How Digital Transformation Enhances Quality Chain Value Co-Creation Efficiency in Manufacturing: Evidence from Beijing
Abstract
:1. Introduction
2. Literature Review
2.1. Quality Chain Value Co-Creation
2.2. Digital Transformation and Quality Chain Value Co-Creation
3. Theoretical Framework
3.1. Digital Resource Endowment
- -
- Digitized R&D and design systems;
- -
- Intelligent production processes;
- -
- Lifecycle data governance frameworks;
- -
- Supply chain management optimization;
- -
- Quality data management institutionalization.
3.2. Digital Dynamic Capabilities
4. Methods
4.1. Research Context
4.2. Data Collection
4.3. Measures and Calibration
4.3.1. Outcome Variable (Quality Chain Value Co-Creation Efficiency)
4.3.2. Condition Variables
4.3.3. Calibration
5. Results
5.1. Necessity Analysis of Individual Conditions
5.2. Sufficiency Analysis of Configurations
6. Discussion and Implications
6.1. Research Conclusions
6.2. Theoretical Contributions
6.3. Management Implications
6.4. Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Central People’s Government of the People’s Republic of China. Study the “Decision” Daily Q&A|What Are the Key Points to Be Grasped in Improving the Resilience and Security Level of the Industrial Chain and Supply Chain System. 2024. Available online: https://www.gov.cn/zhengce/202408/content_6969460.htm (accessed on 11 May 2025).
- State Administration for Market Regulation. Five Departments jointly Issued Guidance Opinions to Promote the Overall Improvement of the Quality of the Industrial Chain and Supply Chain. 2024. Available online: https://www.samr.gov.cn/xw/mtjj/art/2024/art_5cc1fec1b0e04579b685280761ab25c1.html (accessed on 11 May 2025).
- State Administration for Market Regulation. The State Administration for Market Regulation Convened a Special Work Leading Group Meeting on Quality Chain Strengthening. 2024. Available online: https://www.samr.gov.cn/xw/zj/art/2024/art_8100bdd2963747c1bd8152b2f97cc6d0.html (accessed on 11 May 2025).
- Adeniran, I.A.; Efunniyi, C.P.; Osundare, O.S.; Abhulimen, A.O. Transforming Marketing Strategies with Data Analytics: A Study on Customer Behavior and Personalization. Int. J. Sch. Res. Eng. Technol. 2024, 4, 41–51. [Google Scholar] [CrossRef]
- AL-Shboul, M.A. Artificial Intelligence Drivers’ Effect on Willingness to Adopt the Human Capital Supply Chain in Manufacturing Firms: An Empirical Investigation from Developing Countries—A Mediation Model. Ind. Manag. Data Syst. 2024, 124, 2919–2938. [Google Scholar] [CrossRef]
- Asif, M. Are QM Models Aligned with Industry 4.0? A Perspective on Current Practices. J. Clean. Prod. 2020, 258, 120820. [Google Scholar] [CrossRef]
- Monge, P.R.; Fulk, J.; Kalman, M.E.; Flanagin, A.J.; Parnassa, C.; Rumsey, S. Production of Collective Action in Alliance-Based Interorganizational Communication and Information Systems. Organ. Sci. 1998, 9, 411–433. [Google Scholar] [CrossRef]
- Lee, B.X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P.D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L.S.; et al. Transforming Our World: Implementing the 2030 Agenda Through Sustainable Development Goal Indicators. J. Public Health Pol. 2016, 37, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Wang, F.; Dong, F. Can Digital Economy Foster Synergistic Increases in Green Innovation and Corporate Value? Evidence from China. PLoS ONE 2024, 19, e0304625. [Google Scholar] [CrossRef] [PubMed]
- Troczynski, T. The quality chain. Qual. Prog. 1996, 29, 208. [Google Scholar]
- Cao, Z.; Huo, B.; Li, Y.; Zhao, X. The Impact of Organizational Culture on Supply Chain Integration: A Contingency and Configuration Approach. Supply Chain. Manag. Int. J. 2015, 20, 24–41. [Google Scholar] [CrossRef]
- Wu, H.; Li, G.; Zheng, H. How Does Digital Intelligence Technology Enhance Supply Chain Resilience? Sustainable Framework and Agenda. Ann. Oper. Res. 2024, 1–23. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y. An Integrated Framework for Blockchain-Enabled Supply Chain Trust Management towards Smart Manufacturing. Adv. Eng. Inform. 2022, 51, 101522. [Google Scholar] [CrossRef]
- Fragapane, G.; Eleftheriadis, R.; Powell, D.; Antony, J. A Global Survey on the Current State of Practice in Zero Defect Manufacturing and Its Impact on Production Performance. Comput. Ind. 2023, 148, 103879. [Google Scholar] [CrossRef]
- Oteri, O.J.; Onukwulu, E.C.; Igwe, A.N.; Mikki Ewim, C.P.-; Ibeh, A.I.; Sobowale, A. Cost Optimization in Logistics Product Management: Strategies for Operational Efficiency and Profitability. Int. J. Multidiscip. Res. Growth Eval. 2023, 4, 852–860. [Google Scholar] [CrossRef]
- Dwivedi, A.; Srivastava, S.; Agrawal, D.; Dubey, S.; Singh, T.; Pratap, S. Examining the Facilitators of I4.0 Practices to Attain Stakeholders’ Collaboration: A Circular Perspective. Prod. Manuf. Res. 2023, 11, 2266643. [Google Scholar] [CrossRef]
- Xu, S.; Lu, Y.; Yu, C. Augmented Reality-Assisted Cloud Additive Manufacturing with Digital Twin Technology for Multi-Stakeholder Value Co-Creation in Product Innovation. Heliyon 2024, 10, e25722. [Google Scholar] [CrossRef]
- Pinho, N.; Beirão, G.; Patrício, L.; Fisk, R.P. Understanding Value Co-Creation in Complex Services with Many Actors. J. Serv. Manag. 2014, 25, 470–493. [Google Scholar] [CrossRef]
