Predicting Climate Change Impacts on Sub-Tropical Fruit Suitability Using MaxEnt: A Regional Study from Southern Türkiye
Abstract
:1. Introduction
- An increase in temperatures;
- A decrease in precipitation;
2. Materials and Methods
2.1. Avocado
2.2. Pitaya
2.3. Study Area
2.4. Materials
2.5. Methods
2.5.1. Maximum Entropy (MaxEnt) Method
2.5.2. Validation
3. Results
3.1. Potential Distribution Areas for Current Period
3.2. Potential Distribution Areas for Future Period
3.2.1. Avocado (SSP2-4.5)
3.2.2. Avocado (SSP5-8.5)
3.2.3. Pitaya (SSP2-4.5)
3.2.4. Pitaya (SSP5-8.5)
4. Discussion
4.1. Avocado (SSP2-4.5)
4.2. Avocado (SSP5-8.5)
4.3. Pitaya (SSP2-4.5)
4.4. Pitaya (SSP5-8.5)
5. Conclusions
- (1)
- Agricultural suitability determination studies should utilize criteria that are appropriate for the product’s growth conditions. Using irrelevant, under, or over variables has a direct impact on the correctness of the analysis.
- (2)
- The resolution of the parameters employed has an enormous effect on the reliability and consistency of the analysis. Furthermore, even if the parameters retrieved or developed have varied resolutions, it is important to ensure that they are all at the same resolution when creating the final distribution map. Otherwise, the analysis may be negatively impacted.
- (3)
- Preferred methods are just as vital as parameters. In recent years, ML approaches have been widely used. They have been utilized because they are modern and reliable. Nonetheless, RS- and GIS-based multi-criteria decision-making (MCDM) techniques have been employed, too. The approaches are time-consuming; thus, they have drawbacks. However, the reliabilities are reasonable.
- (4)
- This study supplies a basic foundation for engineers, agricultural experts, climate scientists, and managers involved in the decision-making process. Especially, it is hoped that it will have a substantial impact on future decisions regarding the type of agricultural activities. It is anticipated that the preferred method and parameters can be used in different regions without modification for similar products (sub-tropical). However, at this stage, it is critical to select climate models appropriate for the research area’s location in the analyses to be conducted throughout the future period.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SDMs | Species distribution models |
SSPs | Shared socio-economic pathways |
IPCC | Intergovernmental Panel on Climate Change |
GCMs | Global climate models |
GDM | General Directorate of Meteorology |
GBIF | Global Biodiversity Information Facility |
MAT | Mean Annual Temperature |
MMTCM | Mean Minimum Temperature of the Coldest Month |
MMTWM | Mean Maximum Temperature of the Warmest month |
MAP | Mean Annual Precipitation |
S | Soil |
SD | Soil Depth |
SpH | Soil pH |
SOC | Soil Organic Carbon |
SS | Soil Salinity |
LUC | Land Use Capability |
RTMAF | Republic of Türkiye Ministry of Agriculture and Forestry Agricultural |
Sl | Slope |
GL | Groundwater Level |
DEM | Digital Elevation Model |
CLC | Corine Land Cover |
CLMS | Copernicus Land Monitoring Service |
GDSHW | General Directorate of State Hydraulic Works |
RCP | Representative Concentration Pathways |
References
- Grüter, R.; Trachsel, T.; Laube, P.; Jaisli, I. Expected Global Suitability of Coffee, Cashew and Avocado Due to Climate Change. PLoS ONE 2022, 17, e0261976. [Google Scholar] [CrossRef] [PubMed]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Läderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The Coffee Rust Crises in Colombia and Central America (2008–2013): Impacts, Plausible Causes and Proposed Solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef]
- Özdel, M.M.; Ustaoğlu, B.; Cürebal, İ. Modeling of the Potential Distribution Areas Suitable for Olive (Olea europaea L.) in Türkiye from a Climate Change Perspective. Agriculture 2024, 14, 1629. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán Zuazo, V.H.; Franco Tarifa, D.; Cuadros Tavira, S.; Sacristan, P.C.; García-Tejero, I.F. Irrigation Alternatives for Avocado (Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review. Agriculture 2023, 13, 1049. [Google Scholar] [CrossRef]
- Bunn, C.; Läderach, P.; Ovalle Rivera, O.; Kirschke, D. A Bitter Cup: Climate Change Profile of Global Production of Arabica and Robusta Coffee. Clim. Change 2015, 129, 89–101. [Google Scholar] [CrossRef]
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef]
- Nguyen, T.-D.; Venkatadri, U.; Nguyen-Quang, T.; Diallo, C.; Pham, D.-H.; Phan, H.-T.; Pham, L.-K.; Nguyen, P.-C.; Adams, M. Stochastic Modelling Frameworks for Dragon Fruit Supply Chains in Vietnam under Uncertain Factors. Sustainability 2024, 16, 2423. [Google Scholar] [CrossRef]
- Gurbuz, I.B.; Ozkan, G.; Er, S. Exploring Kiwi Fruit Producers’ Climate Change Perceptions. Appl. Fruit Sci. 2024, 66, 475–483. [Google Scholar] [CrossRef]
- Denvir, A. Avocado Expansion and the Threat of Forest Loss in Michoacán, Mexico under Climate Change Scenarios. Appl. Geogr. 2023, 151, 102856. [Google Scholar] [CrossRef]
- Vetharaniam, I.; Timar, L.; Stanley, C.J.; Müller, K.; van den Dijssel, C.; Clothier, B. Modelling Climate Change Impacts on Location Suitability and Spatial Footprint of Apple and Kiwifruit. Land 2022, 11, 1639. [Google Scholar] [CrossRef]
- de Oliveira Aparecido, L.E.; Dutra, A.F.; de Lima, R.F.; de Alcântara Neto, F.; Botega Torsoni, G.; Renan Lima Leite, M. Climate Change Scenarios and the Dragon Fruit Climatic Zoning in Brazil. Theor. Appl. Climatol. 2022, 149, 897–913. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Charre-Medellín, J.F.; Mas, J.F.; Chang-Martínez, L.A. Potential Expansion of Hass Avocado Cultivation under Climate Change Scenarios Threatens Mexican Mountain Ecosystems. Crop Pasture Sci. 2021, 72, 291–301. [Google Scholar] [CrossRef]
