Strategies for Eutrophication Control in Tropical and Subtropical Lakes
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Downing, J.A. Limnology and Oceanography: Two Estranged Twins Reuniting by Global Change. Inland Waters 2014, 4, 215–232. [Google Scholar] [CrossRef]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Moss, B.; Kosten, S.; Meerhoff, M.; Battarbee, R.W.; Jeppesen, E.; Mazzeo, N.; Havens, K.; Lacerot, G.; Liu, Z.; De Meester, L.; et al. Allied Attack: Climate Change and Eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef]
- Dodds, W.K.; Whiles, M.R. Freshwater Ecology; Elsevier: Berkeley, CA, USA, 2010; ISBN 978-0-12-374724-2. [Google Scholar]
- Klapper, H. Technologies for Lake Restoration. J. Limnol. 2003, 62, 73–90. [Google Scholar] [CrossRef]
- Amorim, C.A.; Moura, A.N. Effects of the Manipulation of Submerged Macrophytes, Large Zooplankton, and Nutrients on a Cyanobacterial Bloom: A Mesocosm Study in a Tropical Shallow Reservoir. Environ. Pollut. 2020, 265, 114997. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, P.; Zhao, S.; Kang, S.; Wang, P.; Zhou, M.; Lyu, J. Control and Remediation Methods for Eutrophic Lakes in the Past 30 Years. Water Sci. Technol. 2020, 81, 1099–1113. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, E.; Søndergaard, M.; Lauridsen, T.L.; Davidson, T.A.; Liu, Z.; Mazzeo, N.; Trochine, C.; Özkan, K.; Jensen, H.S.; Trolle, D.; et al. Biomanipulation as a Restoration Tool to Combat Eutrophication: Recent Advances and Future Challenges. In Advances in Ecological Research; Woodward, G., Jacob, U., O’Gorman, E.J., Eds.; Global Change in Multispecies Systems Part 2; Academic Press: Cambridge, MA, USA, 2012; Volume 47, pp. 411–488. [Google Scholar]
- Jeppesen, E.; Meerhoff, M.; Jacobsen, B.A.; Hansen, R.S.; Søndergaard, M.; Jensen, J.P.; Lauridsen, T.; Mazzel, N.; Branco, C.W.C. Restoration of Shallow Lakes by Nutrient Control and Biomanipulation—The Successful Strategy Varies with Lake Size and Climate. Hydrobiologia 2007, 581, 269–285. [Google Scholar] [CrossRef]
- Meerhoff, M.; Mazzeo, N.; Moss, B.; Rodríguez-Gallego, L. The Structuring Role of Free-Floating versus Submerged Plants in a Subtropical Shallow Lake. Aquatic Ecol. 2003, 37, 377–391. [Google Scholar] [CrossRef]
- They, N.H.; da Motta Marques, D. The Structuring Role of Macrophytes on Plankton Community Composition and Bacterial Metabolism in a Large Subtropical Shallow Lake. Acta Limnol. Bras. 2019, 31, e19. [Google Scholar] [CrossRef]
- Gross, E.M.; Legrand, C.; Rengefors, K.; Tillmann, U. Allelochemical interactions among aquatic primary producers. In Chemical Ecology in Aquatic Systems; Brönmark, C., Hansson, L.A., Eds.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Li, D.H.; Wang, Z.C.; Qin, H.J.; Li, Y.X.; Zhang, L. An Integrated Technology of Bloom Barrier and Bloom-Trap for Cyanobacterial Bloom Control. Resour. Environ. Yangtze Basin 2012, 12, 45–50. [Google Scholar]
- Lee, T.-J.; Nakano, K.; Matsumura, M. A Novel Strategy for Cyanobacterial Bloom Control by Ultrasonic Irradiation. Water Sci. Technol. 2002, 46, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Hao, A.; Haraguchi, T.; Kuba, T.; Kai, H.; Lin, Y.; Iseri, Y. Effect of the Microorganism-Adherent Carrier for Nitzschia palea to Control the Cyanobacterial Blooms. Ecol. Eng. 2021, 159, 106127. [Google Scholar] [CrossRef]