- Lusch, R.F.; Vargo, S.L.; Wessels, G. Toward a Conceptual Foundation for Service Science: Contributions from Service-Dominant Logic. IBM Syst. J. 2008, 47, 5–14. [Google Scholar] [CrossRef]
- Prahalad, C.K.; Ramaswamy, V. Co-Creation Experiences: The next Practice in Value Creation. J. Interact. Mark. 2004, 18, 5–14. [Google Scholar] [CrossRef]
- Jaakkola, E.; Alexander, M. The Role of Customer Engagement Behavior in Value Co-Creation: A Service System Perspective. J. Serv. Res. 2014, 17, 247–261. [Google Scholar] [CrossRef]
- Martínez-Cañas, R.; Ruiz-Palomino, P.; Linuesa-Langreo, J.; Blázquez-Resino, J.J. Consumer Participation in Co-Creation: An Enlightening Model of Causes and Effects Based on Ethical Values and Transcendent Motives. Front. Psychol. 2016, 7, 793. [Google Scholar] [CrossRef]
- Sun, Z.; Yearwood, J. (Eds.) Handbook of Research on Demand-Driven Web Services: Theory, Technologies, and Applications; Advances in Web Technologies and Engineering; IGI Global: Hershey, PA, USA, 2014; ISBN 978-1-4666-5884-4. [Google Scholar]
- Gillani, F.; Chatha, K.A.; Jajja, S.S.; Cao, D.; Ma, X. Unpacking Digital Transformation: Identifying Key Enablers, Transition Stages and Digital Archetypes. Technol. Forecast. Soc. Change 2024, 203, 123335. [Google Scholar] [CrossRef]
- Managing Digital Transformation: Understanding the Strategic Process, 1st ed.; Hinterhuber, A., Vescovi, T., Checchinato, F., Eds.; Routledge: Oxon, UK; New York, NY, USA, 2021; ISBN 978-1-003-00863-7. [Google Scholar]
- Chen, Y.; Li, J.; Zhang, J. Digitalisation, Data-Driven Dynamic Capabilities and Responsible Innovation: An Empirical Study of SMEs in China. Asia Pac. J. Manag. 2024, 41, 1211–1251. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital Twin-Driven Product Design, Manufacturing and Service with Big Data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Warner, K.S.R.; Wäger, M. Building Dynamic Capabilities for Digital Transformation: An Ongoing Process of Strategic Renewal. Long Range Plan. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Nambisan, S.; Lyytinen, K.; Majchrzak, A.; Song, M. Digital Innovation Management: Reinventing Innovation Management Research in a Digital World. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Anthony, B., Jr. Distributed Ledger and Decentralised Technology Adoption for Smart Digital Transition in Collaborative Enterprise. Enterp. Inf. Syst. 2023, 17, 1989494. [Google Scholar] [CrossRef]
- Karim, M.M.; Van, D.H.; Khan, S.; Qu, Q.; Kholodov, Y. AI Agents Meet Blockchain: A Survey on Secure and Scalable Collaboration for Multi-Agents. Future Internet 2025, 17, 57. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Lusch, R.F.; Vargo, S.L. The Service-Dominant Logic of Marketing; Routledge: London, UK, 2014; ISBN 978-1-317-45464-9. [Google Scholar]
- Brynjolfsson, E.; Hitt, L.M. Beyond Computation: Information Technology, Organizational Transformation and Business Performance. J. Econ. Perspect. 2000, 14, 23–48. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Y. Specialized Complementary Assets and Disruptive Innovation: Digital Capability and Ecosystem Embeddedness. Manag. Decis. 2024, 62, 3704–3730. [Google Scholar] [CrossRef]
- Hossain, M.E.; Tarafder, M.T.R.; Ahmed, N.; Al Noman, A.; Sarkar, M.I.; Hossain, Z. Integrating AI with Edge Computing and Cloud Services for Real-Time Data Processing and Decision Making. Int. J. Multidiscip. Sci. Arts 2023, 2, 252–261. [Google Scholar] [CrossRef]
- Li, L.; Tang, W.; Zhou, H.; Yang, S. Digitalization and Firm Performance: The Moderating Role of Top Management Team Attributes. IEEE Trans. Eng. Manag. 2024, 71, 6595–6605. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z. Research on the Impact of Corporate Green Transformation on Organizational Performance under ESG Strategy Orientation. Risk Financ. Manag. 2025, 6, 24. [Google Scholar] [CrossRef]
- Tsavdaridis, G.; Papaodysseus, C.; Karadimas, N.V.; Papazafeiropoulos, G.; Delis, A. Methodologies and Handling Techniques of Large-Scale Information in Decision Support Systems for Complex Missions. Appl. Sci. 2024, 14, 1995. [Google Scholar] [CrossRef]
- Hauke-Lopes, A.; Ratajczak-Mrozek, M.; Wieczerzycki, M. Value Co-Creation and Co-Destruction in the Digital Transformation of Highly Traditional Companies. J. Bus. Ind. Mark. 2023, 38, 1316–1331. [Google Scholar] [CrossRef]
- Adner, R. Ecosystem as Structure: An Actionable Construct for Strategy. J. Manag. 2017, 43, 39–58. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, G. The Impact of Digital Trade on China’s Position in the GVC: An Empirical Analysis Based on Sino-Russian Cross-Border Panel Data. Sustainability 2024, 16, 5493. [Google Scholar] [CrossRef]
- Wu, C.-H. A Dynamic Perspective of Government Intervention in a Competitive Closed-Loop Supply Chain. Eur. J. Oper. Res. 2021, 294, 122–137. [Google Scholar] [CrossRef]
- Yi, Y.; Li, Y.; Hitt, M.A.; Liu, Y.; Wei, Z. The Influence of Resource Bundling on the Speed of Strategic Change: Moderating Effects of Relational Capital. Asia Pac. J. Manag. 2016, 33, 435–467. [Google Scholar] [CrossRef]
- Ministry of Industry and Information Technology. Notice of the Ministry of Industry and Information Technology and Other Three Departments on Issuing the “Implementation Opinions on the Quality Excellence Project in Manufacturing”. 2023. Available online: https://www.gov.cn/zhengce/zhengceku/202312/content_6921503.htm (accessed on 12 May 2025).