- Luu, T.T.H.; Le, T.L.; Huynh, N.; Quintela-Alonso, P. Dragon Fruit: A Review of Health Benefits and Nutrients and Its Sustainable Development under Climate Changes in Vietnam. Czech J. Food Sci. 2021, 39, 71–94. [Google Scholar] [CrossRef]
- Sosa, V.; Guevara, R.; Gutiérrez-Rodríguez, B.E.; Ruiz-Domínguez, C. Optimal Areas and Climate Change Effects on Dragon Fruit Cultivation in Mesoamerica. J. Agric. Sci. 2020, 158, 461–470. [Google Scholar] [CrossRef]
- Bardi, L. Early Kiwifruit Decline: A Soil-Borne Disease Syndrome or a Climate Change Effect on Plant–Soil Relations? Front. Agron. 2020, 2, 3. [Google Scholar] [CrossRef]
- Tait, A.; Paul, V.; Sood, A.; Mowat, A. Potential Impact of Climate Change on Hayward Kiwifruit Production Viability in New Zealand. N. Zeal. J. Crop Hortic. Sci. 2018, 46, 175–197. [Google Scholar] [CrossRef]
- Läderach, P.; Ramirez–Villegas, J.; Navarro-Racines, C.; Zelaya, C.; Martinez–Valle, A.; Jarvis, A. Climate Change Adaptation of Coffee Production in Space and Time. Clim. Change 2017, 141, 47–62. [Google Scholar] [CrossRef]
- Chemura, A.; Kutywayo, D.; Chidoko, P.; Mahoya, C. Bioclimatic Modelling of Current and Projected Climatic Suitability of Coffee (Coffea arabica) Production in Zimbabwe. Reg. Environ. Change 2016, 16, 473–485. [Google Scholar] [CrossRef]
- Ranjitkar, S.; Sujakhu, N.M.; Merz, J.; Kindt, R.; Xu, J.; Matin, M.A.; Ali, M.; Zomer, R.J. Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal. PLoS ONE 2016, 11, e0163916. [Google Scholar] [CrossRef] [PubMed]
- Schroth, G.; Läderach, P.; Blackburn Cuero, D.S.; Neilson, J.; Bunn, C. Winner or Loser of Climate Change? A Modeling Study of Current and Future Climatic Suitability of Arabica Coffee in Indonesia. Reg. Environ. Change 2015, 15, 1473–1482. [Google Scholar] [CrossRef]
- Challa, V.; Renganathan, M. Assessment of Climate Change Impact on Meteorological Variables of Indravati River Basin Using SDSM and CMIP6 Models. Environ. Monit. Assess. 2025, 197, 22. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Zhang, J.; Guo, H.; Jiang, X.; Wang, S.; Zhang, Y.; Fu, Z. Nutrient Release to Qinghai Lake from Buffer Zone Evolution Driven by Climate Change. J. Hydrol. 2025, 654, 132833. [Google Scholar] [CrossRef]
- Mahdavian, S.; Zeynali, B.; Salahi, B. Evaluation of the Hydrological Response of the Kiwi Chai Catchment Area to Future Climate Changes with the SWAT Model. J. Environ. Sci. Stud. 2024, 9, 8800–8815. [Google Scholar] [CrossRef]
- Koç, D.E.; Ustaoğlu, B.; Biltekin, D. Effect of Climate Change on the Habitat Suitability of the Relict Species Zelkova Carpinifolia Spach Using Ensembled Species Distribution Modelling. Sci. Rep. 2024, 14, 27967. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, A.; Mortazavizadeh, F.; Dehghani, A.; Rahmat, M.B.; Galavi, H.; Bolonio, D.; Ng, J.L.; Rezaverdinejad, V.; Mirzaei, M. Multi-Model Assessment of Climate Change Impacts on Drought Characteristics. Nat. Hazards 2024, 121, 6069–6084. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Abedi, M.J.; Niazkar, M. Effects of Climate Change on Streamflow in the Dez Basin of Iran Using the IHACRES Model Based on the CMIP6 Model. J. Water Clim. Change 2024, 15, 2595–2611. [Google Scholar] [CrossRef]
- HamadAmin, B.A.; Khwarahm, N.R. Mapping Impacts of Climate Change on the Distributions of Two Endemic Tree Species under Socioeconomic Pathway Scenarios (SSP). Sustainability 2023, 15, 5469. [Google Scholar] [CrossRef]
- Nazarenko, L.S.; Tausnev, N.; Russell, G.L.; Rind, D.; Miller, R.L.; Schmidt, G.A.; Bauer, S.E.; Kelley, M.; Ruedy, R.; Ackerman, A.S.; et al. Future Climate Change Under SSP Emission Scenarios With GISS-E2.1. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002871. [Google Scholar] [CrossRef]
- Javaherian, M.; Ebrahimi, H.; Aminnejad, B. Prediction of Changes in Climatic Parameters Using CanESM2 Model Based on Rcp Scenarios (Case Study): Lar Dam Basin. Ain Shams Eng. J. 2021, 12, 445–454. [Google Scholar] [CrossRef]
- Duan, R.; Huang, G.; Li, Y.; Zheng, R.; Wang, G.; Xin, B.; Tian, C.; Ren, J. Ensemble Temperature and Precipitation Projection for Multi-Factorial Interactive Effects of GCMs and SSPs: Application to China. Front. Environ. Sci. 2021, 9, 742326. [Google Scholar] [CrossRef]
- Dagtekin, D.; Şahan, E.A.; Denk, T.; Köse, N.; Dalfes, H.N. Past, Present and Future Distributions of Oriental Beech (Fagus Orientalis) under Climate Change Projections. PLoS ONE 2020, 15, e0242280. [Google Scholar] [CrossRef]
- Hepbilgin, B.; Koç, T. HadGEM2-ES/RegCM4.3.4 Küresel/Bölgesel Model Verilerine Göre Kaz Dağı ve Yakın Çevresinin Yağışlarında Olası Değişiklikler (2000–2099). Türk Coğrafya Derg. 2017, 69, 39–46. [Google Scholar] [CrossRef]
- Aduvukha, G.R.; Abdel-Rahman, E.M.; Mudereri, B.T.; Sichangi, A.W.; Makokha, G.O.; Lattorff, H.M.G.; Mohamed, S.A.; Landmann, T.; Tonnang, H.E.Z.; Dubois, T. Co-Occurrence and Abundance of Pollinators and Pests in Horticultural Systems in Africa Using an Integrated Earth Observation-Based Approach. GIScience Remote Sens. 2024, 61, 2347068. [Google Scholar] [CrossRef]
- Schmidt, H.; Radinger, J.; Teschlade, D.; Stoll, S. The Role of Spatial Units in Modelling Freshwater Fish Distributions: Comparing a Subcatchment and River Network Approach Using MaxEnt. Ecol. Modell. 2020, 418, 108937. [Google Scholar] [CrossRef]
- Caradima, B.; Schuwirth, N.; Reichert, P. From Individual to Joint Species Distribution Models: A Comparison of Model Complexity and Predictive Performance. J. Biogeogr. 2019, 46, 2260–2274. [Google Scholar] [CrossRef]
- Chiaverini, L.; Macdonald, D.W.; Hearn, A.J.; Kaszta, Ż.; Ash, E.; Bothwell, H.M.; Can, Ö.E.; Channa, P.; Clements, G.R.; Haidir, I.A.; et al. Not Seeing the Forest for the Trees: Generalised Linear Model out-Performs Random Forest in Species Distribution Modelling for Southeast Asian Felids. Ecol. Inform. 2023, 75, 102026. [Google Scholar] [CrossRef]
