | 330.009 | 0 | ||
Evening access spatial lag | 32.320 | 18.198 | 85.662 | 0.0636 | ||
Evening egress spatial lag | 38.289 | 28.796 | 187.274 | 0 |
Model | Dependent Variable | N_Estimators | Min_Samples_Split | Max_Features | Max_Depth | Learning_Rate | Subsample | Test_Rate | RMSE | MAE | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
GBDT | Morning Access | 200 | —— | sqrt | 5 | 0.2 | —— | 0.2 | 115.907 | 70.907 | 0.349 |
GBDT | Morning Egress | 200 | —— | sqrt | 5 | 0.2 | —— | 0.2 | 42.615 | 27.152 | 0.279 |
GBDT | Evening Access | 200 | —— | sqrt | 5 | 0.2 | —— | 0.2 | 31.141 | 21.255 | 0.304 |
GBDT | Evening Egress | 200 | —— | sqrt | 3 | 0.05 | —— | 0.2 | 77.683 | 54.022 | 0.448 |
RF | Morning Access | 500 | 2 | sqrt | —— | —— | —— | 0.2 | 91.641 | 62.954 | 0.593 |
RF | Morning Egress | 100 | 14 | sqrt | —— | —— | —— | 0.2 | 78.558 | 63.308 | 0.413 |
RF | Evening Access | 50 | 14 | sqrt | —— | —— | —— | 0.2 | 28.416 | 20.672 | 0.421 |
RF | Evening Egress | 100 | 3 | sqrt | —— | —— | —— | 0.2 | 38.928 | 24.619 | 0.399 |
XGBoost | Morning Access | 300 | —— | —— | 2 | 0.2 | 0.7 | 0.2 | 95.456 | 73.968 | 0.524 |
XGBoost | Morning Egress | 100 | —— | —— | 3 | 0.05 | 1.0 | 0.2 | 114.547 | 69.784 | 0.387 |
XGBoost | Evening Access | 200 | —— | —— | 2 | 0.01 | 0.8 | 0.2 | 42.058 | 24.093 | 0.141 |
XGBoost | Evening Egress | 300 | —— | —— | 2 | 0.2 | 0.7 | 0.2 | 41.054 | 28.353 | 0.187 |
CatBoost | Morning Access | 500 | —— | —— | 2 | 0.2 | 0.8 | 0.2 | 94.286 | 62.465 | 0.535 |
CatBoost | Morning Egress | 100 | —— | —— | 4 | 0.1 | 1.0 | 0.2 | 115.633 | 71.187 | 0.375 |
CatBoost | Evening Access | 500 | —— | —— | 2 | 0.2 | 0.8 | 0.2 | 37.749 | 22.468 | 0.308 |
CatBoost | Evening Egress | 500 | —— | —— | 4 | 0.05 | 1.0 | 0.2 | 35.117 | 22.577 | 0.405 |
GBDT + S-lag | Morning Access | 200 | —— | sqrt | 5 | 0.2 | —— | 0.2 | 88.765 | 58.817 | 0.618 |
GBDT + S-lag | Morning Egress | 200 | —— | sqrt | 5 | 0.2 | —— | 0.2 | 40.810 | 22.179 | 0.339 |
GBDT + S-lag | Evening Access | 200 | —— | sqrt | 5 | 0.2 | —— | 0.2 | 27.644 | 18.018 | 0.452 |
GBDT + S-lag | Evening Egress | 200 | —— | sqrt | 3 | 0.05 | —— | 0.2 | 77.351 | 56.125 | 0.453 |
RF + S-lag | Morning Access | 500 | 2 | sqrt | —— | —— | —— | 0.2 | 86.215 | 57.009 | 0.640 |
RF + S-lag | Morning Egress | 100 | 14 | sqrt | —— | —— | —— | 0.2 | 72.983 | 56.749 | 0.513 |
RF + S-lag | Evening Access | 50 | 14 | sqrt | —— | —— | —— | 0.2 | 25.821 | 25.821 | 0.522 |