- Bakheet, B.; Beardall, J.; Zhang, X.; McCarthy, D. Potential Control of Cyanobacterial Blooms by Using a Floating-Mobile Electrochemical System. J. Chem. Technol. Biot. 2019, 94, 582–589. [Google Scholar] [CrossRef]
- Gaskill, J.A.; Harris, T.D.; North, R.L. Phytoplankton Community Response to Changes in Light: Can Glacial Rock Flour Be Used to Control Cyanobacterial Blooms? Front. Environ. Sci. 2020, 8, 540607. [Google Scholar] [CrossRef]
- Tsujimura, S. Water Management of Lake Yogo Targeting Internal Phosphorus Loading. Lake Reserv. Manag. 2004, 9, 171–179. [Google Scholar] [CrossRef]
- Ma, W.-X.; Huang, T.-L.; Li, X. Study of the Application of the Water-Lifting Aerators to Improve the Water Quality of a Stratified, Eutrophicated Reservoir. Ecol. Eng. 2015, 83, 281–290. [Google Scholar] [CrossRef]
- Pandey, J.; Yaduvanshi, M.S. Sediment Dredging as a Restoration Tool in Shallow Tropical Lakes: Cross Analysis of Three Freshwater Lakes of Udaipur, India. Environ. Cont. Biol. 2005, 43, 275–281. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, L.; Huang, L.; Guo, L.; Song, L. Combining Hydrogen Peroxide Addition with Sunlight Regulation to Control Algal Blooms. Environ. Sci. Pollut. 2017, 25, 2239–2247. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Chen, K.; Shi, X.; Yang, G. Using Hydrogen Peroxide to Control Cyanobacterial Blooms: A Mesocosm Study Focused on the Effects of Algal Density in Lake Chaohu, China. Environ. Pollut. 2021, 272, 115923. [Google Scholar] [CrossRef]
- Gu, P.; Wang, Y.; Wu, H.; Chen, L.; Zhang, Z.; Yang, K.; Zhang, Z.; Ren, X.; Miao, H.; Zheng, Z. Efficient Control of Cyanobacterial Blooms with Calcium Peroxide: Threshold and Mechanism. Sci. Total Environ. 2023, 882, 163591. [Google Scholar] [CrossRef]
- Buley, R.P.; Adams, C.; Belfiore, A.P.; Fernandez-Figueroa, E.G.; Gladfelter, M.F.; Garner, B.; Straus, D.L.; Wilson, A.E. Correction to: Field Evaluation of Seven Products to Control Cyanobacterial Blooms in Aquaculture. Environ. Sci. Pollut. Res. 2021, 28, 49326. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, Y.; Liu, Y.; Liu, B.; Zhang, J. Community Succession during the Preventive Control of Cyanobacterial Bloom by Hydrogen Peroxide in an Aquatic Microcosm. Ecotox. Environ. Safe 2022, 237, 113546. [Google Scholar] [CrossRef]
- Sedmak, B.; Carmeli, S.; Eleršek, T. “Non-Toxic” Cyclic Peptides Induce Lysis of Cyanobacteria—An Effective Cell Population Density Control Mechanism in Cyanobacterial Blooms. Microb. Ecol. 2007, 56, 20–209. [Google Scholar] [CrossRef]
- Han, S.-I.; Kim, S.; Choi, K.Y.; Lee, C.; Park, Y.; Choi, Y.-E. Control of a Toxic Cyanobacterial Bloom Species, Microcystis aeruginosa, Using the Peptide HPA3NT3-A2. Environ. Sci. Pollut. Res. 2019, 26, 32255–32265. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, X.; Lin, F.; Grossart, H.-P.; Nie, Z.; Sun, L.; Xu, C.; Shi, J. Continuous-Release Beads of Natural Allelochemicals for the Long-Term Control of Cyanobacterial Growth: Preparation, Release Dynamics and Inhibitory Effects. Water Res. 2016, 95, 113–123. [Google Scholar] [CrossRef]
- Lee, B.; Kang, H.; Kim, S. Using a Novel Coagulant as a Practical and Sustainable Approach for Cyanobacterial Bloom Control. Environ. Technol. Innov. 2023, 30, 103057. [Google Scholar] [CrossRef]