- Arcangeli, A.; Azzolin, M.; Babey, L.; David, L.; Garcia-Garin, O.; Moulins, A.; Rosso, M.; Scuderi, A.; Tepsich, P.; Vighi, M.; et al. Looking for Reliable Species Distribution Models for Low-Density Cetacean Species: Compared Effectiveness of SDMs for G. griseus, G. melas, Z. cavirostris in the Mediterranean Sea Based on Long-Term Fixed-Transect Data. Aquat. Conserv. Mar. Freshw. Ecosyst. 2024, 34, e4115. [Google Scholar] [CrossRef]
- Harris, J.; Pirtle, J.L.; Laman, E.A.; Siple, M.C.; Thorson, J.T. An Ensemble Approach to Species Distribution Modelling Reconciles Systematic Differences in Estimates of Habitat Utilization and Range Area. J. Appl. Ecol. 2024, 61, 351–364. [Google Scholar] [CrossRef]
- Becker, E.A.; Carretta, J.V.; Forney, K.A.; Barlow, J.; Brodie, S.; Hoopes, R.; Jacox, M.G.; Maxwell, S.M.; Redfern, J.V.; Sisson, N.B.; et al. Performance Evaluation of Cetacean Species Distribution Models Developed Using Generalized Additive Models and Boosted Regression Trees. Ecol. Evol. 2020, 10, 5759–5784. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Reyes, C.; Nazeri, M.; Street, G.; Jones-Farrand, D.T.; Vilella, F.J.; Evans, K.O. Embracing Ensemble Species Distribution Models to Inform At-Risk Species Status Assessments. J. Fish Wildl. Manag. 2021, 12, 98–111. [Google Scholar] [CrossRef]
- Yavuz Ozalp, A.; Akinci, H.; Zeybek, M. Comparative Analysis of Tree-Based Ensemble Learning Algorithms for Landslide Susceptibility Mapping: A Case Study in Rize, Turkey. Water 2023, 15, 2661. [Google Scholar] [CrossRef]
- Akumu, C.E.; Johnson, J.A.; Etheridge, D.; Uhlig, P.; Woods, M.; Pitt, D.G.; McMurray, S. GIS-Fuzzy Logic Based Approach in Modeling Soil Texture: Using Parts of the Clay Belt and Hornepayne Region in Ontario Canada as a Case Study. Geoderma 2015, 239–240, 13–24. [Google Scholar] [CrossRef]
- Park, S.; Jeon, S.; Kim, S.; Choi, C. Prediction and Comparison of Urban Growth by Land Suitability Index Mapping Using GIS and RS in South Korea. Landsc. Urban Plan. 2011, 99, 104–114. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Wang, R.; Ma, R. Modelling Potential Land Suitability of Large-Scale Wind Energy Development Using Explainable Machine Learning Techniques: Applications for China, USA and EU. Energy Convers. Manag. 2024, 302, 118131. [Google Scholar] [CrossRef]
- Mallick, S.K.; Rudra, S.; Maity, B. Land Suitability Assessment for Urban Built-up Development of a City in the Eastern Himalayan Foothills: A Study towards Urban Sustainability. Environ. Dev. Sustain. 2024, 26, 3767–3792. [Google Scholar] [CrossRef]
- Farnood Ahmadi, F.; Farsad Layegh, N. Integration of Artificial Neural Network and Geographical Information System for Intelligent Assessment of Land Suitability for the Cultivation of a Selected Crop. Neural Comput. Appl. 2015, 26, 1311–1320. [Google Scholar] [CrossRef]
- Sheikhi, S. An Effective Fake News Detection Method Using WOA-XgbTree Algorithm and Content-Based Features. Appl. Soft Comput. 2021, 109, 107559. [Google Scholar] [CrossRef]
- Safitri, S.; Sumarto, I.; Riqqi, A.; Deliar, A.; Norvyani, D.A.; Taradini, J. Suitability Model Using Support Vector Machine for Land Use Planning Scenarios in Java Island, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 500, 012051. [Google Scholar] [CrossRef]
- Whitney, K.; Scudiero, E.; El-Askary, H.M.; Skaggs, T.H.; Allali, M.; Corwin, D.L. Validating the Use of MODIS Time Series for Salinity Assessment over Agricultural Soils in California, USA. Ecol. Indic. 2018, 93, 889–898. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Barakat, A.; Hilali, A.; Baghdadi, M.E.; Touhami, F. Landfill Site Selection with GIS-Based Multi-Criteria Evaluation Technique. A Case Study in Béni Mellal-Khouribga Region, Morocco. Environ. Earth Sci. 2017, 76, 413. [Google Scholar] [CrossRef]
- Mokarram, M.; Hojati, M. Using Ordered Weight Averaging (OWA) Aggregation for Multi-Criteria Soil Fertility Evaluation by GIS (Case Study: Southeast Iran). Comput. Electron. Agric. 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Orhan, O. Land Suitability Determination for Citrus Cultivation Using a GIS-Based Multi-Criteria Analysis in Mersin, Turkey. Comput. Electron. Agric. 2021, 190, 106433. [Google Scholar] [CrossRef]
- Roell, Y.E.; Beucher, A.; Møller, P.G.; Greve, M.B.; Greve, M.H. Comparing a Random Forest Based Prediction of Winter Wheat Yield to Historical Yield Potential. Agronomy 2020, 10, 395. [Google Scholar] [CrossRef]
- Levend, S.; Sağ, M.A. Suitability Analysis Based on GIS and AHP for Urban Development Projects. Turkish J. Remote Sens. 2023, 5, 14–26. [Google Scholar] [CrossRef]
- Ismaili, M.; Krimissa, S.; Namous, M.; Htitiou, A.; Abdelrahman, K.; Fnais, M.S.; Lhissou, R.; Eloudi, H.; Faouzi, E.; Benabdelouahab, T. Assessment of Soil Suitability Using Machine Learning in Arid and Semi-Arid Regions. Agronomy 2023, 13, 165. [Google Scholar] [CrossRef]
- Vallejo Pérez, M.R.; Téliz Ortiz, D.; De La Torre Almaraz, R.; López Martinez, J.O.; Nieto Ángel, D. Avocado Sunblotch Viroid: Pest Risk and Potential Impact in México. Crop Prot. 2017, 99, 118–127. [Google Scholar] [CrossRef]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive Performance of Presence-only Species Distribution Models: A Benchmark Study with Reproducible Code. Ecol. Monogr. 2022, 92, e01486. [Google Scholar] [CrossRef]
- Narouei-Khandan, H.A.; Worner, S.P.; Viljanen, S.L.H.; van Bruggen, A.H.C.; Balestra, G.M.; Jones, E. The Potential Global Climate Suitability of Kiwifruit Bacterial Canker Disease (Pseudomonas syringae Pv. Actinidiae (Psa)) Using Three Modelling Approaches: CLIMEX, Maxent and Multimodel Framework. Climate 2022, 10, 14. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Vivaldi, G.A.; Garofalo, S.P.; Costanza, L.; Camposeo, S. Land Suitability Analysis of Six Fruit Tree Species Immune/Resistant to Xylella Fastidiosa as Alternative Crops in Infected Olive-Growing Areas. Agronomy 2023, 13, 547. [Google Scholar] [CrossRef]