- Hanna, N. A Role for the State in the Digital Age. J. Innov. Entrep. 2018, 7, 5. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Qu, G. Research on Collaborative Innovation Cooperation Strategies of Manufacturing Digital Ecosystem from the Perspective of Multiple Stakeholders. Comput. Ind. Eng. 2024, 190, 110003. [Google Scholar] [CrossRef]
- Dimaggio, P.J.; Powell, W.W. Chapter 4 The Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields. In The New Economic Sociology; Dobbin, F., Ed.; Princeton University Press: Princeton, NJ, USA, 2004; pp. 111–134. ISBN 978-0-691-22927-0. [Google Scholar]
- Gereffi, G.; Humphrey, J.; Sturgeon, T. The Governance of Global Value Chains. Rev. Int. Political Econ. 2005, 12, 78–104. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic Capabilities and Strategic Management. Strat. Mgmt. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Brenner, B. Transformative Sustainable Business Models in the Light of the Digital Imperative—A Global Business Economics Perspective. Sustainability 2018, 10, 4428. [Google Scholar] [CrossRef]
- Leso, B.H.; Cortimiglia, M.N.; Ghezzi, A.; Minatogawa, V. Exploring Digital Transformation Capability via a Blended Perspective of Dynamic Capabilities and Digital Maturity: A Pattern Matching Approach. Rev. Manag. Sci. 2024, 18, 1149–1187. [Google Scholar] [CrossRef]
- Argote, L.; Ren, Y. Transactive Memory Systems: A Microfoundation of Dynamic Capabilities. J. Manag. Stud. 2012, 49, 1375–1382. [Google Scholar] [CrossRef]
- Lan, F.; Hou, L. Dynamic Capability Reconstruction of Digital Transformation for Emerging Market Enterprises: Learning from Chinese Experience. Int. J. Technol. Policy Manag. IJTPM 2021, 21, 231. [Google Scholar] [CrossRef]
- Chen, L. Enterprise Digital Transformation, Dynamic Capabilities and Innovation Performance. Front. Bus. Econ. Manag. 2023, 11, 327–332. [Google Scholar] [CrossRef]
- Chen, R.-S.; Sun, C.-M.; Helms, M.M.; Jih, W.-J. Aligning Information Technology and Business Strategy with a Dynamic Capabilities Perspective: A Longitudinal Study of a Taiwanese Semiconductor Company. Int. J. Inf. Manag. 2008, 28, 366–378. [Google Scholar] [CrossRef]
- Duchek, S. Organizational Resilience: A Capability-Based Conceptualization. Bus Res 2020, 13, 215–246. [Google Scholar] [CrossRef]
- Ghosh, S.; Hughes, M.; Hodgkinson, I.; Hughes, P. Digital Transformation of Industrial Businesses: A Dynamic Capability Approach. Technovation 2022, 113, 102414. [Google Scholar] [CrossRef]
- Onukwulu, E.C.; Odochi-Agho, M.; Eyo-Udo, N.L. Innovations in Supplier Evaluation: Frameworks and Techniques for Supply Chain Resilience. Int. J. Res. Sci. Innov. IJRSI 2025, 11, 610–623. [Google Scholar] [CrossRef]
- Sharma, J.; Singh, S.; Tyagi, M.; Powar, S. Avenues of Decarbonisation in the Dynamics of Processed Food Supply Chains: Towards Responsible Production Consumption. Heliyon 2024, 10, e26456. [Google Scholar] [CrossRef]
- Immadisetty, A. Real-Time Data Analytics in Customer Experience Management: A Framework for Digital Transformation and Business Intelligence. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2024, 10, 1280–1288. [Google Scholar] [CrossRef]
- Trim, P.R.J.; Lee, Y.-I. How B2B Marketers Interact with Customers and Develop Knowledge to Produce a Co-Owned Marketing Strategy. J. Bus. Ind. Mark. 2021, 36, 1943–1955. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Li, C. Decisions of Supply Chain Considering Chain-to-Chain Competition and Service Negative Spillover Effect. Sustainability 2019, 11, 1612. [Google Scholar] [CrossRef]
- Leong, C.; Lin, S.; Tan, F.; Yu, J. Coordination in a Digital Platform Organization. Inf. Syst. Res. 2024, 35, 363–393. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, T.; Zhao, K.; Zhang, K.; Zhang, Y.; Guo, W.; Liu, L.; Chen, Z. Enhancing Trusted Synchronization in Open Production Logistics: A Platform Framework Integrating Blockchain and Digital Twin under Social Manufacturing. Adv. Eng. Inform. 2024, 61, 102404. [Google Scholar] [CrossRef]
- Ahmed, S. Enhancing Data Security and Transparency: The Role of Blockchain in Decentralized Systems. Int. J. Adv. Eng. Manag. Sci. 2025, 11, 167–176. [Google Scholar] [CrossRef]
- Linderson, S.; Eshetu Birkie, S.; Bellgran, M. The Issue of Corporate Mandatory Standards in Production Improvement Programmes. J. Ind. Eng. Manag. 2024, 17, 385. [Google Scholar] [CrossRef]
- Nizam Mohammad, M.F.; Abdullah, R.; Ab. Jabar, M.; Haizan Nor, R.N.; Mohd Nur, N. A Theoretical Framework of Knowledge Management Systems on Quality Management Systems. JOIV Int. J. Inform. Vis. 2024, 8, 2163. [Google Scholar] [CrossRef]