- Pinheiro, T.L.; Becker, V.; da Cunha, K.P.V.; Frota, A.; Monicelli, F.; Araújo, F.; Capelo-Neto, J. The Use of Coagulant and Natural Soil to Control Cyanobacterial Blooms in a Tropical Reservoir. Sci. Total Environ. 2024, 939, 173378. [Google Scholar] [CrossRef] [PubMed]
- Drummond, E.; Leite, V.B.G.; Noyma, N.P.; de Magalhães, L.; Graco-Roza, C.; Huszar, V.L.; Lürling, M.; Marinho, M.M. Temporal and Spatial Variation in the Efficiency of a Floc & Sink Technique for Controlling Cyanobacterial Blooms in a Tropical Reservoir. Harmful Algae 2022, 117, 102262. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Jiang, L.; Yang, J.; Ma, S.; Chen, K.; Zhang, Y.; Shi, X. Comparison of Three Flocculants for Heavy Cyanobacterial Bloom Mitigation and Subsequent Environmental Impact. J. Ocean. Limnol. 2022, 40, 1764–1773. [Google Scholar] [CrossRef]
- Song, Q.; Huang, S.; Yang, S.; Zhu, H.; Luo, X.; Zheng, Z. Mechanism of Cyanobacterial Bloom Control by Magnetic Lanthanum-Based Material. Sci. Total Environ. 2023, 861, 160603. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, H.; Jiang, L.; Wang, X.; Tang, Y.; Xiao, L. Control of Cyanobacterial Bloom and Purification of Bloom-Laden Water by Sequential Electro-Oxidation and Electro-Oxidation-Coagulation. J. Hazard. Mater. 2024, 462, 132729. [Google Scholar] [CrossRef]
- Yamada-Ferraz, T.M.; Sueitt, A.P.E.; Oliveira, A.F.; Botta, C.M.R.; Fadini, P.S.; Nascimento, M.R.L.; Faria, B.M.; Mozeto, A.A. Assessment of Phoslock® Application in a Tropical Eutrophic Reservoir: An Integrated Evaluation from Laboratory to Field Experiments. Environ. Technol. Innov. 2015, 4, 194–205. [Google Scholar] [CrossRef]
- Barçante, B.; Nascimento, N.O.; Silva, T.F.G.; Reis, L.A.; Giani, A. Cyanobacteria Dynamics and Phytoplankton Species Richness as a Measure of Waterbody Recovery: Response to Phosphorus Removal Treatment in a Tropical Eutrophic Reservoir. Ecol. Indic. 2020, 117, 106702. [Google Scholar] [CrossRef]
- Kuster, A.C.; Huser, B.J.; Thongdamrongtham, S.; Padungthon, S.; Junggoth, R.; Kuster, A.T. Drinking Water Treatment Residual as a Ballast to Sink Microcystis Cyanobacteria and Inactivate Phosphorus in Tropical Lake Water. Water Res. 2021, 207, 117792. [Google Scholar] [CrossRef]
- Rodríguez-Gallego, L.R.; Mazzeo, N.; Gorga, J.; Meerhoff, M.; Clemente, J.; Kruk, C.; Scasso, F.; Lacerot, G.; García, J.; Quintans, F. The Effects of an Artificial Wetland Dominated by Free-floating Plants on the Restoration of a Subtropical, Hypertrophic Lake. Lake Reserv. Manag. 2004, 9, 203–215. [Google Scholar] [CrossRef]
- Pan, G.; Yang, B.; Wang, D.; Chen, H.; Tian, B.; Zhang, M.; Yuan, X.; Chen, J. In-Lake Algal Bloom Removal and Submerged Vegetation Restoration Using Modified Local Soils. Ecol. Eng. 2011, 37, 302–308. [Google Scholar] [CrossRef]
- Zeng, L.; He, F.; Dai, Z.; Xu, D.; Liu, B.; Zhou, Q.; Wu, Z. Effect of Submerged Macrophyte Restoration on Improving Aquatic Ecosystem in a Subtropical, Shallow Lake. Ecol. Eng. 2017, 106, 578–587. [Google Scholar] [CrossRef]
- Moi, D.A.; Alves, D.C.; Antiqueira, P.A.P.; Thomaz, S.M.; Teixeira de Mello, F.; Bonecker, C.C.; Rodrigues, L.C.; García-Ríos, R.; Mormul, R.P. Ecosystem Shift from Submerged to Floating Plants Simplifying the Food Web in a Tropical Shallow Lake. Ecosystems 2021, 24, 628–639. [Google Scholar] [CrossRef]