- Everest, T. Suitable Site Selection for Pistachio (Pistacia vera) by Using GIS and Multi-Criteria Decision Analyses (a Case Study in Turkey). Environ. Dev. Sustain. 2021, 23, 7686–7705. [Google Scholar] [CrossRef]
- Selim, S.; Koc-San, D.; Selim, C.; San, B.T. Site Selection for Avocado Cultivation Using GIS and Multi-Criteria Decision Analyses: Case Study of Antalya, Turkey. Comput. Electron. Agric. 2018, 154, 450–459. [Google Scholar] [CrossRef]
- Kumar, A.; Pramanik, M.; Chaudhary, S.; Negi, M.S. Land Evaluation for Sustainable Development of Himalayan Agriculture Using RS-GIS in Conjunction with Analytic Hierarchy Process and Frequency Ratio. J. Saudi Soc. Agric. Sci. 2021, 20, 1–17. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy 2020, 10, 573. [Google Scholar] [CrossRef]
- Gao, B.; Yuan, S.W.; Guo, Y.; Zhao, Z. Potential Geographical Distribution of Actinidia spp. and Its Predominant Indices under Climate Change. Ecol. Inform. 2022, 72, 101865. [Google Scholar] [CrossRef]
- Çelik, M.A.; Gülersoy, A.E. Climate Classification and Drought Analysis of Mersin. Celal Bayar Üniversitesi Sos. Bilim. Derg. 2018, 16, 1–26. [Google Scholar]
- Sevim, D.; Varol, N.; Köseoğlu, O. Küresel İklim Değişikliğinin Zeytin Yetiştiriciliği ve Zeytinyağı Üzerine Etkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Derg. 2022, 36, 415–432. [Google Scholar] [CrossRef]
- TOB. Gıda Güvenliği ve Su Yönetimi. Available online: https://www.tarimorman.gov.tr/SYGM/Haber/1139/Gida-Guvenligi-Ve-Su-Yonetimi (accessed on 15 May 2023). (In Turkish)
- Çelik, M.Ö.; Yakar, M. Mersin’in Farklı Kuraklık İndeksleri Aracılığıyla Kuraklık Tehdidinin Araştırılması. Afyon Kocatepe Univ. J. Sci. Eng. 2024, 24, 71–84. [Google Scholar] [CrossRef]
- SOLTEKİN, O.; ALTINDİŞLİ, A.; İŞÇİ, B. İklim Değişikliğinin Türkiye’de Bağcılık Üzerine Etkileri. Ege Üniversitesi Ziraat Fakültesi Derg. 2021, 58, 457–467. [Google Scholar] [CrossRef]
- Ishiwu, C.N.; Obiegbuna, J.E.; Aniagolu, N.M. Evaluation of Chemical Properties of Mistletoe Leaves from Three Different Trees (Avocado, African Oil Bean and Kola). Niger. Food J. 2013, 31, 1–7. [Google Scholar] [CrossRef]
- Sabo, E.; Naveh, E.; Werman, M.J.; Neeman, I. Research Communication: Defatted Avocado Pulp Reduces Body Weight and Total Hepatic Fat But Increases Plasma Cholesterol in Male Rats Fed Diets with Cholesterol. J. Nutr. 2002, 132, 2015–2018. [Google Scholar] [CrossRef] [PubMed]
- Demircan, B.; Velioğlu, Y.S. Avokado: Bileşimi ve Sağlık Üzerine Etkileri. Akad. Gıda 2021, 19, 309–324. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Falé, Z.; Santos, L. Sustainability in Skin Care: Incorporation of Avocado Peel Extracts in Topical Formulations. Molecules 2022, 27, 1782. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.d.l.L.; Rodriguez, L.; Villegas-Aguilar, M.d.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants 2022, 11, 1049. [Google Scholar] [CrossRef]
- TOB. Avokado Yetiştiriciliği. Available online: https://arastirma.tarimorman.gov.tr/batem/Belgeler/Kutuphane/Teknik%20Bilgiler/Avokado%20Yetistiriciligi.pdf (accessed on 23 September 2024). (In Turkish)
- Dubrovina, I.A.; Bautista, F. Analysis of the Suitability of Various Soil Groups and Types of Climate for Avocado Growing in the State of Michoacán, Mexico. Eurasian Soil Sci. 2014, 47, 491–503. [Google Scholar] [CrossRef]
- Wolstenholme, B.N. Ecology: Climate and Soils. In The Avocado: Botany, Production and Uses; CABI: Wallingford, UK, 2013; pp. 86–117. [Google Scholar]
- Nandwani, D. Sustainable Horticultural Systems: Issues, Technology and Innovation; Springer: Berlin/Heidelberg, Germany, 2014; Volume 2. [Google Scholar]
- Gözalan, S. Determination of Suitable Areas Where Avocado Trees Can Grow in the Mediterranean Region; Karabük University: Karabük, Türkiye, 2023. [Google Scholar]
- Wikifarmer. Avokado Ağacının Iklim ve Toprak Gereksinimleri–Avokado Dikimi Için Bilmeniz Gerekenler. Available online: https://wikifarmer.com/tr/avokado-agacinin-iklim-ve-toprak-gereksinimleri-avokado-dikimi-icin-bilmeniz-gerekenler/ (accessed on 23 September 2024). (In Turkish).
- Al-Qthanin, R.; Salih, A.M.M.E.; Mohammed A Alhafidh, F.; Almoghram, S.A.M.; Alshehri, G.A.; Alahmari, N.H. Assessing the Suitability of Pitaya Plant Varieties for Cultivation in the Arid Climate of Saudi Arabia. Heliyon 2024, 10, e21651. [Google Scholar] [CrossRef]
- Ünalan, Ö. Tropikal Meyve Yetiştiriciliğinin Türk Halk Hekimliği Üzerindeki Etkileri. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folk. Tıp Derg. 2023, 13, 75–85. [Google Scholar] [CrossRef]
- Uğuz, M.; Gezici, A. Ejder Meyvesinin Ozmotik Dehidrasyonu ve Kuruma Özelliklerinin Değerlendirilmesi. Osman. Korkut Ata Üniversitesi Fen Bilim. Enstitüsü Derg. 2021, 4, 149–157. [Google Scholar] [CrossRef]
- Nerd, A.; Sitrit, Y.; Kaushik, R.A.; Mizrahi, Y. High Summer Temperatures Inhibit Flowering in Vine Pitaya Crops (Hylocereus spp.). Sci. Hortic. 2002, 96, 343–350. [Google Scholar] [CrossRef]
- Seday, S.; Sanal, D. Pitaya Yetiştiriciliği ve Türkiye’de Üretim Potansiyeli. Agromedya 2017, 5, 50–52. (In Turkish) [Google Scholar]
- GBIF. Available online: https://doi.org/10.15468/dl.7jrx4c (accessed on 3 February 2025).
- Şahin, G. One of the New Actors of Turkish Agriculture: Avocado (Persea americana Mill.). J. Anatol. Geogr. 2024, 1, 70–83. [Google Scholar] [CrossRef]
- TOB Tarım Ürünleri Piyasaları-Avokado. Available online: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tarım%20Ürünleri%20Piyasaları/2022-Temmuz%20Tarım%20Ürünleri%20Raporu/4-AVOKADO%20TÜP%20TEMMUZ%202022.pdf (accessed on 8 May 2025). (In Turkish)
- TOB Tarım Ürünleri Piyasaları. Available online: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tarım%20Ürünleri%20Piyasaları/2021-Ocak%20Tarım%20Ürünleri%20Raporu/Avokado,%20ocak%202021,%20Tarım%20Ürünleri%20Piyasaları%20Raporu--.pdf (accessed on 8 May 2025). (In Turkish)
- TÜİK. Available online: https://biruni.tuik.gov.tr/medas/?locale=tr (accessed on 10 March 2025).
