Different Impacts of Early and Late Rice Straw Incorporation on Cadmium Bioavailability and Accumulation in Double-Cropping Rice
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Material Description
2.2. Experimental Design
2.2.1. Field Experiment
2.2.2. Pot Experiment
2.3. Sample Preparation
2.3.1. Soils
2.3.2. Plants and Straws
2.4. Sample Analysis
2.5. Statistical Analysis
3. Results
3.1. Variations in Soil Properties
3.1.1. Soil pH and Eh
3.1.2. Soil CEC
3.1.3. Soil OM and DOC
3.2. Variations in Soil Cd Concentrations
3.2.1. Total Cd
3.2.2. Extractable Cd
3.2.3. Cd and Fe Concentration in Soil Solution
3.3. Cd Concentration in Rice Organs
3.4. Consecutive Two-Year Field Experiment
3.4.1. Soil Total Cd and Extractable Cd
3.4.2. Cd Accumulation in Grain
3.5. Correlation Analysis of Environmental Factors with Cd Availability
4. Discussion
4.1. Impact of Straw Return on Cd Bioavailability
4.2. Cd Bioavailability Differences Between the Field with Early-Rice and Late-Rice Straw Return
4.3. Differences in the Uptake of Cd in the Later Rice Crop
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOC | Dissolved organic carbon |
CEC | Cation exchange capacity |
OM | Organic matter |
CaCl2-Cd | CaCl2-extractable Cd in soil |
Total-Cd | Total Cd in soil |
Eh | Redox potential |
BCF | Bioconcentration factor |
TF | Transfer factors |
Aci-Cd | Acid extractable Cd fraction |
Red-Cd | Reducible Cd fraction |
Oxi-Cd | Oxidizable Cd fraction |
Res-Cd | Residual Cd fraction |
AT | Accumulated temperature |
TIT | Total illumination time |
TP | Total precipitation |
Root-Cd | Cd content in rice roots |
Stem-Cd | Cd content in rice stems |
Leaf-Cd | Cd content in rice leaves |
Grain-Cd | Cd content in grains |
References
- Sun, N.; Gao, C.; Ding, Y.; Bi, Y.; Seglah, P.A.; Wang, Y. Five-Dimensional Straw Utilization Model and Its Impact on Carbon Emission Reduction in China. Sustainability 2022, 14, 16722. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Lu, D.; Chen, X.; Cui, Z.; Chen, X.; Lu, J.; Nie, J.; Wang, H.; Zhou, J. Bio-Straw Resource Recycling Systems: Agricultural Productivity and Green Development. Resour. Conserv. Recycl. 2023, 190, 106844. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A Review of Biomass Burning: Emissions and Impacts on Air Quality, Health and Climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef]
- Xu, X.; Pang, D.; Chen, J.; Luo, Y.; Zheng, M.; Yin, Y.; Li, Y.; Li, Y.; Wang, Z. Straw Return Accompany with Low Nitrogen Moderately Promoted Deep Root. Field Crops Res. 2018, 221, 71–80. [Google Scholar] [CrossRef]
- Cui, S.; Cao, G.; Zhu, X. Effects of Straw Return Duration on Soil Carbon Fractions and Wheat Yield in Rice-Wheat Cropping System. Sustainability 2024, 16, 754. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Zhou, H.; Wen, Y.; Zeng, P.; Gu, J.; Hu, L.; Yuan, H.; Liao, B. Effects of Straw and Roots Removal on Soil Cd Availability and Cd Accumulation in Rice at Different Growth Stages. Environ. Technol. Innov. 2024, 36, 103768. [Google Scholar] [CrossRef]
- Gao, L.; Deng, J.; Huang, G.; Li, K.; Cai, K.; Liu, Y.; Huang, F. Relative Distribution of Cd2+ Adsorption Mechanisms on Biochars Derived from Rice Straw and Sewage Sludge. Bioresour. Technol. 2019, 272, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhan, J.; Zou, L.; Chen, H.; Wu, X.; Sun, Y.; Zhao, G.; Wan, Y.; Liu, C.; Wu, Q.; et al. The MYB-bHLH-NRAMP Module Modulates the Cadmium Sensitivity of Quinoa by Regulating Cadmium Transport and Absorption. J. Hazard. Mater. 2025, 486, 137132. [Google Scholar] [CrossRef] [PubMed]
