WEF Nexus Indicators for Livestock Systems: A Comparative Analysis in Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and the Nexus–MESMIS Approach
2.2. Sampling and Analysis of Data from the ELS and ILS Systems
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Composition of the WEF Nexus Sustainability Indicators
Dimension | Scope | Indicator | Weight | Variable | Weight | Measurement | Question |
---|---|---|---|---|---|---|---|
Food | Organizational and institutional environment | Tradition and culture | 2 | Importance of culture and tradition in the farm | 0 | Not Important | 10 |
0.5 | Not very important | ||||||
1 | Not Important | ||||||
1.5 | Important | ||||||
2 | Very Important | ||||||
Supporting organizations | 2 | Degree of a relationship with supporting organizations | 0 | Never | 11 | ||
0.5 | Rarely | ||||||
1 | Occasionally | ||||||
1.5 | Frequently | ||||||
2 | Always | ||||||
Public policies | 2 | Knowledge and access to public policies | 0 | Doesn’t know | 12 | ||
0.5 | Knows, but does not have access | ||||||
1 | Knows, but chooses not to access | ||||||
1.5 | Accesses one policy | ||||||
2 | Accesses two policies | ||||||
Social and associative participation | 2 | Degree of participation in producer associations, unions, and the local community | 0 | Very low | 13 | ||
0.5 | Low | ||||||
1 | Medium | ||||||
1.5 | High | ||||||
2 | Very high | ||||||
Cooperation in the markets | 2 | Existence of collaborative commercialization | 0 | No | 14 | ||
1 | Yes, occasionally | ||||||
1.5 | Yes, regularly | ||||||
2 | Always | ||||||
Logistic and energy infrastructure | 2 | Conditions of the energy and logistics infrastructure for the development of farm activities | 0 | Very bad | 15 | ||
0.5 | Bad | ||||||
1 | Regular | ||||||
1.5 | Good | ||||||
2 | Very good | ||||||
Quality of life | 4 | Conditions that provide structural quality of life | 0 | Very bad | 8 | ||
1 | Bad | ||||||
2 | Regular | ||||||
3 | Good | ||||||
4 | Very good | ||||||
Succession/transmissibility | 4 | Existence and predisposition of successors to continue operating the farm | 0 | No successor, age > 60 | 16 | ||
1 | No successor, age < 60 | ||||||
2 | Existence without predisposition/with an area < 300 ha | ||||||
2.5 | Existence without predisposition/with an area > 300 ha | ||||||
3 | Existence with predisposition/with an area < 300 ha | ||||||
4 | Existence with predisposition/with area over 300 ha | ||||||
Productive and technological environment | Genetics of animal production | 4 | Beef cattle breeds raised on the farm | 0 | No breed definition | 17 | |
2 | Intermediate breed pattern | ||||||
4 | Defined breed pattern | ||||||
Grassland management | 6 | Relationship between load and load capacity of the grassland | 3 | >10 cm | 18 | ||
1.5 | Between 5 and 10 cm | ||||||
0 | <5 cm | ||||||
Forages, invasive plants, and land cover | 3 | More than 90% cover-grassland without invasives | 19 | ||||
2.5 | Coverage between 70 and 90%-grassland without invasives | ||||||
2 | Coverage between 70 and 90%-grassland with up to 10% invasives | ||||||
1.5 | Coverage between 50 and 70%-grassland with up to 20% invasives | ||||||
1 | Coverage less than 50%-grassland with up to 20% invasives | ||||||
0 | Coverage less than 50%, with invasives and exposed soil | ||||||
Crop management | 6 | Agriculture incorporation time | 3 | Consolidated (>10 years) | 21 | ||