- TÜİK. Kent-Kır Nüfus İstatistikleri 2022. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Kent-Kir-Nufus-Istatistikleri-2022-49755 (accessed on 11 May 2024). (In Turkish)
- Bekçi, R.N. Solar Potential Analysis and WebGIS Application; Mersin University: Mersin, Türkiye, 2022. [Google Scholar]
- Bekçi, R.N.; Kuaşk, L. Mekânsal Çözünürlüğün Güneşlenme Potansiyeline Etkisi. Türkiye İnsansız Hava Araçları Derg. 2022, 4, 46–51. [Google Scholar] [CrossRef]
- Mersin. Mersin Tarımsal Üretim Değerleri. Available online: https://www.sondakika.com/ekonomi/haber-mersin-turkiye-nin-narenciye-uretiminde-ikinci-sir-17305433/ (accessed on 8 May 2025). (In Turkish).
- MGM. İl ve İlçeler İstatistikleri–Mersin. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=MERSIN (accessed on 11 May 2024). (In Turkish)
- WorldClim. WorldClim. Available online: https://www.worldclim.org/ (accessed on 7 July 2024).
- TadPortal. Tarım Arazileri Değerlendirme ve Yönetim Otomasyonu. Available online: http://tad.tarim.gov.tr/ (accessed on 15 July 2024). (In Turkish)
- SoilGrids. SoilGrids–Global Soil Information. Available online: https://www.isric.org/explore/soilgrids (accessed on 15 July 2024).
- FAOSoil. Harmonized World Soil Database v1.2. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 15 July 2024).
- CLC. Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/ (accessed on 15 July 2024).
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Shen, J.; Wang, R.; Zhang, S.; Wang, J.; Wang, C.; Cai, W. A High Spatial Resolution Suitability Layers to Support Feasible Power Plant Site Selection in China. Sci. data 2025, 12, 608. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 Cropland Mapping Using Pixel-Based and Object-Based Time-Weighted Dynamic Time Warping Analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Wang, J.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. A Geospatial Approach to Assessing the Impact of Agroecological Knowledge and Practice on Crop Health in a Smallholder Agricultural Context. Prof. Geogr. 2023, 75, 618–635. [Google Scholar] [CrossRef]
- Canturk, U.; Kulaç, Ş. The Effects of Climate Change Scenarios on Tilia Ssp. in Turkey. Environ. Monit. Assess. 2021, 193, 771. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-source Release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Geven, F.; Adigüzel, N. Zelkova Carpinifolia (Pall.) C. koch (Ulmaceae) in Turkey (Relict Tree): Floristics, Ecology, Distribution and Threats. In Proceedings of the International Forestry Symposium, Phu Quoc City, Vietnam, 31 October–2 November 2016; pp. 147–154. [Google Scholar]
- Khan, A.M.; Li, Q.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Majeed, M.; Tariq, A. MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests 2022, 13, 715. [Google Scholar] [CrossRef]
- Li, W.; Xu, Z.; Shi, M.; Chen, J. Prediction of Potential Geographical Distribution Patterns of Salix Tetrasperma Roxb. In Asia under Different Climate Scenarios. Shengtai Xuebao 2019, 39, 3224–3234. [Google Scholar]
- Su, H.; Bista, M.; Li, M. Mapping Habitat Suitability for Asiatic Black Bear and Red Panda in Makalu Barun National Park of Nepal from Maxent and GARP Models. Sci. Rep. 2021, 11, 14135. [Google Scholar] [CrossRef]
- Makki, T.; Mostafavi, H.; Matkan, A.A.; Valavi, R.; Hughes, R.M.; Shadloo, S.; Aghighi, H.; Abdoli, A.; Teimori, A.; Eagderi, S.; et al. Predicting Climate Heating Impacts on Riverine Fish Species Diversity in a Biodiversity Hotspot Region. Sci. Rep. 2023, 13, 14347. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Testing Whether Ensemble Modelling Is Advantageous for Maximising Predictive Performance of Species Distribution Models. Ecography 2020, 43, 549–558. [Google Scholar] [CrossRef]
- Crego, R.D.; Stabach, J.A.; Connette, G. Implementation of Species Distribution Models in Google Earth Engine. Divers. Distrib. 2022, 28, 904–916. [Google Scholar] [CrossRef]
- Zimmer, S.N.; Holsinger, K.W.; Dawson, C.A. A Field-Validated Ensemble Species Distribution Model of Eriogonum Pelinophilum, an Endangered Subshrub in Colorado, USA. Ecol. Evol. 2023, 13, e10816. [Google Scholar] [CrossRef]
- Johnson, S.; Molano-Flores, B.; Zaya, D. Field Validation as a Tool for Mitigating Uncertainty in Species Distribution Modeling for Conservation Planning. Conserv. Sci. Pract. 2023, 5, e12978. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, W.-H. Application of True Skill Statistics as a Practical Method for Quantitatively Assessing CLIMEX Performance. Ecol. Indic. 2023, 146, 109830. [Google Scholar] [CrossRef]
- Maphanga, T.; Shoko, C.; Sibanda, M.; Kavhu, B.; Coetsee, C.; Dube, T. Bush Encroachment with Climate Change in Protected and Communal Areas: A Species Distribution Modelling Approach. Ecol. Modell. 2025, 503, 111056. [Google Scholar] [CrossRef]
- Chaudhary, A.; Sarkar, M.S.; Adhikari, B.S.; Rawat, G.S. Ageratina Adenophora and Lantana Camara in Kailash Sacred Landscape, India: Current Distribution and Future Climatic Scenarios through Modeling. PLoS ONE 2021, 16, e0239690. [Google Scholar] [CrossRef]