- Nehzomi, Z.S.; Shirani, K. The Gut Microbiota: A Key Player in Cadmium Toxicity—Implications for Disease, Interventions, and Combined Toxicant Exposures. J. Trace Elem. Med. Biol. 2025, 88, 127570. [Google Scholar] [CrossRef]
- Xu, M.; Xu, C.; Yu, G.; Yin, L.; Zhang, Q.; Zhu, H.; Zhu, Q.; Zhang, Y.Z.; Huang, D. Effects of Groundwater Level and Long-Term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice. Ecol. Environ. Sci. 2023, 32, 150–157. [Google Scholar] [CrossRef]
- Tian, B.; Yang, Y.; Chen, A.; Peng, L.; Deng, X.; Yang, Y.; Zeng, Q.; Luo, S. Long-Term Straw Removal and Double-Cropping System Reduce Soil Cadmium Content and Uptake in Rice: A Four-Year Field Analysis. J. Environ. Sci. 2024, 152, 549–562. [Google Scholar] [CrossRef]
- Yi, K.; Wang, F.; Chen, J.; Jiang, S.; Huang, S.; Peng, L.; Zeng, Q.; Luo, S. Annual Input and Output Fluxes of Heavy Metals to Paddy Fields in Four Types of Contaminated Areas in Hunan Province, China. Sci. Total Environ. 2018, 634, 67–76. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, P. Arsenic and Cadmium Accumulation in Rice and Mitigation Strategies. Plant Soil 2020, 446, 1–21. [Google Scholar] [CrossRef]
- Duan, G.; Zhang, H.; Liu, Y.; Jia, Y.; Hu, Y.; Cheng, W. Long-Term Fertilization with Pig-Biogas Residues Results in Heavy Metal Accumulation in Paddy Field and Rice Grains in Jiaxing of China. Soil Sci. Plant Nutr. 2012, 58, 637–646. [Google Scholar] [CrossRef]
- Tang, W.; Zhong, H.; Xiao, L.; Tan, Q.; Zeng, Q.; Wei, Z. Inhibitory Effects of Rice Residues Amendment on Cd Phytoavailability: A Matter of Cd-Organic Matter Interactions? Chemosphere 2017, 186, 227–234. [Google Scholar] [CrossRef]
- An, Y.; Jiao, X.; Gu, Z.; Shi, C.; Liu, K. Effects of Straw Return and Aeration on Oxygen Status and Redox Environment in Flooded Soil. Soil Water Res. 2022, 17, 29–35. [Google Scholar] [CrossRef]
- Liang, F.; Li, B.; Vogt, R.D.; Mulder, J.; Song, H.; Chen, J.; Guo, J. Straw Return Exacerbates Soil Acidification in Major Chinese Croplands. Resour. Conserv. Recycl. 2023, 198, 107176. [Google Scholar] [CrossRef]
- Niu, Z.X.; Li, X.D.; Sun, L.N.; Sun, T.H. Changes of Three Organic Acids in the Process of Cd and Pb Phytoextraction by Helianthus annuus L. Plant Soil Environ. 2012, 58, 487–494. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, J.; Zhou, T.; Li, Z.; Jiang, J.; Zhu, D.; Hou, J.; Wang, Z.; Luo, Y.; Christie, P. Estimating Cadmium Availability to the Hyperaccumulator Sedum plumbizincicola in a Wide Range of Soil Types Using a Piecewise Function. Sci. Total Environ. 2018, 637, 1342–1350. [Google Scholar] [CrossRef]
- Zuo, W.; Yi, S.; Chen, Y.; Huang, G.; Zhu, X.; Li, Y.; Gu, C.; Bai, Y.; Shan, Y. Utilization of Straw Resources May Affect the Speciation of Cd and Its Solubility in Cd-Contaminated Paddy Soil. Front. Environ. Sci. 2022, 10, 933653. [Google Scholar] [CrossRef]
- Devêvre, O.C.; Horwáth, W.R. Decomposition of Rice Straw and Microbial Carbon Use Efficiency under Different Soil Temperatures and Moistures. Soil Biol. Biochem. 2000, 32, 1773–1785. [Google Scholar] [CrossRef]
- Wang, W.; Lai, D.Y.F.; Wang, C.; Pan, T.; Zeng, C. Effects of Rice Straw Incorporation on Active Soil Organic Carbon Pools in a Subtropical Paddy Field. Soil Tillage Res. 2015, 152, 8–16. [Google Scholar] [CrossRef]
- Wang, W.; Lai, D.Y.F.; Sardans, J.; Wang, C.; Datta, A.; Pan, T.; Zeng, C.; Bartrons, M.; Peñuelas, J. Rice Straw Incorporation Affects Global Warming Potential Differently in Early vs. Late Cropping Seasons in Southeastern China. Field Crops Res. 2015, 181, 42–51. [Google Scholar] [CrossRef]