1.5 | Between 5 and 10 years | ||||||
0 | Recent (<5 years) | ||||||
Percentage of agriculture in the system | 0 | >50% with crops | 20 | ||||
1 | 40–50% with crops | ||||||
1.5 | 30–40% with crops | ||||||
2 | 20–30% with crops | ||||||
2.5 | 10–20% with crops | ||||||
3 | Less 10% with crops | ||||||
Feed management | 6 | Livestock feed management | 0 | Feedlot or more than 25% supplementation or 30% cultivated pasture | 24 | ||
1 | <25% supplementation or more 15–30% cultivated pasture | ||||||
2 | <15% cultivated pasture | ||||||
4 | Up to 20% of natural grassland improved | ||||||
6 | Exclusively natural grassland | ||||||
Dependence on external inputs | 6 | Degree of dependence of the farm on external inputs | 3 | Independent | 25 | ||
2.25 | Slightly dependent | ||||||
1.5 | Moderately dependent | ||||||
0.75 | Very dependent | ||||||
0 | Totally dependent | ||||||
Impact of scarcity of inputs on production | 3 | Not affected | 26 | ||||
2.25 | Slightly affected | ||||||
1.5 | Medium affected | ||||||
0.75 | Very affected | ||||||
0 | Unviable | ||||||
Productive diversification | 6 | Number of productive activities | 0 | A single productive activity | 27 | ||
2 | Two, with a predominance of one | ||||||
4 | Two, with a balance in both | ||||||
6 | Three or more productive activities | ||||||
Economic management | 4 | Use of economic management tools in the property | 0 | Does not use management tools | 28 | ||
2 | Yes, with control of income and expenses | ||||||
4 | Yes, with cost analysis and planning | ||||||
Dependence on the flow of capital | 4 | Source of income | 4 | 100% of the farm | 29 | ||
3 | 90–100% of the farm | ||||||
2.5 | 80–90% of the farm | ||||||
2 | 70–80% of the farm | ||||||
1.5 | 60–70% of the farm | ||||||
1 | 50–60% of the farm | ||||||
0 | <50% of the farm | ||||||
Availability of labour force | 4 | Level of labour availability | 0 | Very low | 30 | ||
1 | Low | ||||||
2 | Medium | ||||||
3 | High | ||||||
4 | Very high | ||||||
Cattle raiding | 4 | Incidence of cattle raiding in the location of the farm | 4 | None | 31 | ||
2 | Low | ||||||
1 | Medium | ||||||
0 | High | ||||||
Commercialization and Consumption | Market structure and prices | 8 | Characterization of the number of buyers of the main farming product | 0 | Single buyer | 32 | |
1 | Low number of buyers | ||||||
2 | Medium number of buyers | ||||||
3 | High number of buyers | ||||||
4 | Very high number of buyers | ||||||
Price negotiation power | 0 | No negotiating power | 33 | ||||
1 | Low negotiating power | ||||||
2 | Medium negotiating power | ||||||
3 | High negotiating power | ||||||
4 | I set the price of my product | ||||||
Commercialization chains | 8 | Geographical scope of consumption of the main product of the farm | 4 | Locally | 34 | ||
3 | Regionally | ||||||
2 | Nationally | ||||||
1 | Internationally | ||||||
Type of marketing channel for the main product of the farm | 4 | Level zero | 35 | ||||
3 | One level | ||||||
2 | Two levels | ||||||
1 | Three levels | ||||||
0 | Four levels | ||||||
Value addition | 6 | Comparative position of the main product value in relation to other regions | 0 | Lower value | 36 | ||
1 | Equal value | ||||||
3 | Higher value | ||||||
Comparative price position received by the main product in relation to the region | 0 | Below market average | 37 | ||||