- FAO. Land Evaluation: Towards a Revised Framework; FAO Land & Water Discussion Paper 6; Food and Agriculture Organization: Rome, Italy, 2007. [Google Scholar]
- Soilhi, Z.; Hafsi, C.; Mekki, M. Ensemble Modeling to Predict Current and Future Distribution of Ailanthus altissima (Mill.) Swingle in Tunisia. Biol. Invasions 2025, 27, 53. [Google Scholar] [CrossRef]
- Deng, X.; Sun, Q. Prediction of Climate Change Impacts on the Distribution of an Umbrella Species in Western Sichuan Province, China: Insights from the MaxEnt Model and Circuit Theory. Diversity 2025, 17, 67. [Google Scholar] [CrossRef]
- Perveen, N.; Muzaffar, S.B.; Jaradat, A.; Sparagano, O.A.; Willingham, A.L. Camel Tick Species Distribution in Saudi Arabia and United Arab Emirates Using MaxEnt Modelling. Parasitology 2024, 151, 1024–1034. [Google Scholar] [CrossRef]
- Chukwuma, E.C.; Mankga, L.T. A MaxEnt Model for Estimating Suitable Habitats for Some Important Pelargonium Species in South Africa. J. Nat. Conserv. 2025, 84, 126845. [Google Scholar] [CrossRef]
- Ndwambi, K.; Nesamvuni, A.E.; Tshikolomo, K.A.; Mpandeli, S.; Van Niekerk, J.; Petja, B.M. Integration of Agro-Ecological and Groundwater Resources for the Assessment of Crop Suitability Potential Modeling: The Case of Limpopo Province, South Africa. Asian J. Agric. Rural Dev. 2021, 11, 334–345. [Google Scholar]
- Sarmadian, F.; Keshavarzi, A.; Rooien, A.; Zahedi, G.; Javadikia, H. Support Vector Machines Based-Modeling of Land Suitability Analysis for Rainfed Agriculture. J. Geosci. Geomatics 2014, 2, 165–171. [Google Scholar]
- Zakarya, Y.M.; Metwaly, M.M.; AbdelRahman, M.A.E.; Metwalli, M.R.; Koubouris, G. Optimized Land Use through Integrated Land Suitability and GIS Approach in West El-Minia Governorate, Upper Egypt. Sustainability 2021, 13, 12236. [Google Scholar] [CrossRef]
- Shevchenko, V.; Lukashevich, A.; Taniushkina, D.; Bulkin, A.; Grinis, R.; Kovalev, K.; Narozhnaia, V.; Sotiriadi, N.; Krenke, A.; Maximov, Y. Climate Change Impact on Agricultural Land Suitability: An Interpretable Machine Learning-Based Eurasia Case Study. IEEE Access 2024, 12, 15748–15763. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Shen, H.-W.; Lin, G. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots. IEEE Trans. Vis. Comput. Graph. 2017, 23, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Wang, J.; Zhao, Y.; Chen, Z. Quantification of Soil Water Content by Machine Learning Using Enhanced High-Resolution ERT. J. Hydrol. 2024, 643, 131994. [Google Scholar] [CrossRef]
- Lehner, A.; Philippe, D. A Time-Varying Index for Agricultural Suitability across Europe from 1500–2000. Sci. Data 2025, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, A.; Shafiq, M.u.; Jamil, M.; Singh, H.; Ahmed, P. Land Suitability Analysis for Apple Cultivation in Mountainous Kashmir Valley Using Scenario Based Modelling. Spat. Inf. Res. 2025, 33, 14. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, M.; Zhao, L. Identification and Delineation of Mariculture Area Based on Maxent and Marxan: A Case Study in Jiangsu, China. Aquaculture 2025, 596, 741831. [Google Scholar] [CrossRef]
- Kim, D.E.; Lee, H.; Kim, M.J.; Lee, D.-H. Predicting the Potential Habitat, Host Plants, and Geographical Distribution of Pochazia shantungensis (Hemiptera: Ricaniidae) in Korea. Korean J. Appl. Entomol. 2015, 54, 179–189. [Google Scholar] [CrossRef]
- Lee, S.; Cho, K.-H.; Lee, W. Prediction of Potential Distributions of Two Invasive Alien Plants, Paspalum Distichum and Ambrosia Artemisiifolia, Using Species Distribution Model in Korean Peninsula. Ecol. Resilient Infrastruct. 2016, 3, 189–200. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, X.; Sun, Y.; Liu, Y. Species Distribution Modeling Based on MaxEnt to Inform Biodiversity Conservation in the Central Urban Area of Chongqing Municipality. Ecol. Indic. 2024, 158, 111491. [Google Scholar] [CrossRef]
Reference | Crop | Study Area | Goals of the Studies | |
---|---|---|---|---|
[8] | Pitaya | Vietnam | Determining the impacts of climate change on agricultural crop patterns | |
[9] | Kiwi | Kastamonu/Türkiye | ||
[10] | Avocado | Michoacán/Mexico | ||
[11] | Kiwi and apple | New Zealand | ||
[12] | Pitaya | Brazil | ||
[13] | Coffee | Mexico | ||
[14] | Avocado | Michoacán/Mexico | ||
[15] | Pitaya | Vietnam | ||
[16] | Pitaya | Central America | ||
[17] | Kiwi | New Zealand | ||
[18] | Kiwi | New Zealand | ||
[19] | Coffee | Nicaragua | ||
[20] | Coffee | Zimbabwe | ||
[21] | Coffee and banana | Nepal | ||
[22] | Coffee | Indonesia |
Reference | Model | Scenario |
---|---|---|
[23] | CanESM5, MPI-ESM1-2-HR, EC-Earth3, NorESM2-LM | SSP2-4.5, SSP5-8.5 |
[24] | CanESM2 | RCP 2.6, RCP 4.5, RCP 8.5 |
[25] | EC-EARTH, HadGEM2-ES, MIROC5, MPI-ESM | RCP4.5, RCP8.5 |
[3] | CCSM4 | RCP4.5, RCP8.5 |
[26] | CCSM4 | RCP4.5, RCP8.5 |
[27] | Access-CM2, HadGEM, UKESM1 | SSP1-2.6, SSP2-4.5, SSP5-8.5 |
[28] | ACCESS-ESM1, BCC-CSM-MR | SSP2-4.5, SSP5-8.5 |