- An, W.; Gao, D.; Pan, T.; Zeng, C.; Wang, W. Effect of Rice Straw Returning on Paddy Soil Water-Stable Aggregate Distribution and Stability in the Paddy Field of Fuzhou Plain. Acta Sci. Circumstantiae 2016, 36, 1833–1840. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, Y.; Jia, X.; Yan, W.; Cao, J.; Shangguan, Z. Wheat Straw Decomposition Patterns and Control Factors Under Nitrogen Fertilization. J. Soil Sci. Plant Nutr. 2021, 21, 3110–3121. [Google Scholar] [CrossRef]
- Esther, O.J.; Guo, C.; Tian, X.; Li, H.; Zhou, Y. The Effects of Three Mineral Nitrogen Sources and Zinc on Maize and Wheat Straw Decomposition and Soil Organic Carbon. J. Integr. Agric. 2014, 13, 2768–2777. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Zhang, Z.; Liao, K. A Comparison Study of Two Methods for Mensuration of Soil Cation Exchange Capacity. Guizhou For. Sci. Technol. 2010, 38, 45–49. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Agronomy Monographs; Page, A.L., Ed.; Wiley: Hoboken, NJ, USA, 1982; Volume 9, pp. 539–579. ISBN 978-0-89118-072-2. [Google Scholar]
- Meers, E.; Du Laing, G.; Unamuno, V.; Ruttens, A.; Vangronsveld, J.; Tack, F.M.G.; Verloo, M.G. Comparison of Cadmium Extractability from Soils by Commonly Used Single Extraction Protocols. Geoderma 2007, 141, 247–259. [Google Scholar] [CrossRef]
- Mossop, K.F.; Davidson, C.M. Comparison of Original and Modified BCR Sequential Extraction Procedures for the Fractionation of Copper, Iron, Lead, Manganese and Zinc in Soils and Sediments. Anal. Chim. Acta 2003, 478, 111–118. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR Three Step Sequential Extraction Procedure Prior to the Certification of New Sediment and Soil Reference Materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Zhou, G.; Chang, D.; Wang, Y.; Gao, S.; Nie, J.; Liao, Y.; Lu, Y.; Zou, C.; Cao, W. Co-Incorporation of Chinese Milk Vetch (Astragalus sinicus L.), Rice Straw, and Biochar Strengthens the Mitigation of Cd Uptake by Rice (Oryza sativa L.). Sci. Total Environ. 2022, 850, 158060. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.-M.; Gu, Y.; Kopittke, P.M.; Zhao, F.-J.; Wang, P. Iron-Manganese (Oxyhydro)Oxides, Rather than Oxidation of Sulfides, Determine Mobilization of Cd during Soil Drainage in Paddy Soil Systems. Environ. Sci. Technol. 2019, 53, 2500–2508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, X.; Liang, X.; Dai, L.; Li, Z.; Liu, R.; Zhao, Y. Flooding-Drainage Regulate the Availability and Mobility Process of Fe, Mn, Cd, and As at Paddy Soil. Sci. Total Environ. 2022, 817, 152898. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zeng, H.; Zhou, H.; Zhang, S.; Tie, B.; Peng, L.; Zeng, Q.; Peng, H.; Luo, S. Variation of Cd and As Accumulation in Crops under Oilseed Rape-Rice Rotation System in Response to Different Contaminated Rice Straw-Return Methods. Plant Soil 2023, 489, 309–321. [Google Scholar] [CrossRef]
- Rao, Z.; Huang, D.; Wu, J.; Zhu, Q.; Zhu, H.; Xu, C.; Xiong, J.; Wang, H.; Duan, M. Distribution and Availability of Cadmium in Profile and Aggregates of a Paddy Soil with 30-Year Fertilization and Its Impact on Cd Accumulation in Rice Plant. Environ. Pollut. 2018, 239, 198–204. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, J.; Xiao, B. Characterization of Dissolved Organic Matter Derived from Rice Straw at Different Stages of Decay. J. Soils Sediments 2010, 10, 915–922. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Z.; Li, C.; Yuan, H.; Hu, L.; Zeng, P.; Yang, W.; Liao, B.; Gu, J. Straw Removal Reduces Cd Availability and Rice Cd Accumulation in Cd-Contaminated Paddy Soil: Cd Fraction, Soil Microorganism Structure and Porewater DOC and Cd. J. Hazard. Mater. 2024, 476, 135189. [Google Scholar] [CrossRef]