1 | Market average | ||||||
3 | Above market average | ||||||
Secondary products | 4 | Additional number of products marketed | 0 | No other products | 38 | ||
1 | One product | ||||||
2 | Two products | ||||||
4 | Three or more products | ||||||
Self-consumption and direct sale | 4 | Amount of food that the family consumes from the farm | 0 | No food | 39 | ||
0.5 | Small portion of food | ||||||
1 | Half of the food | ||||||
1.5 | Most food | ||||||
2 | Almost all food | ||||||
Frequency of direct sales of products to the consumer | 0 | Never | 40 | ||||
0.5 | Rarely | ||||||
1 | Sometimes | ||||||
1.5 | Often | ||||||
2 | Always | ||||||
Energy | Electric | Generation | 20 | Independent generation | 20 | Renewable | 44 |
10 | Non-renewable | ||||||
0 | None | ||||||
Consumption | 20 | Continuous use | 8 | Efficient | 48 | ||
6 | Regular | ||||||
4 | Poorly efficient | ||||||
0 | Inefficient | ||||||
High energy-consumption equipment | 0 | Yes | 45 | ||||
4 | No | ||||||
Demand | 1 | High >800 kW | 46 | ||||
2.5 | Medium-High 401 < x < 800 kW | ||||||
3 | Medium-Low 201 < x < 400 kW | ||||||
4.5 | Low 101 < x < 200 kW | ||||||
6 | Very low <100 kW | ||||||
Excess of reactants | 0 | Yes | 47 | ||||
2 | No | ||||||
Grid | 20 | Access to concessionaire grid | 6 | Yes | 41 | ||
0 | No | ||||||
Quality | 4 | Good | 43 | ||||
2 | Average | ||||||
0 | Poor | ||||||
Grid dependence | 0 | Totally dependent | 42 | ||||
5 | Partially dependent | ||||||
10 | Independent | ||||||
Thermal | Thermal energy use | 10 | Cooking | 3 | 3 or more sources | 49 | |
2 | 2 sources | ||||||
0 | 1 source | ||||||
Personal hygiene | 3 | 3 or more sources | 50 | ||||
2 | 2 sources | ||||||
0 | 1 source | ||||||
House heating | 2 | 3 or more sources | 51 | ||||
1 | 2 sources | ||||||
0 | 1 source | ||||||
Productive process | 2 | biomass | 52 | ||||
1 | other sources | ||||||
0 | no | ||||||
Thermal energy source | 10 | Source | 10 | Own-Waste | 53 | ||
9 | External-Waste | ||||||
7 | Native sustainable use | ||||||
5 | Own exotic planting | ||||||
2 | Own native planting | ||||||
1 | External-Reforestation | ||||||
0 | Indiscriminate use of native forest | ||||||
0 | External use of native forest | ||||||
Mechanical | Pumping | 5 | Domestic | 3 | No need | 54 | |
3 | Renewable | ||||||
2 | Electric | ||||||
1 | Fossil fuel | ||||||
0 | Needed but not available | ||||||
Productive | 0 | Yes | 55 | ||||
2 | No | ||||||
Fossil fuel | 15 | Intensity of use (L/ha) | 0 | High | 56 | ||
4 | Medium | ||||||
6 | Low | ||||||
Access | 6 | <30 km | 58 | ||||
4 | 30–50 km | ||||||
2 | 50–100 km | ||||||
0 | >100 km | ||||||
Storage | 0 | no | 57 | ||||
1 | 25–100 L | ||||||
3 | >100 L | ||||||
Water | Human consumption | Water quantity | 10 | Source meets consumption | 10 | (scale 5) | 60 |
8 | (scale 4) | ||||||
6 | (scale 3) | ||||||
4 | (scale 2) | ||||||
2 | (scale 1) | ||||||
0 | No access | ||||||
Water quality | 10 | Quality | 10 | Good | 61 | ||
5 | Average | ||||||
0 | Poor | ||||||
Production | Water for production | 10 | Source meets production demand | 10 | (scale 5) | 62 | |
8 | (scale 4) | ||||||
6 | (scale 3) | ||||||
4 | (scale 2) | ||||||
2 | (scale 1) | ||||||
0 | No access | ||||||
Water use efficiency | 20 | Forage and dryland farming | 4 | High/Don’t use | 63 | ||
2 | Medium | ||||||
0 | Low | ||||||