- Swe, T.; Lombardo, P.; Ballot, A.; Thrane, J.-E.; Sample, J.; Eriksen, T.E.; Mjelde, M. The Importance of Aquatic Macrophytes in a Eutrophic Tropical Shallow Lake. Limnologica 2021, 90, 125910. [Google Scholar] [CrossRef]
- Han, Y.; Jeppesen, E.; Lürling, M.; Zhang, Y.; Ma, T.; Li, W.; Chen, K.; Li, K. Combining Lanthanum-Modified Bentonite (LMB) and Submerged Macrophytes Alleviates Water Quality Deterioration in the Presence of Omni-Benthivorous. Fish. J. Environ. Manag. 2022, 314, 115036. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Shu, K.; Yang, K.; Chen, Z. Purification Efficiency of Two Ecotypes of Wetland Plants on Subtropical Eutrophic Lakes in China. Wetlands 2024, 44, 29. [Google Scholar] [CrossRef]
- Pakdel, F.M.; Sim, L.; Beardall, J.; Davis, J. Allelopathic Inhibition of Microalgae by the Freshwater Stonewort, Chara australis, and a Submerged Angiosperm, Potamogeton crispus. Aquat. Bot. 2013, 110, 24–30. [Google Scholar] [CrossRef]
- Scasso, F.; Mazzeo, N.; Gorga, J.; Kruk, C.; Lacerot, G.; Clemente, J.; Fabián, D.; Bonilla, S. Limnological Changes in a Sub-Tropical Shallow Hypertrophic Lake during Its Restoration: Two Years of a Whole-Lake Experiment. Aquat. Conserv. 2001, 11, 31–44. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Jeppesen, E.; Liu, Z. Biomanipulation-Induced Reduction of Sediment Phosphorus Release in a Tropical Shallow Lake. Hydrobiologia 2017, 794, 49–57. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Zhong, P.; Zhang, X.; Ning, J.; Larsen, S.E.; Chen, D.; Gao, Y.; He, H.; Jeppesen, E. Successful Restoration of a Tropical Shallow Eutrophic Lake: Strong Bottom-up but Weak Top-down Effects Recorded. Water Res. 2018, 146, 88–97. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, L.; Cheng, Y.; Yang, Y.; Sun, Y.; Liu, Q. Control of Cyanobacterial Blooms in Different Polyculture Patterns of Filter Feeders and Effects of These Patterns on Water Quality and Microbial Community in Aquacultural Ponds. Aquaculture 2021, 542, 736913. [Google Scholar] [CrossRef]
- Ahoutou, M.K.; Yao, E.K.; Djeha, R.Y.; Kone, M.; Tambosco, K.; Duval, C.; Hamlaoui, S.; Bernard, C.; Bouvy, M.; Marie, B.; et al. Impacts of Nutrient Loading and Fish Grazing on the Phytoplankton Community and Cyanotoxin Production in a Shallow Tropical Lake: Results from Mesocosm Experiments. MicrobiologyOpen 2022, 11, e1278. [Google Scholar] [CrossRef]
- Peng, G.; Zhou, X.; Xie, B.; Huang, C.; Uddin, M.M.; Chen, X.; Huang, L. Ecosystem Stability and Water Quality Improvement in a Eutrophic Shallow Lake via Long-Term Integrated Biomanipulation in Southeast China. Ecol. Eng. 2021, 159, 106119. [Google Scholar] [CrossRef]
- do Nascimento Filho, S.L.; do Nascimento Moura, A. Strong Top-down Effects of Omnivorous Fish and Macroinvertebrates on Periphytic Algae and Macrophytes in a Tropical Reservoir. Aquat. Ecol. 2021, 55, 667–680. [Google Scholar] [CrossRef]
- Amorim, C.A.; Valença, C.R.; de Moura-Falcão, R.H.; do Nascimento Moura, A. Seasonal Variations of Morpho-Functional Phytoplankton Groups Influence the Top-down Control of a Cladoceran in a Tropical Hypereutrophic Lake. Aquat. Ecol. 2019, 53, 453–464. [Google Scholar] [CrossRef]