- Banker, R.D.; Bardhan, I.R.; Chang, H.; Lin, S. Plant Information Systems, Manufacturing Capabilities, and Plant Performance. MIS Q. 2006, 30, 315. [Google Scholar] [CrossRef]
- Mishra, D.P.; Kukreja, R.K.; Mishra, A.S. Blockchain as a Governance Mechanism for Tackling Dark Side Effects in Interorganizational Relationships. Int. J. Organ. Anal. 2022, 30, 340–364. [Google Scholar] [CrossRef]
- Panetto, H.; Zdravkovic, M.; Jardim-Goncalves, R.; Romero, D.; Cecil, J.; Mezgár, I. New Perspectives for the Future Interoperable Enterprise Systems. Comput. Ind. 2016, 79, 47–63. [Google Scholar] [CrossRef]
- Cepeda, G.; Vera, D. Dynamic Capabilities and Operational Capabilities: A Knowledge Management Perspective. J. Bus. Res. 2007, 60, 426–437. [Google Scholar] [CrossRef]
- Li, F.; Nucciarelli, A.; Roden, S.; Graham, G. How Smart Cities Transform Operations Models: A New Research Agenda for Operations Management in the Digital Economy. Prod. Plan. Control 2016, 27, 514–528. [Google Scholar] [CrossRef]
- Li, L.; Du, K.; Zhang, W.; Mao, J.Y. Empowering Digital Transformation: The Roles of Platforms. J. Inf. Technol. 2024, 39, 650–667. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; McElheran, K. The Rapid Adoption of Data-Driven Decision-Making. Am. Econ. Rev. 2016, 106, 133–139. [Google Scholar] [CrossRef]
- Ochuba, N.A.; Amoo, O.O.; Okafor, E.S.; Akinrinola, O.; Usman, F.O. Strategies for Leveraging Big Data and Analytics for Business Development: A Comprehensive Review Across Sectors. Comput. Sci. IT Res. J. 2024, 5, 562–575. [Google Scholar] [CrossRef]
- Khedr, A.M.; Sheeja Rani, S. Enhancing Supply Chain Management with Deep Learning and Machine Learning Techniques: A Review. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100379. [Google Scholar] [CrossRef]
- Roscoe, S.; Cousins, P.D.; Handfield, R. The Microfoundations of an Operational Capability in Digital Manufacturing. J. Oper. Manag. 2019, 65, 774–793. [Google Scholar] [CrossRef]
- Khoveyni, M.; Eslami, R. Two-Stage Network DEA with Shared Resources: Illustrating the Drawbacks and Measuring the Overall Efficiency. Knowl.-Based Syst. 2022, 250, 108725. [Google Scholar] [CrossRef]
- Castelli, L.; Pesenti, R.; Ukovich, W. A Classification of DEA Models When the Internal Structure of the Decision Making Units Is Considered. Ann. Oper. Res. 2010, 173, 207–235. [Google Scholar] [CrossRef]
- Eisenhardt, K.M. Making Fast Strategic Decisions in High-Velocity Environments. Acad. Manag. J. 1989, 32, 543–576. [Google Scholar] [CrossRef]
- Garcia-Castro, R.; Francoeur, C. When More Is Not Better: Complementarities, Costs and Contingencies in Stakeholder Management: Complementarities, Costs, Contingencies in Stakeholder Management. Strat. Mgmt. J. 2016, 37, 406–424. [Google Scholar] [CrossRef]
- Baumgartner, M.; Thiem, A. Often Trusted but Never (Properly) Tested: Evaluating Qualitative Comparative Analysis. Sociol. Methods Res. 2020, 49, 279–311. [Google Scholar] [CrossRef]
- Castro, R.G.; Ariño, M.A. A General Approach to Panel Data Set-Theoretic Research. J. Adv. Manag. Sci. Inf. Syst. 2016, 2, 63–76. [Google Scholar] [CrossRef]
- Cao, Y.; Peng, X.; Prybutok, V. Achieving Sustainable Excellence: A Theoretical Comparison of Established Quality Awards. Qual. Manag. J. 2024, 31, 138–153. [Google Scholar] [CrossRef]
- Abbas, J.; Kumari, K. Examining the Relationship between Total Quality Management and Knowledge Management and Their Impact on Organizational Performance: A Dimensional Analysis. J. Econ. Adm. Sci. 2023, 39, 426–451. [Google Scholar] [CrossRef]
- Zhu, H. The Role of Digital Transformation in Supply Chain Efficiency and Economic Output. Environ. Sci. Pollut. Res. 2023, 31, 3656–3668. [Google Scholar] [CrossRef]
- White, R.E.; Cooper, K. Grounded Theory. In Qualitative Research in the Post-Modern Era; Springer International Publishing: Cham, Switzerland, 2022; pp. 339–385. ISBN 978-3-030-85126-2. [Google Scholar]
- Yu, J.; Xu, Y.; Zhou, J.; Chen, W. Digital Transformation, Total Factor Productivity, and Firm Innovation Investment. J. Innov. Knowl. 2024, 9, 100487. [Google Scholar] [CrossRef]
- Bazimya, S.; Erorita, S.M. Analyzing the Financial Performance of Manufacturing Firms: A Focus on Return on Equity, Return on Assets and Return on Sales. Int. J. Humanit. Soc. Stud. 2024, 12. [Google Scholar] [CrossRef]
- Eisenhardt, K.M. Building Theories from Case Study Research. Acad. Manag. Rev. 1989, 14, 532. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. Institutions and Axioms: An Extension and Update of Service-Dominant Logic. J. Acad. Mark. Sci. 2016, 44, 5–23. [Google Scholar] [CrossRef]