Horticulture | 4 | High/Don’t use | 63 | ||||
2 | Medium | ||||||
0 | Low | ||||||
Rice | 12 | High/Don’t use | 63 | ||||
6 | Medium | ||||||
0 | Low | ||||||
Drought susceptibility | 10 | Occurrence | 5 | No | 64 | ||
0 | Yes | ||||||
Frequency | 5 | Low | 64 | ||||
3 | Medium | ||||||
0 | High | ||||||
Degradation | Existence of conservation practices | 30 | Technological soil management | 6 | Good | 65 | |
3 | Average | ||||||
0 | Poor | ||||||
Soil compaction management | 6 | Good | 66 | ||||
3 | Average | ||||||
0 | Poor | ||||||
Crop management | 6 | Good | 67 | ||||
3 | Average | ||||||
0 | Poor | ||||||
Water management | 12 | Good | 68 | ||||
6 | Average | ||||||
0 | Poor | ||||||
Perception of the erosive process | 10 | Wind erosion | 2 | No | 69 | ||
0 | Yes | ||||||
Concentrated erosion | 2 | No | 70 | ||||
0 | Yes | ||||||
Diffuse erosion | 2 | No | 71 | ||||
0 | Yes | ||||||
Road-related soil erosion | 2 | No | 72 | ||||
0 | Yes | ||||||
River erosion | 2 | No | 73 | ||||
0 | Yes |
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Gupta, J.; Qin, D.; Lade, S.J.; Abrams, J.F.; Andersen, L.S.; McKay, D.I.A.; Bai, X.; Bala, G.; Bunn, S.E.; et al. Safe and just Earth system boundaries. Nature 2023, 619, 102–111. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M.; Fanzo, J.; Burnett, V.; Brauman, K.A. Global diets link environmental sustainability and human health. Nat. Food 2022, 3, 1037–1044. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Godfray, H.C.J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.; Chung, M.G.; Sun, J.; et al. Nexus approaches to global sustainable development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, H.; Zhang, M.; Yang, Y.; Huang, Y.; Chai, N.; Zhang, X.; Zhang, K.; Li, F.-M.; Guo, S.; et al. Adopting plastic film mulching system in the food-energy-water-carbon Nexus to the sustainable dryland agriculture. Agric. Water Manag. 2024, 306, 109183. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. Land-water-energy nexus of sugarcane production in Thailand. J. Clean. Prod. 2018, 182, 521–528. [Google Scholar] [CrossRef]
- Gazal, A.A.; Jakrawatana, N.; Silalertruksa, T.; Gheewala, S.H. Water-energy-landfood nexus for bioethanol development in Nigeria. Biomass Convers. Biorefinery 2022, 14, 1749–1762. [Google Scholar] [CrossRef]
- Heinze, A.; Bongers, F.; Marcial, N.R.; Barrios, L.E.G.; Kuyper, T.W. Farm diversity and fine scales matter in the assessment of ecosystem services and land use scenarios. Agric. Syst. 2022, 196, 103329. [Google Scholar] [CrossRef]
- Keson, J.; Silalertruksa, T.; Gheewala, S.H. Land-Water-GHG-Food Nexus performance and physical-socio-economic-policy factors influencing rice cultivation in Central Thailand. Sci. Total Environ. 2024, 932, 173066. [Google Scholar] [CrossRef] [PubMed]
- Hoff, H. Entendendo o Nexus. Documento de Base Para a Conferência Bonn2011: O Nexus da Água, Energia e Segurança Alimentar; Instituto Ambiental de Estocolmo: Estocolmo, Sweden, 2011. [Google Scholar]
- Morales-Garcia, M.; Rubio, M.Á.G. Sustainability of an economy from the water-energy-food nexus perspective. Environ. Dev. Sustain. 2024, 26, 2811–2835. [Google Scholar] [CrossRef]
- WEF. Global Risks Report 2022. World Economic Forum. Available online: https://www.weforum.org/reports/global-risks-report-2022/ (accessed on 8 September 2024).