- Abedi, T.; Mojiri, A. Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Z.; Li, Y.; Yao, Q.; Rui, Y.; Su, D. Phytoavailability and Chemical Speciation of Cd in Different Cd-Contaminated Soils with Crop Straw Incorporation. Fresenius Environ. Bull. 2022, 31, 3194–3202. [Google Scholar]
- Su, Y.; Kwong, R.W.M.; Tang, W.; Yang, Y.; Zhong, H. Straw Return Enhances the Risks of Metals in Soil? Ecotoxicol. Environ. Saf. 2021, 207, 111201. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Li, F.; Cao, W.; Yang, Z.; Hu, M.; Sun, W. Cadmium Solubility in Paddy Soil Amended with Organic Matter, Sulfate, and Iron Oxide in Alternative Watering Conditions. J. Hazard. Mater. 2019, 378, 120672. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Zhao, C.; Liu, K.; Lv, J. Changes of Organic Structures of Crop Residues during Decomposition. J. Agro-Environ. Sci. 2016, 35, 976–984. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, J.; Cao, Y.; Xu, W. Decomposition Character of Different Plant Straws and Soil Microbial Functional Diversity. Acta Pedol. Sin. 2014, 51, 743–752. [Google Scholar]
- Wang, X.; Sun, B.; Mao, J.; Sui, Y.; Cao, X. Structural Convergence of Maize and Wheat Straw during Two-Year Decomposition under Different Climate Conditions. Environ. Sci. Technol. 2012, 46, 7159–7165. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, X.; Sun, B. Characteristics of Nutrient Release and Its Affecting Factors during Plant Residue Decomposition under Different Climate and Soil Conditions. Acta Pedol. Sin. 2017, 54, 1206–1217. [Google Scholar]
- Gregorich, E.G.; Janzen, H.; Ellert, B.H.; Helgason, B.L.; Qian, B.; Zebarth, B.J.; Angers, D.A.; Beyaert, R.P.; Drury, C.F.; Duguid, S.D.; et al. Litter Decay Controlled by Temperature, Not Soil Properties, Affecting Future Soil Carbon. Glob. Change Biol. 2017, 23, 1725–1734. [Google Scholar] [CrossRef]
- Gordon, H.; Haygarth, P.M.; Bardgett, R.D. Drying and Rewetting Effects on Soil Microbial Community Composition and Nutrient Leaching. Soil Biol. Biochem. 2008, 40, 302–311. [Google Scholar] [CrossRef]
- Unger, I.M.; Kennedy, A.C.; Muzika, R.-M. Flooding Effects on Soil Microbial Communities. Appl. Soil Ecol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Dawson, Q.; Bartlett, M.; Leeds-Harrison, P.B. The Role of Soil Moisture, Temperature and Nutrient Amendment on CO2 Efflux from Agricultural Peat Soil Microcosms. Geoderma 2010, 154, 203–210. [Google Scholar] [CrossRef]
- Huang, J.; Gao, K.; Yang, L.; Lu, Y. Successional Action of Bacteroidota and Firmicutes in Decomposing Straw Polymers in a Paddy Soil. Environ. Microbiome 2023, 18, 76. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hu, W.; Xu, Z.; Xue, Y.; Zhang, Z.; Liao, S.; Zhang, Y.; Li, X.; Ren, T.; Cong, R.; et al. Seasonal Temporal Characteristics of In Situ Straw Decomposition in Different Types and Returning Methods. J. Soil Sci. Plant Nutr. 2022, 22, 4228–4240. [Google Scholar] [CrossRef]
- Ge, L.; Cang, L.; Liu, H.; Zhou, D. Effects of Different Warming Patterns on the Translocations of Cadmium and Copper in a Soil–Rice Seedling System. Environ. Sci. Pollut. Res. 2015, 22, 15835–15843. [Google Scholar] [CrossRef]