- Nyberg, A.J.; Moliterno, T.P.; Hale, D.; Lepak, D.P. Resource-Based Perspectives on Unit-Level Human Capital: A Review and Integration. J. Manag. 2014, 40, 316–346. [Google Scholar] [CrossRef]
- Liu, M.; Hua, D. Enhancing Resource Allocation Efficiency: The Impact of Servitization in China’s Manufacturing Sector. Ind. Mark. Manag. 2024, 121, 160–178. [Google Scholar] [CrossRef]
- Bhandari, A.; Javakhadze, D. Corporate Social Responsibility and Capital Allocation Efficiency. J. Corp. Financ. 2017, 43, 354–377. [Google Scholar] [CrossRef]
- Kun, Á.; Dieckmann, U. Resource Heterogeneity Can Facilitate Cooperation. Nat. Commun. 2013, 4, 2453. [Google Scholar] [CrossRef]
- Kamoche, K. The Integration–Differentiation Puzzle: A Resource-Capability Perspective in International Human Resource Management. Int. J. Hum. Resour. Manag. 1996, 7, 230–244. [Google Scholar] [CrossRef]
- Rosak-Szyrocka, J.; Żywiołek, J.; Shahbaz, M. (Eds.) Quality Management, Value Creation, and the Digital Economy; Taylor & Francis: Abingdon, UK, 2023. [Google Scholar]
- Kim, D.; Kumar, V.; Kumar, U. Relationship between Quality Management Practices and Innovation. J. Oper. Manag. 2012, 30, 295–315. [Google Scholar] [CrossRef]
- Afrifa, G.A.; Tingbani, I.; Adesina, O.O. Stochastic Frontier Modelling of Working Capital Efficiency across Europe. Technol. Forecast. Soc. Change 2022, 184, 122012. [Google Scholar] [CrossRef]
- Paulraj, A. Understanding the Relationships Between Internal Resources and Capabilities, Sustainable Supply Management and Organizational Sustainability: Antecedents, Sustainable Supply Management, and Sustainability Performance. J. Supply Chain. Manag. 2011, 47, 19–37. [Google Scholar] [CrossRef]
- Berchicci, L. Towards an Open R&D System: Internal R&D Investment, External Knowledge Acquisition and Innovative Performance. Res. Policy 2013, 42, 117–127. [Google Scholar] [CrossRef]
- Lentjušenkova, O.; Lapiņa, I. An Integrated Process-Based Approach to Intellectual Capital Management. Bus. Process Manag. J. 2020, 26, 1833–1850. [Google Scholar] [CrossRef]
- Hofmann, E.; Kotzab, H. A Supply Chain-Oriented Approach of Working Capital Management. J. Bus. Logist. 2010, 31, 305–330. [Google Scholar] [CrossRef]
- Ajao, S.; Small, S. Liquidity management and corporate profitability: Case study of selected manufacturing companies listed on the Nigerian stock exchange. Bus. Manag. Dyn. 2012, 2, 10–25. [Google Scholar]
- Ruyken, P.T.G.; Wagner, S.M.; Jonke, R. What Is the Right Cash Conversion Cycle for Your Supply Chain? Int. J. Serv. Oper. Manag. IJSOM 2011, 10, 13. [Google Scholar] [CrossRef]
- Flynn, B.B.; Huo, B.; Zhao, X. The Impact of Supply Chain Integration on Performance: A Contingency and Configuration Approach. J. Oper. Manag. 2010, 28, 58–71. [Google Scholar] [CrossRef]
- Yu, W.; Jacobs, M.A.; Salisbury, W.D.; Enns, H. The Effects of Supply Chain Integration on Customer Satisfaction and Financial Performance: An Organizational Learning Perspective. Int. J. Prod. Econ. 2013, 146, 346–358. [Google Scholar] [CrossRef]
- Lii, P.; Kuo, F.-I. Innovation-Oriented Supply Chain Integration for Combined Competitiveness and Firm Performance. Int. J. Prod. Econ. 2016, 174, 142–155. [Google Scholar] [CrossRef]
- Zhao, X.; Huo, B.; Selen, W.; Yeung, J.H.Y. The Impact of Internal Integration and Relationship Commitment on External Integration. J. Oper. Manag. 2011, 29, 17–32. [Google Scholar] [CrossRef]
- Adomako, S.; Amankwah-Amoah, J.; Tarba, S.Y.; Khan, Z. Perceived Corruption, Business Process Digitization, and SMEs’ Degree of Internationalization in Sub-Saharan Africa. J. Bus. Res. 2021, 123, 196–207. [Google Scholar] [CrossRef]
- Fiss, P.C. Building Better Causal Theories: A Fuzzy Set Approach to Typologies in Organization Research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Teece, D.J. Hand in Glove: Open Innovation and the Dynamic Capabilities Framework. Strateg. Manag. Rev. 2020, 1, 233–253. [Google Scholar] [CrossRef]
- Schuhmacher, A.; Hinder, M.; Von Stegmann Und Stein, A.; Hartl, D.; Gassmann, O. Analysis of Pharma R&D Productivity—A New Perspective Needed. Drug Discov. Today 2023, 28, 103726. [Google Scholar] [CrossRef]
- Von Zedtwitz, M.; Gassmann, O.; Boutellier, R. Organizing Global R&D: Challenges and Dilemmas. J. Int. Manag. 2004, 10, 21–49. [Google Scholar] [CrossRef]
- Sun, J.; Rosli, A.B.; Daud, A. Operational Efficiency of Pharmaceutical Companies in China: Based on Three-Stage DEA with Undesirable Outputs. Sustainability 2024, 17, 207. [Google Scholar] [CrossRef]
- Electronic Technology Information Research Institute of MMIT Home Page. Available online: https://www.cics-cert.org.cn/web_root/webpage/articlecontent_101006_1893941892177989634.html (accessed on 9 May 2025).