- Viana, J.G.A.; Vendruscolo, R.; Silveira, V.C.P.; de Quadros, F.L.F.; Mezzomo, M.P.; Tourrand, J.F. Sustainability of Livestock Systems in the Pampa Biome of Brazil: An Analysis Highlighting the Rangeland Dilemma. Sustainability 2021, 13, 13781. [Google Scholar] [CrossRef]
- Minella, J.P.G.; Londero, A.L.; Schneider, F.J.; Schlesner, A.; Bernardi, F.; Carvalho, C.; Dambroz, A.P.B.; Rangel, T.; Barros, C.A.P.; Tiechere, T.; et al. A abordagem Nexus no contexto da bacia hidrográfica. In Os Sistemas de Produção Pecuários na Bacia do Rio Ibirapuitã e Suas Relações Com Água e a Energia na Produção de Alimentos–Nexus Pampa 2020; Silveira, V.C.P., Ed.; CRV: Curitiba, Brazil, 2020; pp. 27–61. [Google Scholar]
- Elias, D. Agronegócio e reestruturação urbana e regional no Brasil. In Agriculturas Empresariais e eSPIços Rurais na Globalização: Abordagens a Partir da América do Sul; Bühler, E.A., Cruz, L.C., Soares, M.S.C., Eds.; Editora da UFRGS: Porto Alegre, Brazil, 2016; pp. 63–82. [Google Scholar] [CrossRef]
- Silveira, V.C.P. (Ed.) Livestock Production Systems in the Ibirapuitã Catchment and Their Relations with Water and Energy in Food Production—Nexus Pampa; CRV: Curitiba, Brazil, 2022. [Google Scholar] [CrossRef]
- Behling, H.; Jeske-Pieruschka, V.; Schüler, L.; Pilar, V.D.P. Dinâmica nos campos do Sul do Brasil durante o quaternário tardio. In Campos Sulinos: Conservação e uso Sustentável da Biodiversidade; Pilar, V.D.P., Müller, S.C., Castilhos, Z.D.S., Jacques, A.V.A., Eds.; Ministério do Meio Ambiente: Brasilia, Brazil, 2009; pp. 13–25. [Google Scholar]
- Li, M.; Fu, Q.; Singh, V.P.; Ji, Y.; Liu, D.; Zhang, C.; Li, T. An optimal modelling approach for managing agricultural water-energy-food Nexus under uncertainty. Sci. Total Environ. 2019, 651, 1416–1434. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.P.; Suo, C.; Liu, J. Development of an uncertain water-food-energy nexus model for pursuing sustainable agricultural and electric productions. Agric. Water Manag. 2020, 241, 106384. [Google Scholar] [CrossRef]
- Cansino-Loeza, B.; Ponce-Ortega, J.M. Sustainable assessment of Water-Energy-Food Nexus at regional level through a multi-stakeholder optimization approach. J. Clean. Prod. 2021, 290, 125194. [Google Scholar] [CrossRef]
- Saray, M.H.; Baubekova, A.; Gohari, A.; Eslamian, S.S.; Klove, B.; Haghighi, A.T. Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran. Appl. Energy 2022, 307, 118236. [Google Scholar] [CrossRef]
- Radmehr, R.; Brorsen, B.W.; Shayanmehr, S. Adapting to climate change in arid agricultural systems: An optimization model for water-energy-food nexus sustainability. Agric. Water Manag. 2024, 303, 109052. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. The Water-Energy-Food Nexus. A New Approach in Support of Food Security and Sustainable Agriculture-Policy Support and Governance. 2014; 28p, Available online: https://openknowledge.fao.org/server/api/core/bitstreams/86fe97cc-4a38-4511-a37f-8eb8ea8fe941/content (accessed on 10 March 2025).
- Shah, T. Groundwater Governance and the Water-Energy-Food Nexus in Action: A Global Review of Policy and Practice; FAO: Rome, Italy, 2023; p. 56. ISBN 978-92-5-137168-8. [Google Scholar] [CrossRef]
- Suertegaray, D.M.A.; Silva, L.A.P. Tchê Pampa: Histórias da natureza gaúcha. In Campos sulinos: Conservação e uso Sustentável da Biodiversidade 1; Pillar, V.P., Müller, S.C., Castilhos, Z.M.S., Jacques, A.V.A., Eds.; MMA: Brasilia, Brazil, 2009; pp. 42–59. [Google Scholar]
- MapBiomas. Mapeamento Anual da Cobertura e Uso da Terra no Brasil (1984–2020): Destaques Pampa. 2021. Available online: https://brasil.mapbiomas.org/wp-content/uploads/sites/4/2023/12/Fact_Sheet_Pampa_2021.pdf (accessed on 20 May 2024).