- Ge, L.; Cang, L.; Liu, H.; Zhou, D. Effects of Warming on Uptake and Translocation of Cadmium (Cd) and Copper (Cu) in a Contaminated Soil-Rice System under Free Air Temperature Increase (FATI). Chemosphere 2016, 155, 1–8. [Google Scholar] [CrossRef]
- Zou, M.; Zhou, S.; Zhou, Y.; Jia, Z.; Guo, T.; Wang, J. Cadmium Pollution of Soil-Rice Ecosystems in Rice Cultivation Dominated Regions in China: A Review. Environ. Pollut. 2021, 280, 116965. [Google Scholar] [CrossRef]
- Luo, B.; Xiao, C.; Liu, Y.; Li, L.; Peng, L.; Zeng, Q.; Luo, S. Activation of Cadmium Under Simulated Solar Illumination and Its Impact on the Mobility of Cd in Flooded Soils. Environ. Sci. Pollut. Res. 2022, 29, 52367–52377. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, F.J. The Transfer and Control of Cadmium in the Soil-Rice Systems. J. Nanjing Agric. Univ. 2022, 45, 990–1000. [Google Scholar]
- Lyu, C.; Li, L.; Liu, X.; Zhao, Z. Rape Straw Application Facilitates Se and Cd Mobilization in Cd-Contaminated Seleniferous Soils by Enhancing Microbial Iron Reduction. Environ. Pollut. 2022, 310, 119818. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tang, Z.; Qi, H.; Ren, X.; Zhao, F.; Wang, P. Soil Amendments with ZnSO4 or MnSO4 Are Effective at Reducing Cd Accumulation in Rice Grain: An Application of the Voltaic Cell Principle. Environ. Pollut. 2022, 294, 118650. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.M.; Rinklebe, J.; Frohne, T.; White, J.R.; DeLaune, R.D. Redox Effects on Release Kinetics of Arsenic, Cadmium, Cobalt, and Vanadium in Wax Lake Deltaic Freshwater Marsh Soils. Chemosphere 2016, 150, 740–748. [Google Scholar] [CrossRef]
- Shahid, M.; Nayak, A.K.; Shukla, A.K.; Tripathi, R.; Kumar, A.; Raja, R.; Panda, B.B.; Meher, J.; Bhattacharyya, P.; Dash, D. Mitigation of Iron Toxicity and Iron, Zinc, and Manganese Nutrition of Wetland Rice Cultivars (Oryza sativa L.) Grown in Iron-Toxic Soil. CLEAN—Soil Air Water 2014, 42, 1604–1609. [Google Scholar] [CrossRef]
- Xu, X.W.; Wang, P.; Zhang, J.; Chen, C.; Wang, Z.P.; Kopittke, P.M.; Kretzschmar, R.; Zhao, F.J. Microbial Sulfate Reduction Decreases Arsenic Mobilization in Flooded Paddy Soils with High Potential for Microbial Fe Reduction. Environ. Pollut. 2019, 251, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ji, X.; Cheng, L.; Zhao, F.; Wang, P. Free Radicals Produced from the Oxidation of Ferrous Sulfides Promote the Remobilization of Cadmium in Paddy Soils During Drainage. Environ. Sci. Technol. 2021, 55, 9845–9853. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lv, Y.; Tian, K.; Shen, Y.; Zhu, Y.; Lu, H.; Li, R.; Han, J. Influence of Sulfate Reducing Bacteria Cultured from the Paddy Soil on the Solubility and Redox Behavior of Cd in a Polymetallic System. Sci. Total Environ. 2023, 901, 166369. [Google Scholar] [CrossRef]
- Sokolova, E.A. Influence of Temperature on Development of Sulfate-Reducing Bacteria in the Laboratory and Field in Winter. Contemp. Probl. Ecol. 2010, 3, 631–634. [Google Scholar] [CrossRef]
- Bai, Y.; Gu, C.; Tao, T.; Chen, G.; Shan, Y. Straw Incorporation Increases Solubility and Uptake of Cadmium by Rice Plants. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 193–199. [Google Scholar] [CrossRef]
- Tian, T.; Zhou, H.; Gu, J.; Jia, R.; Li, H.; Wang, Q.; Zeng, M.; Liao, B. Cadmium Accumulation and Bioavailability in Paddy Soil under Different Water Regimes for Different Growth Stages of Rice (Oryza sativa L.). Plant Soil 2019, 440, 327–339. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, R.; Wang, L.; Jiang, H. Iron and Sulfur Reduction Caused by Different Growth Seasons Inhibits Cadmium Transfer in the Soil-Rice System. Ecotoxicol. Environ. Saf. 2022, 236, 113479. [Google Scholar] [CrossRef]