Data Type | Primary Sources | Volume (Articles/10 k Words) |
---|---|---|
Field Notes | On-site corporate quality ecosystem meetings | 5 transcripts |
Internal Documents | White Papers and proprietary materials | 43,000 words |
Consultancy Reports | Securities and industry research institutions | 63 reports |
Media Coverage | WeChat official accounts (Lenovo GSC Global Supply Chain, China Quality News) and News portals (Sohu, People.cn) | 60 articles |
Academic Literature | CNKI and Wanfang databases (2014–2022) | 451 papers |
Primary Indicator | Indicator Type | Secondary Indicator | Tertiary Indicator | Unit | |
---|---|---|---|---|---|
Quality Chain Value Co-Creation Efficiency | Input Variables (X) | Workforce scale (X1) | Total employees (X11) | Persons | |
Asset scale (X2) | Total assets (X21) | Yuan | |||
Output Variables (Y) | Profitability (Y1) | Return on total assets (Y11) | % | ||
Total asset return rate (Y12) | % | ||||
Mediating Variables (Z) | Horizontal dimension | Resource heterogeneity (Z1) | Quality management training expenditure (Z11) | Yuan | |
Quality infrastructure investment (Z12) | Yuan | ||||
Capital allocation efficiency (Z2) | Total quality management expenditure (Z21) | Yuan | |||
Quality management personnel (Z22) | Persons | ||||
Total operating revenue (Z23) | Yuan | ||||
Resource utilization capacity (Z3) | New products/patents reflecting quality innovation/R&D capabilities (Z31) | Units | |||
Vertical dimension: Process capital (Z4) | The inverse ratio of quality management investment to net operating revenue (Z41) | % | |||
Axial dimension: Supply chain concentration (Z5) | Accounts payable turnover rate (Z51) | % |
Phase Type | Numeric Type | 2020 | 2021 | 2022 | 2023 | Average Value |
---|---|---|---|---|---|---|
Multi-value creation efficiency | Maximum value | 1.000 | 1.000 | 1.000 | 1.000 | 0.603 |
Minimum value | 0.000 | 0.006 | 0.010 | 0.022 | ||
Average value | 0.527 | 0.584 | 0.631 | 0.671 | ||
Standard deviation | 0.263 | 0.258 | 0.239 | 0.229 | ||
Value conversion efficiency | Maximum value | 0.779 | 1.000 | 1.000 | 0.711 | 0.518 |
Minimum value | 0.183 | 0.176 | 0.189 | 0.178 | ||
Average value | 0.544 | 0.531 | 0.508 | 0.491 | ||
Standard deviation | 0.116 | 0.117 | 0.116 | 0.095 | ||
Overall efficiency | Maximum value | 0.676 | 1.000 | 1.000 | 0.758 | 0.546 |
Minimum value | 0.138 | 0.145 | 0.157 | 0.153 | ||
Average value | 0.538 | 0.548 | 0.547 | 0.549 | ||
Standard deviation | 0.097 | 0.108 | 0.113 | 0.102 |
Variable Name | Value Range | Variable Definition |
---|---|---|
Digital perception capabilities | 1~5 | Maintain smooth communication and exchange with suppliers = 1; |
Suppliers can effectively co-operate with the enterprise’s production and purchasing operations = 2; | ||
Suppliers share data with the enterprise (e.g., inventory information, process remote management, etc.) = 3; | ||
Sharing knowledge with suppliers (e.g., quality experience, technology sharing, solving supplier problems, etc.) = 4; | ||
Suppliers are able to participate in new product development, design, etc., forming strategic alliances = 5. | ||
Digital collaboration capabilities | 1~4 | The enterprise establishes a digital information platform to achieve multi-information system integration and information sharing situation: |
Lack of planning and insufficient implementation of system construction = 1; | ||
System isolation and no information sharing = 2; | ||
Partial system integration and information sharing = 3; | ||
All systems integration and information sharing = 4. | ||
Digital operation capabilities | ≥0 | Procurement management = 1; design and development = 1; production process = 1; marketing = 1; after-sales process = 1; warehousing management = 1; financial management = 1; human resources = 1; safety management = 1; quality management = 1; additional other processes = 1. |
Variable Type | Variable Name | Calibration | ||
---|---|---|---|---|
Full Membership | Crossover Point | Full Non-Membership | ||