- Nabinger, C.; Miguel, L.A.; Sanguíneo, E.; Netto, C.G.M.; Waquil, P.D.; Schneider, S. Diagnóstico de Sistemas de Produção de Bovinocultura de Corte do Estado do Rio Grande do Sul, Brasil (2003–2004); Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 2005. [Google Scholar]
- De Miguel, L.A.; Netto, C.G.A.M.; Nabinger, C.; Sanguiné, E.; Waquil, P.D.; Schneider, S. Caracterização socioeconômica e produtiva da bovinocultura de corte no estado do Rio Grande do Sul. Rev. Debate 2007, 14, 95–125. [Google Scholar]
- Nabinger, C.; Ferreira, E.T.; Freitas, A.K.; Carvalho, P.C.F.; Sant’anna, D.M. Produção animal com base no campo nativo: Aplicações de resultados de pesquisa. In Campos Sulinos: Conservação e Uso Sustentável da Biodiversidade; Pilar, V.D.P., Müller, S.C., Castilhos, Z.M.S., Jacques, A.V.A., Eds.; Ministério do Meio Ambiente: Brasilia, Brazil, 2009; pp. 175–198. [Google Scholar]
- Nicoloso, C.S.; Silveira, V.C.P.; Quadros, F.L.F.; Filho, R.C.C. Tipologia de sistemas de produção pecuária familiar no bioma Pampa utilizando o método MESMIS. Semin. Ciências Agrárias (Online) 2019, 40, 3249–3267. [Google Scholar] [CrossRef]
- Viana, J.G.A.; de Barros, C.A.P.; Ribeiro, C.G.; Minella, J.P.G.; dos Santos, C.F.; Ribeiro, C.M.; Silveira, V.C.P. Sustainability attributes from the water-energy-food nexus: An application to livestock systems in the Brazilian Pampa biome. Energy Nexus 2023, 12, 100248. [Google Scholar] [CrossRef]
- Masera, O.R.; Astier, M.; López-Ridaura, S. Sustentabilidad y Manejo de Recursos Naturales: El Marco de Evaluación MESMIS; Mundi-Prensa: Guadalupe, Mexico, 1999. [Google Scholar]
- López-Ridaura, S. Evaluating the sustainability of complex socio-environmental systems. The MESMIS framework. Ecol. Indic. 2002, 2, 135–148. [Google Scholar] [CrossRef]
- Viana, J.G.A.; Barros, C.A.P.; Ribeiro, C.G.; Minella, J.P.G.; Santos, C.F.; Ribeiro, C.M.; Langbecker, T.B.; Silveira, V.C.P.; Tourrand, J.F. Sustainability indicators for farming systems in Pampa biome of Brazil: A methodological approach NEXUS-MESMIS. Span. J. Agric. Res. 2024, 22, e0103. Available online: https://sjar.revistas.csic.es/index.php/sjar/article/view/20523 (accessed on 10 March 2025). [CrossRef]
- Anderson, D.R.; Sweeney, D.J.; Williams, T.A.; Freeman, J.; Shoesmith, E. Statistics for Business and Economics; Cengage Learning, Inc.: Boston, MA, USA, 2014. [Google Scholar]
- IBGE. Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2017. Instituto Brasileiro de Geografia e Estatística. Available online: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017 (accessed on 20 March 2025).