[29] | MIROC-ES2L, BCC-CSM2-MR | SSP1-2.6, 2, SSP2-4.5, SSP5-8.5 |
[12] | BCC-CSM1-1 | RCP2.6, RCP4.5, RCP6.0, RCP8.5 |
[30] | GISS-E2.1 | SSP1-2.6, SSP2-4.5, SSP4-6.0, SSP5-8.5 |
[1] | BBC-CSM1-1, CCSM4, CNRM-CM5, GFDL-CM3, GISS-E2-R, HadGEM2-AO, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, MIROC- ESM, MIROC5, MPI-ESM-LR, MRI-CGCM3, NorESM1-M | RCP2.6, RCP4.5, RCP8.5 |
[11] | CC-CSM1.1, CESM1-CAM5, GFDL-CM3, GISS-EL-R, HadGEM2-ES, NorESM1-M | RCP2.6, RCP8.5 |
[31] | CanESM2 | RCP2.6, RCP4.5, RCP8.5 |
[32] | CESM2, GFDL-ESM4, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0 | SSP2-4.5, SSP5-8.5 |
[33] | MIROC-ESM, CCSM4 | RCP2.6, RCP4.5, RCP8.5 |
[34] | HadGEM2ES, RegCM4.3.4 | RCP4.5, RCP8.5 |
Parameters ** | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Method | T | P | S | SpH | SS | SD | Luc | E | Sl | A | G | PA | Lu/Lc |
[3] | MaxEnt | ● | ● | |||||||||||
[26] | MaxEnt, GLM, GBM, GAM, ANN, RF, FDA *, CTA *, SRE * | ● | ● | |||||||||||
[33] | MaxEnt, GLM, GAM, RF, BIOCLIM * | ● | ● | |||||||||||
[61] | MaxEnt, CLIMEX *, SVM | ● | ● | |||||||||||
[1] | CONSUS * | ● | ● | ● | ● | ● | ● | ● | ● | |||||
[62] | AHP | ● | ● | ● | ● | ● | ||||||||
[63] | AHP | ● | ● | ● | ● | ● | ● | |||||||
[64] | AHP | ● | ● | ● | ● | ● | ● | |||||||
[65] | AHP, FR | ● | ● | ● | ● | ● | ● | |||||||
[66] | RF, SVM | ● | ● | ● | ● |
Parameters | Scale/Resolution → Final Resolution | Data Type | Source |
---|---|---|---|
Climate | |||
(1) MAT (°C) | 30 arc second → 25 m | Raster | WorldClim [99] |
(2) MMTCM (°C) | 30 arc second → 25 m | Raster | |
(3) MMTWM (°C) | 30 arc second → 25 m | Raster | |
(4) MAP (mm) | 30 arc second → 25 m | Raster | |
Soil | |||
(5) DEM (m) | 25 m | Raster | CLMS [103] |
(6) Sl (%) | 25 m | Raster | Production from DEM |
(7) S | 1/100,000 → 25 m | Vector | RTMAF TadPortal [100] |
(8) SD (cm) | 1/100,000 → 25 m | Vector | |
(9) SpH | 2 arc second → 25 m | Raster | SoilGrids [101] |
(10) SS (dS/m) | 2 arc second → 25 m | Raster | FAOSoil [102] |
(11) SOC (dg/kg) | 1:100,000 → 25 m | Raster | SoilGrids [101] |
(12) GL (m) | 25 m | Vector | GDSHW |
(13) LUC | 1/100,000 → 25 m | Vector | RTMAF TadPortal [100] |
(14) Lc | 1/100,000 → 25 m | Raster | CLMS [103] |
Parameters | Sub-Classes | Suitability Level |
---|---|---|
Climate | ||
(1) MAT (°C) | 14.59–19.55 | S1 |
9.63–14.59 | S2 | |
9.63–4.68 | S3 | |
−0.28/4.68 | N | |
(2) MMTCM (°C) | −14.30/−7.48 | N |
−7.48/−2.76 | N | |
−2.76/2.05 | S3 | |
2.05/8.00 | S3 | |
(3) MMTWM (°C) | 17.70–22.08 | S1 |
22.08–26.45 | S2 | |
26.45–30.83 | S3 | |
30.83–35.20 | S3 | |
(4) MAP (mm) | 454.00–540.25 | N |
540.24–625.50 | S3 | |
625.50–712.75 | S2 | |
712.75–799.00 | S1 | |
Soil | ||
(5) DEM (m) | 0–867.27 | S1 |
867.27–1740.52 | S2 | |
1740.52–2400.00 | S3 | |
>2400.00 | N | |
(6) Sl (%) | 0–8 | S1 |
8–16 | S2 | |
16–28 | S3 | |
>28 | N | |
(7) S | A, K, L, O, R, S | S1 |
E, M, T | S2 | |
N, P, Y | S3 | |
Unclassified | N | |
Soil | ||
(8) SD (cm) | A→90+ | S1 |
B→50–90 | S2 | |
C→20–50 | S3 | |
D→0–20, E→ Lithosolic, Unclassified | N | |
(9) SpH | 5–6.5 | S1 |
4.5–5/6.5–7.7 | S2 | |
4.3–4.5 | S3 | |
<4.3 | N | |
(10) SS (dS/m) | 0–3.0 | S1 |
3–3.1 | S2 | |
3.1–3.3 | S3 | |
3.3–3.5 | S3 | |
(11) SOC (dg/kg) | 0–155.25 | S3 |
155.25–310.50 | S3 | |
310.50–465.75 | S2 | |
465.75–621.00 | S1 | |
(12) GL (m) | 0–5 | S1 |
5–10 | S2 | |
10–20 | S3 | |
>20 | S3 | |
(13) LUC | I, II, III, IV | S1 |
V, VI, VII | S3 | |
VIII, Unclassified | N | |
(14) Lc | Agricultural land, Vegetation, Water body | S1 |
Barren land | S3 | |
Settlement | N | |
Protected area (PA) | WIR, Grade I., II., III. Archeological Site | N |
SPEA, Urban site, Ruin | N | |
Natural Monument, Natural Park | N |
Parameters | Contribution (%) |
---|---|
(10) SS (dS/m) | 49.3 |
(1) MAT (°C) | 32.4 |
(6) Sl (%) | 6.4 |
(7) S | 4.0 |
(14) Lc | 3.0 |
(11) SOC (dg/kg) | 2.5 |
(12) GL (m) | 1.6 |
(9) SpH | 0.3 |
(3) MMTWM (°C) | 0.2 |
(8) SD (cm) | 0.1 |
(4) MAP (mm) | 0.1 |
(13) LUC | 0.1 |
Parameters | Contribution (%) |
---|---|
(1) MAT (°C) | 44.6 |
(10) SS (dS/m) | 28.5 |
(6) Sl (%) | 9.5 |
(8) SD (cm) | 5.2 |
(11) SOC (dg/kg) | 4.5 |
(14) Lc | 3.8 |
(4) MAP (mm) | 1.9 |
(7) S | 0.6 |
(12) GL (m) | 0.6 |
(3) MMTWM (°C) | 0.5 |
(9) SpH | 0.2 |
(13) LUC | 0.1 |
Class | Avocado | Pitaya | ||
---|---|---|---|---|
Area (km2) | (%) Area | Area (km2) | (%) Area | |
S1 | 660.00 | 4.16 | 1191.10 | 7.51 |
S2 | 1558.88 | 9.83 | 1457.33 | 9.19 |
S3 | 1226.18 | 7.73 | 2152.67 | 13.58 |
N | 12,407.94 | 78.27 | 11,051.90 | 69.71 |
Total | 15,853 | 100 | 15,853 | 100 |
Avocado (SSP2-4.5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HadGEM | MPI | GFDL | |||||||||||
S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N | ||
(2021–2040) | km2 | 1263.15 | 1493.18 | 1402.01 | 11,694.66 | 1200.19 | 1255.97 | 1344.09 | 12,052.74 | 1630.57 | 2056.19 | 1323.17 | 10,843.07 |
% | 7.97 | 9.42 | 8.84 | 73.77 | 7.57 | 7.92 | 8.48 | 76.03 | 10.29 | 12.97 | 8.35 | 68.40 | |