Outcome 1 | Holistic Value Co-Creation Efficiency | 0.6388 | 0.5706 | 0.3190 |
Outcome 2 | Multi-Value Creation Efficiency | 0.9864 | 0.6183 | 0.1810 |
Outcome 3 | Value Conversion Efficiency | 0.6940 | 0.5207 | 0.3329 |
Condition | Government Support | 9897.55 | 222.39 | 0 |
Digital Infrastructure Investment | 5478 | 115.11 | 0 | |
Digital Collaboration Capabilities | 4 | 3 | 1 | |
Digital Perception Capabilities | 15 | 12 | 6 | |
Digital Operation Capabilities | 10 | 8 | 2 |
Conditional Variables | Aggregate Consistency | Aggregate Coverage | Adjusted Intergroup Consistency Distance | Adjusted Intragroup Consistency Distance | Aggregate Consistency | Aggregate Coverage | Adjusted Intergroup Consistency Distance | Adjusted Intragroup Consistency Distance |
---|---|---|---|---|---|---|---|---|
High Overall Value Co-Creation Efficiency | Low Overall Value Co-Creation Efficiency | |||||||
Strong Government Support | 0.448 | 0.649 | 0.140 | 0.642 | 0.655 | 0.798 | 0.118 | 0.467 |
Weak Government Support | 0.860 | 0.748 | 0.030 | 0.257 | 0.711 | 0.520 | 0.063 | 0.348 |
High Digital Infrastructure Investment | 0.447 | 0.648 | 0.077 | 0.678 | 0.658 | 0.802 | 0.101 | 0.513 |
Low Digital Infrastructure Investment | 0.863 | 0.750 | 0.044 | 0.266 | 0.711 | 0.520 | 0.055 | 0.348 |
Strong Digital Collaboration Capabilities | 0.750 | 0.751 | 0.036 | 0.321 | 0.782 | 0.658 | 0.014 | 0.302 |
Weak Digital Collaboration Capabilities | 0.658 | 0.782 | 0.041 | 0.422 | 0.704 | 0.703 | 0.008 | 0.394 |
Strong Digital Perception Capabilities | 0.775 | 0.602 | 0.014 | 0.385 | 0.846 | 0.553 | 0.011 | 0.312 |
Weak Digital Perception Capabilities | 0.425 | 0.766 | 0.027 | 0.862 | 0.391 | 0.594 | 0.014 | 0.825 |
Strong Digital Operation Capabilities | 0.684 | 0.654 | 0.033 | 0.458 | 0.737 | 0.593 | 0.014 | 0.385 |
Weak Digital Operation Capabilities | 0.575 | 0.722 | 0.014 | 0.614 | 0.571 | 0.603 | 0.022 | 0.596 |
High Multidimensional Value Creation Efficiency | Low Multidimensional Value Creation Efficiency | |||||||
Strong Government Support | 0.468 | 0.632 | 0.140 | 0.577 | 0.566 | 0.743 | 0.145 | 0.513 |
Weak Government Support | 0.809 | 0.657 | 0.047 | 0.275 | 0.720 | 0.569 | 0.041 | 0.348 |
High Digital Infrastructure Investment | 0.469 | 0.634 | 0.041 | 0.623 | 0.545 | 0.718 | 0.162 | 0.577 |
Low Digital Infrastructure Investment | 0.791 | 0.641 | 0.058 | 0.302 | 0.722 | 0.570 | 0.033 | 0.348 |
Strong Digital Collaboration Capabilities | 0.704 | 0.661 | 0.030 | 0.348 | 0.726 | 0.664 | 0.066 | 0.330 |
Weak Digital Collaboration Capabilities | 0.643 | 0.707 | 0.036 | 0.403 | 0.630 | 0.675 | 0.068 | 0.403 |
Strong Digital Perception Capabilities | 0.769 | 0.565 | 0.027 | 0.403 | 0.811 | 0.581 | 0.025 | 0.367 |
Weak Digital Perception Capabilities | 0.430 | 0.701 | 0.060 | 0.797 | 0.393 | 0.624 | 0.027 | 0.797 |
Strong Digital Operation Capabilities | 0.714 | 0.647 | 0.058 | 0.431 | 0.660 | 0.582 | 0.066 | 0.449 |
Weak Digital Operation Capabilities | 0.538 | 0.619 | 0.016 | 0.605 | 0.599 | 0.672 | 0.033 | 0.541 |
High Value Conversion Efficiency | Low Value Conversion Efficiency | |||||||
Strong Government Support | 0.450 | 0.602 | 0.137 | 0.623 | 0.612 | 0.810 | 0.104 | 0.495 |
Weak Government Support | 0.858 | 0.691 | 0.060 | 0.229 | 0.699 | 0.557 | 0.052 | 0.367 |
High Digital Infrastructure Investment | 0.446 | 0.598 | 0.151 | 0.669 | 0.593 | 0.787 | 0.027 | 0.568 |
Low Digital Infrastructure Investment | 0.841 | 0.676 | 0.033 | 0.284 | 0.697 | 0.554 | 0.047 | 0.367 |
Strong Digital Collaboration Capabilities | 0.734 | 0.684 | 0.079 | 0.321 | 0.743 | 0.685 | 0.016 | 0.330 |
Weak Digital Collaboration Capabilities | 0.662 | 0.722 | 0.093 | 0.412 | 0.657 | 0.710 | 0.011 | 0.431 |
Strong Digital Perception Capabilities | 0.756 | 0.552 | 0.014 | 0.403 | 0.814 | 0.588 | 0.016 | 0.385 |
Weak Digital Perception Capabilities | 0.435 | 0.703 | 0.074 | 0.843 | 0.379 | 0.606 | 0.038 | 0.880 |
Strong Digital Operation Capabilities | 0.630 | 0.566 | 0.030 | 0.477 | 0.772 | 0.686 | 0.030 | 0.357 |