- Rhoden, A.C.; Viana, J.G.A.; Silveira, V.C.P. Change in land use and economic dynamics of the Ibirapuitã River Environmental Protection Area of the Brazilian Pampa biome. Semina: Ciências Agrárias 2022, 43, 2137–2154. [Google Scholar] [CrossRef]
- Allen, M.; Poggiali, D.; Whitaker, K.; Marshall, T.R.; van Langen, J.; Kievit, R.A. Raincloud plots: Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Res. 2021, 4, 63. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Conyers, M.K.; Hunt, J.R.; Kirkby, C.A.; Watt, M.; Rebetzke, G.J. Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 2014, 187, 133–145. [Google Scholar] [CrossRef]
- Liang, Y.; Hui, C.W.; You, F. Multi-objective economic-resource-production optimization of sustainable organic mixed farming systems with nutrient recycling. J. Clean. Prod. 2018, 196, 304–330. [Google Scholar] [CrossRef]
- Ryschawy, J.; Martin, G.; Moraine, M.; Duru, M.; Therond, O. Designing crop–livestock integration at different levels: Toward new agroecological models? Nutr. Cycl. Agroecosystems 2017, 108, 5–20. [Google Scholar] [CrossRef]
- Cardoso, E.V.; Gimenes, R.M.T. Systematic review on sustainable intensification strategies in brazilian beef production. Rev. Gestão Soc. Ambiental 2024, 18, 1–17. [Google Scholar] [CrossRef]
- Teague, W.R.; Apfelbaum, S.; Lal, R.; Kreuter, U.P.; Rowntree, J.; Davies, C.A.; Conser, R.; Rasmussen, M.; Hatfield, J.; Wang, T.; et al. The role of ruminants in reducing agriculture’s carbon footprint in North America. J. Soil Water Conserv. 2016, 71, 156–164. [Google Scholar] [CrossRef]
- Derner, J.D.; Schuman, G.E. Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. J. Soil Water Conserv. 2007, 62, 77–85. [Google Scholar] [CrossRef]
- Overbeck, G.E.; Müller, S.C.; Pillar, V.D.; Pfadenhauer, J.; Pillar, R.P.; Forneck, E.D. Brazil’s neglected biome: The South Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 2007, 9, 101–116. [Google Scholar] [CrossRef]
- Peterson, C.A.; Bell, L.W.; Carvalho, P.C.D.F.; Gaudin, A.C. Resilience of an integrated crop-livestock system to climate change: A simulation analysis of cover crop grazing in Southern Brazil. Front. Sustain. Food Syst. 2020, 4, 604099. [Google Scholar] [CrossRef]
- de Moraes, A.; de Faccio Carvalho, P.C.; Anghinoni, I.; Lustosa, S.B.C.; de Andrade, S.E.V.G.; Kunrath, T.R. Integrated crop–livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Sciences 2013, 341, 31–32. [Google Scholar] [CrossRef]
- Leal, O.F. Os Gaúchos: Cultura e identidade masculina no Pampa. Tessituras Rev. Antropol. E Arqueologia 2019, 7, 15–32. [Google Scholar]
- Vargas, L.P.; Silveira, V.C.P. Produção animal sustentável e campo nativo: Uma análise da Associação de Produtores do Rincão do Vinte e Oito. Rev. Extensão E Estud. Rurais 2018, 7, 29–47. [Google Scholar]
- Cronon, W. Nature’s Metropolis: Chicago and the Great West; WW Norton & Company: New York, NY, USA, 1992. [Google Scholar]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.-A.; Asai, M.; Sarthou, J.-P.; Duru, M.; Therond, O. Crop–livestock integration beyond the farm level: A review. Agron. Sustain. Dev. 2016, 36, 1–21. [Google Scholar] [CrossRef]
- Hayden, J.; Rocker, S.; Phillips, H.; Heins, B.; Smith, A.; Delate, K. The importance of social support and communities of practice: Farmer perceptions of the challenges and opportunities of integrated crop–livestock systems on organically managed farms in the northern US. Sustainability 2018, 10, 4606. [Google Scholar] [CrossRef]
- Schneider, S. Situando a agricultura familiar na agricultura brasileira e no debate sobre desenvolvimento rural. Brazil. J. Polit. Econ. 2010, 30, 511–531. [Google Scholar] [CrossRef]
- Bungenstab, D.J. (Ed.) Sistemas de Integração Lavoura-Pecuária-Floresta: A Produção Sustentável; Embrapa: Brasilia, Brazil, 2012. [Google Scholar]