RF + S-lag | Evening Egress | 100 | 3 | sqrt | —— | —— | —— | 0.2 | 33.144 | 20.590 | 0.564 |
XGBoost + S-lag | Morning Access | 300 | —— | —— | 2 | 0.2 | 0.7 | 0.2 | 84.318 | 59.762 | 0.628 |
XGBoost + S-lag | Morning Egress | 300 | —— | —— | 2 | 0.2 | 0.7 | 0.2 | 134.682 | 83.629 | 0.152 |
XGBoost + S-lag | Evening Access | 100 | —— | —— | 7 | 0.01 | 0.8 | 0.2 | 39.786 | 22.356 | 0.231 |
XGBoost + S-lag | Evening Egress | 300 | —— | —— | 7 | 0.01 | 0.6 | 0.2 | 34.008 | 21.616 | 0.442 |
CatBoost + S-lag | Morning Access | 500 | —— | —— | 3 | 0.05 | 0.6 | 0.2 | 98.476 | 66.625 | 0.493 |
CatBoost + S-lag | Morning Egress | 300 | —— | —— | 3 | 0.05 | 0.8 | 0.2 | 122.590 | 76.852 | 0.298 |
CatBoost + S-lag | Evening Access | 100 | —— | —— | 4 | 0.1 | 0.6 | 0.2 | 37.334 | 21.868 | 0.323 |
CatBoost + S-lag | Evening Egress | 200 | —— | —— | 4 | 0.1 | 0.8 | 0.2 | 30.632 | 19.986 | 0.547 |
Pattern Number | Pattern | Station Count | Percentage (%) | Pattern Number | Pattern | Station Count | Percentage (%) |
---|---|---|---|---|---|---|---|
1 | HHHH | 56 | 23.6 | 9 | LHHH | 3 | 1.3 |
2 | HHHL | 4 | 1.7 | 10 | LHHL | 12 | 5.1 |
3 | HHLH | 7 | 3 | 11 | LHLH | 0 | 0 |
4 | HHLL | 1 | 0.4 | 12 | LHLL | 6 | 2.5 |
5 | HLHH | 2 | 0.8 | 13 | LLHH | 2 | 0.8 |
6 | HLHL | 0 | 0 | 14 | LLHL | 5 | 2.1 |
7 | HLLL | 2 | 0.8 | 15 | LLLH | 1 | 0.4 |
8 | HLLH | 10 | 4.2 | 16 | LLLL | 126 | 53.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Meng, Y.; Chen, X.-J.; Liu, H.; Gong, Y. The Nonlinear Effect of the Built Environment on Bike–Metro Transfer in Different Times and Transfer Flows Considering Spatial Dependence. Sustainability 2025, 17, 251. https://doi.org/10.3390/su17010251
Zhang Y, Meng Y, Chen X-J, Liu H, Gong Y. The Nonlinear Effect of the Built Environment on Bike–Metro Transfer in Different Times and Transfer Flows Considering Spatial Dependence. Sustainability. 2025; 17(1):251. https://doi.org/10.3390/su17010251
Chicago/Turabian StyleZhang, Yuan, Yining Meng, Xiao-Jian Chen, Huiming Liu, and Yongxi Gong. 2025. "The Nonlinear Effect of the Built Environment on Bike–Metro Transfer in Different Times and Transfer Flows Considering Spatial Dependence" Sustainability 17, no. 1: 251. https://doi.org/10.3390/su17010251
APA StyleZhang, Y., Meng, Y., Chen, X.-J., Liu, H., & Gong, Y. (2025). The Nonlinear Effect of the Built Environment on Bike–Metro Transfer in Different Times and Transfer Flows Considering Spatial Dependence. Sustainability, 17(1), 251. https://doi.org/10.3390/su17010251