Weak Digital Operation Capabilities | 0.651 | 0.743 | 0.071 | 0.568 | 0.512 | 0.578 | 0.005 | 0.642 |
Case Type | Causal Combination | Metric | Year | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2023 | |||
Case 1 | Government Support and High Overall Efficiency | Intergroup Consistency | 0.495 | 0.409 | 0.495 | 0.398 |
Intergroup Coverage | 0.669 | 0.64 | 0.638 | 0.648 | ||
Case 2 | Strong Government Support and Low Overall Efficiency | Intergroup Consistency | 0.626 | 0.596 | 0.746 | 0.656 |
Intergroup Coverage | 0.798 | 0.797 | 0.787 | 0.81 | ||
Case 3 | High Digital Infrastructure Investment and Low Multidimensional Value Creation Efficiency | Intergroup Consistency | 0.583 | 0.658 | 0.687 | 0.712 |
Intergroup Coverage | 0.853 | 0.817 | 0.772 | 0.776 | ||
Case 4 | Strong Government Support and High Multidimensional Value Creation Efficiency | Intergroup Consistency | 0.502 | 0.439 | 0.531 | 0.412 |
Intergroup Coverage | 0.543 | 0.609 | 0.672 | 0.701 | ||
Case 5 | Strong Government Support and Low Multidimensional Value Creation Efficiency | Intergroup Consistency | 0.516 | 0.512 | 0.654 | 0.607 |
Intergroup Coverage | 0.796 | 0.774 | 0.703 | 0.703 | ||
Case 6 | High Digital Infrastructure Investment and Low Multidimensional Value Creation Efficiency | Intergroup Consistency | 0.454 | 0.538 | 0.604 | 0.621 |
Intergroup Coverage | 0.804 | 0.757 | 0.692 | 0.635 | ||
Case 7 | Strong Government Support and High Value Conversion Efficiency | Intergroup Consistency | 0.437 | 0.400 | 0.524 | 0.449 |
Intergroup Coverage | 0.662 | 0.619 | 0.576 | 0.551 | ||
Case 8 | Strong Government Support and Low Value Conversion Efficiency | Intergroup Consistency | 0.644 | 0.594 | 0.671 | 0.548 |
Intergroup Coverage | 0.714 | 0.803 | 0.832 | 0.896 | ||
Case 9 | High Digital Infrastructure Investment and High Value Conversion Efficiency | Intergroup Consistency | 0.382 | 0.427 | 0.511 | 0.484 |
Intergroup Coverage | 0.664 | 0.615 | 0.598 | 0.525 |
Conditional Variables | High Overall Value Co-Creation Efficiency | High Multidimensional Value Creation Efficiency | High Value Conversion Efficiency | |
---|---|---|---|---|
Resource Utilization Multi-Capability Driven | Multi-Capability Driven | Government Support Multi-Capability Driven | Resource Utilization Capability Driven | |
Type 1 | Type 2 | Type 3 | Type 4 | |
Government Support | ⊗ | ● | ⊗ | |
Digital Infrastructure Investment | ● | ⊗ | ⊗ | ● |
Digital Collaboration Capabilities | ● | ● | ● | ● |
Digital Perception Capabilities | ● | ⊗ | ⊗ | ⊗ |
Digital Operation Capabilities | ● | ● | ⊗ | |
Consistency | 0.959 | 0.944 | 0.957 | 0.910 |
PRI | 0.870 | 0.801 | 0.817 | 0.750 |
Coverage | 0.298 | 0.253 | 0.180 | 0.258 |
Unique Coverage | 0.064 | 0.019 | 0.260 | 0.010 |
Intergroup Consistency Adjustment Distance | 0.014 | 0.008 | 0.058 | 0.047 |
Intragroup Consistency Adjusted Distance | 0.110 | 0.147 | 0.092 | 0.165 |
Overall Consistency | 0.949 | 0.957 | 0.872 | |
Overall PRI | 0.844 | 0.817 | 0.708 | |
Overall Coverage | 0.317 | 0.180 | 0.318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Chen, M. How Digital Transformation Enhances Quality Chain Value Co-Creation Efficiency in Manufacturing: Evidence from Beijing. Sustainability 2025, 17, 5486. https://doi.org/10.3390/su17125486
Zhang Z, Chen M. How Digital Transformation Enhances Quality Chain Value Co-Creation Efficiency in Manufacturing: Evidence from Beijing. Sustainability. 2025; 17(12):5486. https://doi.org/10.3390/su17125486
Chicago/Turabian StyleZhang, Zhiqiang, and Man Chen. 2025. "How Digital Transformation Enhances Quality Chain Value Co-Creation Efficiency in Manufacturing: Evidence from Beijing" Sustainability 17, no. 12: 5486. https://doi.org/10.3390/su17125486
APA StyleZhang, Z., & Chen, M. (2025). How Digital Transformation Enhances Quality Chain Value Co-Creation Efficiency in Manufacturing: Evidence from Beijing. Sustainability, 17(12), 5486. https://doi.org/10.3390/su17125486