Dimension | Scopes | Weight | Indicators | Weight |
---|---|---|---|---|
Water | Human consumption | 20 | Water quantity Water quality | 10 10 |
Production | 40 | Water for production Water use efficiency Drought susceptibility | 10 20 10 | |
Degradation | 40 | Existence of conservationist practices Perception of the erosive process | 30 10 | |
Energy | Electric | 60 | Generation Consumption Grid | 20 20 20 |
Thermal | 20 | Thermal energy use Thermal energy source | 10 10 | |
Mechanical | 20 | Pumping Fossil fuel | 5 15 | |
Food | Organizational and institutional environment | 20 | Tradition and culture Supporting organizations Public policies Social and associative participation Cooperation in the markets Logistic and energy infrastructure Quality of life Succession/transmissibility | 2 2 2 2 2 2 4 4 |
Productive and technological environment | 50 | Genetics of animal production Feed management Dependence on external inputs Production diversification Economic management Dependence on the flow of capital Availability of labor force Cattle raiding | 4 6 6 6 6 6 4 4 4 4 | |
Commercialization and consumption | 30 | Market structure and prices Commercialization chains Value addition Secondary products Self-consumption and direct sale | 8 8 6 4 4 |
Variables | Sustainability Index | p-Value | Coefficient of Variation (%) | ||
---|---|---|---|---|---|
ELS | ILS | ELS | ILS | ||
Water | 88.82 | 86.34 | 0.035 | 6.7% | 7.3% |
Energy | 52.56 | 53.18 | 0.730 | 16.6% | 19.6% |
Food | 50.97 | 49.49 | 0.280 | 13.1% | 15.9% |
Variables | Sustainability Index | p-Value | Coefficient of Variation (%) | ||
---|---|---|---|---|---|
ELS | ILS | ELS | ILS | ||
Human consumption | 97.56 | 96.09 | 0.341 | 6.3% | 11.2% |
Production | 86.90 | 84.32 | 0.089 | 9% | 9.3% |
Degradation | 86.37 | 83.47 | 0.229 | 13.9% | 16.1% |
Variables | Sustainability Index | p-Value | Coefficient of Variation (%) | ||
---|---|---|---|---|---|
ELS | ILS | ELS | ILS | ||
Electricity | 50.65 | 54.37 | 0.160 | 25.7%% | 27.6% |
Thermal | 40.00 | 44.39 | 0.199 | 44.3% | 39.7% |
Mechanical | 70.87 | 58.41 | <0.001 | 17.1% | 34.6% |
Variables | Sustainability Index | p-Value | Coefficient of Variation (%) | ||
---|---|---|---|---|---|
ELS | ILS | ELS | ILS | ||
Organizational and institutional environment | 51.00 | 58.72 | 0.002 | 25.8% | 20.4% |
Productive and technological environment | 55.85 | 49.80 | 0.001 | 16.2% | 21% |
Marketing and consumption | 42.81 | 42.80 | 0.999 | 28.3% | 40.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, J.G.A.; da Silva, F.N.; Dalla Valle, C.; Ribeiro, C.M.; de Barros, C.A.P.; Minella, J.; Ribeiro, C.G.; Santos, C.F.; Silveira, V.C.P. WEF Nexus Indicators for Livestock Systems: A Comparative Analysis in Southern Brazil. Sustainability 2025, 17, 5309. https://doi.org/10.3390/su17125309
Viana JGA, da Silva FN, Dalla Valle C, Ribeiro CM, de Barros CAP, Minella J, Ribeiro CG, Santos CF, Silveira VCP. WEF Nexus Indicators for Livestock Systems: A Comparative Analysis in Southern Brazil. Sustainability. 2025; 17(12):5309. https://doi.org/10.3390/su17125309
Chicago/Turabian StyleViana, João G. A., Fernanda N. da Silva, Carine Dalla Valle, Claudio M. Ribeiro, Claudia A. P. de Barros, Jean Minella, Claudia G. Ribeiro, Conrado F. Santos, and Vicente C. P. Silveira. 2025. "WEF Nexus Indicators for Livestock Systems: A Comparative Analysis in Southern Brazil" Sustainability 17, no. 12: 5309. https://doi.org/10.3390/su17125309
APA StyleViana, J. G. A., da Silva, F. N., Dalla Valle, C., Ribeiro, C. M., de Barros, C. A. P., Minella, J., Ribeiro, C. G., Santos, C. F., & Silveira, V. C. P. (2025). WEF Nexus Indicators for Livestock Systems: A Comparative Analysis in Southern Brazil. Sustainability, 17(12), 5309. https://doi.org/10.3390/su17125309