- Ge, L.; Cang, L.; Yang, J.; Zhou, D. Effects of Root Morphology and Leaf Transpiration on Cd Uptake and Translocation in Rice under Different Growth Temperature. Environ. Sci. Pollut. Res. 2016, 23, 24205–24214. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, F.; Fan, Y.; Zhang, C.; Yang, F.; Liu, Q.; Wang, T.; Li, B.; Chen, Y.; Deng, F.; et al. Accumulated Temperature and Allocation of Photo-Thermal Resources Are Key Meteorological Factors Affecting Rice Cadmium Content. Eur. J. Agron. 2023, 142, 126674. [Google Scholar] [CrossRef]
- Feng, W.-L.; Guo, Z.-H.; Shi, L.; Xiao, X.-Y.; Han, X.-Q.; Ran, H.-Z.; Xue, Q.-H. [Distribution and Accumulation of Cadmium in Paddy Soil and Rice Affected by Pollutant Sources Control and Improvement Measures]. Huan Jing Ke Xue Huanjing Kexue 2018, 39, 399–405. [Google Scholar] [CrossRef]
- de Livera, J.; McLaughlin, M.J.; Hettiarachchi, G.M.; Kirby, J.K.; Beak, D.G. Cadmium Solubility in Paddy Soils: Effects of Soil Oxidation, Metal Sulfides and Competitive Ions. Sci. Total Environ. 2011, 409, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Guo, J.; Feng, R.; Wang, R.; Ding, Y.; Xu, Y.; Fan, Z. Effects of Fe2+ and Mn2+ on Rice Root Iron Plaque Formation and Cd Uptake and Transportation. Environ. Pollut. Control 2017, 39, 249–253. [Google Scholar] [CrossRef]
- Liu, B.; Ai, S.; Zhang, W.; Huang, D.; Zhang, Y. Assessment of the Bioavailability, Bioaccessibility and Transfer of Heavy Metals in the Soil-Grain-Human Systems near a Mining and Smelting Area in NW China. Sci. Total Environ. 2017, 609, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Zhou, Y.; Dou, L.; Cai, L.; Mo, L.; You, J. Bioavailability and Soil-to-Crop Transfer of Heavy Metals in Farmland Soils: A Case Study in the Pearl River Delta, South China. Environ. Pollut. 2018, 235, 710–719. [Google Scholar] [CrossRef]
- GB 2762-2022; National Food Safety Standard—Maximum Levels of Contaminants in Foods. National Health Commission of the People‘s Republic of China: Beijing, China, 2022.
Properties | pH | CEC (cmol kg−1) | OM (g kg−1) | CaCl2-Cd (mg kg−1) | Total-Cd (mg kg−1) |
---|---|---|---|---|---|
Field experiment | 5.61 | 24.01 | 42.79 | 0.16 | 0.65 |
Pot experiment | 5.25 | 23.18 | 36.76 | 0.34 | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Qi, Q.; Zeng, Y.; Liu, Y.; Deng, X.; Yang, Y.; Zeng, Q.; Zhang, S.; Luo, S. Different Impacts of Early and Late Rice Straw Incorporation on Cadmium Bioavailability and Accumulation in Double-Cropping Rice. Sustainability 2025, 17, 7727. https://doi.org/10.3390/su17177727
Hu Z, Qi Q, Zeng Y, Liu Y, Deng X, Yang Y, Zeng Q, Zhang S, Luo S. Different Impacts of Early and Late Rice Straw Incorporation on Cadmium Bioavailability and Accumulation in Double-Cropping Rice. Sustainability. 2025; 17(17):7727. https://doi.org/10.3390/su17177727
Chicago/Turabian StyleHu, Zhong, Qian Qi, Yuhui Zeng, Yuling Liu, Xiao Deng, Yang Yang, Qingru Zeng, Shijing Zhang, and Si Luo. 2025. "Different Impacts of Early and Late Rice Straw Incorporation on Cadmium Bioavailability and Accumulation in Double-Cropping Rice" Sustainability 17, no. 17: 7727. https://doi.org/10.3390/su17177727
APA StyleHu, Z., Qi, Q., Zeng, Y., Liu, Y., Deng, X., Yang, Y., Zeng, Q., Zhang, S., & Luo, S. (2025). Different Impacts of Early and Late Rice Straw Incorporation on Cadmium Bioavailability and Accumulation in Double-Cropping Rice. Sustainability, 17(17), 7727. https://doi.org/10.3390/su17177727