(2041–2060) | km2 | 427.41 | 1436.59 | 1553.09 | 12,435.90 | 1370.34 | 1191.97 | 1209.61 | 12,081.08 | 1186.02 | 1113.01 | 113.79 | 12,440.18 |
% | 2.70 | 9.06 | 9.80 | 78.45 | 8.64 | 7.52 | 7.63 | 76.21 | 7.48 | 7.02 | 7.03 | 78.47 | |
(2061–2080) | km2 | 558.62 | 1784.16 | 1623.77 | 11,886.45 | 1218.31 | 1195.97 | 1393.16 | 12,045.56 | 1172.66 | 1249.90 | 1723.98 | 11,706.46 |
% | 3.52 | 11.25 | 10.24 | 74.98 | 7.69 | 7.54 | 8.79 | 75.98 | 7.40 | 7.88 | 10.87 | 73.84 | |
(2081–2100) | km2 | 1229.35 | 1362.57 | 1485.68 | 11,775.40 | 87.73 | 1603.87 | 1823.11 | 12,338.29 | 12,202.37 | 1265.46 | 1695.70 | 11,689.46 |
% | 7.75 | 8.60 | 9.37 | 74.28 | 0.55 | 10.12 | 11.50 | 77.83 | 7.58 | 7.98 | 10.70 | 73.74 |
Avocado (SSP5-8.5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HadGEM | MPI | GFDL | |||||||||||
S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N | ||
(2021–2040) | km2 | 544.72 | 1835.99 | 1787.78 | 11,684.51 | 1242.92 | 1199.05 | 1139.05 | 12,271.98 | 1175.34 | 1198.68 | 1724.84 | 11,754.14 |
% | 3.44 | 11.58 | 11.28 | 73.71 | 7.84 | 7.56 | 7.19 | 77.41 | 7.41 | 7.56 | 10.88 | 74.14 | |
(2041–2060) | km2 | 533.32 | 1767.17 | 1678.37 | 11,874.14 | 91.03 | 1565.41 | 1484.48 | 12,712.08 | 1180.28 | 1284.67 | 1672.34 | 11,715.70 |
% | 3.36 | 11.15 | 10.59 | 74.90 | 0.57 | 9.87 | 9.36 | 80.19 | 7.45 | 8.10 | 10.55 | 73.90 | |
(2061–2080) | km2 | 12,56.94 | 1470.03 | 1402.02 | 11,724.01 | 1191.76 | 1035.40 | 1090.49 | 12,535.36 | 676.02 | 1215.50 | 1148.58 | 12,812.90 |
% | 7.93 | 9.27 | 8.84 | 73.95 | 7.52 | 6.53 | 6.88 | 79.07 | 4.26 | 7.67 | 7.25 | 80.82 | |
(2081–2100) | km2 | 1150.22 | 1517.66 | 1423.23 | 11,761.88 | 1116.41 | 977.93 | 956.63 | 12,802.03 | 96.51 | 123.52 | 1464.11 | 14,168.86 |
% | 7.26 | 9.57 | 8.98 | 74.19 | 7.04 | 6.17 | 6.03 | 80.75 | 0.61 | 0.78 | 9.24 | 89.38 |
Pitaya (SSP2-4.5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HadGEM | MPI | GFDL | |||||||||||
S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N | ||
(2021–2040) | km2 | 1526.32 | 1459.75 | 2707.01 | 10,159.93 | 44.63 | 325.31 | 3059.27 | 12,423.79 | 1002.82 | 1328.20 | 2806.38 | 10,715.60 |
% | 9.63 | 9.21 | 17.08 | 64.09 | 0.28 | 2.05 | 19.30 | 78.37 | 6.33 | 8.38 | 17.70 | 67.59 | |
(2041–2060) | km2 | 1154.83 | 1362.54 | 2514.91 | 10,820.72 | 174.31 | 752.85 | 2706.24 | 12,219.60 | 44.65 | 325.30 | 3059.27 | 12,423.78 |
% | 7.28 | 8.59 | 15.86 | 68.26 | 1.10 | 4.75 | 17.07 | 77.08 | 0.28 | 2.05 | 19.30 | 78.37 | |
(2061–2080) | km2 | 1154.75 | 1341.93 | 2462.81 | 10,893.51 | 51.10 | 32.39 | 2064.55 | 13,409.96 | 49.97 | 333.06 | 2090.80 | 13,379.16 |
% | 7.28 | 8.46 | 15.54 | 68.72 | 0.32 | 2.07 | 13.02 | 84.59 | 0.32 | 2.10 | 13.19 | 84.40 | |
(2081–2100) | km2 | 1535.79 | 1504.98 | 2657.88 | 10,154.35 | 20.55 | 40.30 | 476.33 | 15,315.81 | 49.07 | 292.70 | 1226.63 | 14,284.61 |
% | 9.69 | 9.49 | 16.77 | 64.05 | 0.13 | 0.25 | 3.00 | 96.61 | 0.31 | 1.85 | 7.74 | 90.11 |
Pitaya (SSP5-8.5) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HadGEM | MPI | GFDL | |||||||||||
S1 | S2 | S3 | N | S1 | S2 | S3 | N | S1 | S2 | S3 | N | ||
(2021-2040) | km2 | 1595.00 | 1406.12 | 2765.23 | 10,086.64 | 43.86 | 324.78 | 3057.84 | 12,426.52 | 44.26 | 322.85 | 3063.91 | 12,421.97 |
% | 10.06 | 8.87 | 17.44 | 63.63 | 0.28 | 2.05 | 19.29 | 78.39 | 0.28 | 2.04 | 19.33 | 78.36 | |
(2041-2060) | km2 | 1460.70 | 12,080.65 | 2413.77 | 10,769.87 | 14.69 | 36.56 | 341.69 | 15,460.06 | 47.40 | 334.62 | 2054.67 | 13,416.31 |
% | 9.21 | 7.62 | 15.23 | 67.94 | 0.09 | 0.23 | 2.16 | 97.52 | 0.30 | 2.11 | 12.96 | 84.63 | |
(2061-2080) | km2 | 1579.87 | 1566.97 | 2595.05 | 10,111.11 | 44.45 | 332.19 | 3068.55 | 12,407.81 | 43.96 | 325.57 | 3055.57 | 12,427.48 |
% | 9.97 | 9.88 | 16.37 | 63.78 | 0.28 | 2.10 | 19.36 | 78.27 | 0.28 | 2.05 | 19.28 | 78.39 | |
(2081-2100) | km2 | 1073.06 | 1553.93 | 2660.28 | 10,565.74 | 48.70 | 432.97 | 3105.47 | 12,265.85 | 14.69 | 36.56 | 341.69 | 15,460.06 |
% | 6.77 | 9.80 | 16.78 | 66.65 | 0.31 | 2.3 | 19.59 | 77.37 | 0.09 | 0.23 | 2.16 | 97.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelik, M.Ö.; Orhan, O.; Kurt, M.A. Predicting Climate Change Impacts on Sub-Tropical Fruit Suitability Using MaxEnt: A Regional Study from Southern Türkiye. Sustainability 2025, 17, 5487. https://doi.org/10.3390/su17125487
Çelik MÖ, Orhan O, Kurt MA. Predicting Climate Change Impacts on Sub-Tropical Fruit Suitability Using MaxEnt: A Regional Study from Southern Türkiye. Sustainability. 2025; 17(12):5487. https://doi.org/10.3390/su17125487
Chicago/Turabian StyleÇelik, Mehmet Özgür, Osman Orhan, and Mehmet Ali Kurt. 2025. "Predicting Climate Change Impacts on Sub-Tropical Fruit Suitability Using MaxEnt: A Regional Study from Southern Türkiye" Sustainability 17, no. 12: 5487. https://doi.org/10.3390/su17125487
APA StyleÇelik, M. Ö., Orhan, O., & Kurt, M. A. (2025). Predicting Climate Change Impacts on Sub-Tropical Fruit Suitability Using MaxEnt: A Regional Study from Southern Türkiye. Sustainability, 17(12), 5487. https://doi.org/10.3390/su17125487