- Li, C.; Yu, X.; Peng, M. The Roles of Polyculture with Eucheuma gelatinae and Gafrarium tumidum in Purification of Eutrophic Seawater and Control of Algae Bloom. Mar. Pollut. Bull. 2015, 101, 750–757. [Google Scholar] [CrossRef]
- Rodrigues, N.; Ribeiro, D.; Miyahira, I.C.; Portugal, S.G.M.; Santos, L.N.; Neves, R.A.F. Hypereutrophic Conditions Limit the Removal of Suspended Particulate Matter by the Invasive Bivalve Mytilopsis leucophaeata (Conrad, 1831) (Dreissenidae). Hydrobiologia 2023, 580, 1461–1476. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, H.; Zhang, L.; Montagnes, D.J.S.; Yang, Z. “Surface Browsing” May Allow “Filter-Feeding” Protozoa to Exert Top-Down Control on Colony-Forming Toxic Cyanobacterial Blooms. Environ. Sci. Technol. 2023, 57, 10331–10338. [Google Scholar] [CrossRef] [PubMed]
- Heilpern, S.A.; Wootton, J.T. Process Catalyzers in Amazonian Rivers: Large Woody Debris Modifies Ecosystem Processes across Freshwater Habitats. Ecosphere 2018, 9, e02030. [Google Scholar] [CrossRef]
- Ko, S.-R.; Srivastava, A.; Lee, N.; Jin, L.; Oh, H.-M.; Ahn, C.-Y. Bioremediation of Eutrophic Water and Control of Cyanobacterial Bloom by Attached Periphyton. Int. J. Environ. Sci. Technol. 2019, 16, 4173–4180. [Google Scholar] [CrossRef]
- Quintão, J.M.B.; Rezende, R.S.; Júnior, J.F.G. Microbial Effects in Leaf Breakdown in Tropical Reservoirs of Different Trophic Status. Freshwater Sci. 2013, 32, 933–950. [Google Scholar] [CrossRef]
- Keitel, J.; Zak, D.; Hupfer, M. Water Level Fluctuations in a Tropical Reservoir: The Impact of Sediment Drying, Aquatic Macrophyte Dieback, and Oxygen Availability on Phosphorus Mobilization. Environ. Sci. Pollut. Res. 2016, 23, 6883–6894. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Z.; Liu, H.; Li, D.; Wen, X.; Zhang, Y.; Wang, Y.; Yan, S. Fenced Cultivation of Water Hyacinth for Cyanobacterial Bloom Control. Environ. Sci. Pollut. Res. 2016, 23, 17742–17752. [Google Scholar] [CrossRef] [PubMed]
- Finkler Ferreira, T.; Crossetti, L.O.; Motta Marques, D.M.L.; Cardoso, L.; Fragoso, C.R.; van Nes, E.H. The Structuring Role of Submerged Macrophytes in a Large Subtropical Shallow Lake: Clear Effects on Water Chemistry and Phytoplankton Structure Community along a Vegetated-Pelagic Gradient. Limnologica 2018, 69, 142–154. [Google Scholar] [CrossRef]
- Sim, D.Z.H.; Mowe, M.A.D.; Song, Y.; Lu, J.; Tan, H.T.W.; Mitrovic, S.M.; Roelke, D.L.; Yeo, D.C.J. Tropical Macrophytes Promote Phytoplankton Community Shifts in Lake Mesocosms: Relevance for Lake Restoration in Warm Climates. Hydrobiologia 2021, 848, 4861–4884. [Google Scholar] [CrossRef]
- Zhao, S.-Y.; Sun, Y.-P.; Lin, Q.-Q.; Han, B.-P. Effects of Silver Carp (Hypophthalmichthys molitrix) and Nutrients on the Plankton Community of a Deep, Tropical Reservoir: An Enclosure Experiment. Freshwater Biol. 2013, 58, 100–113. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, Q.; Peng, L.; Xiao, L.; Lei, L.; Jeppesen, E. Do Bigheaded Carp Act as a Phosphorus Source for Phytoplankton in (Sub)Tropical Chinese Reservoirs? Water Res. 2020, 180, 115841. [Google Scholar] [CrossRef]
- Starling, F.; Lazzaro, X.; Cavalcanti, C.; Moreira, R. Contribution of Omnivorous Tilapia to Eutrophication of a Shallow Tropical Reservoir: Evidence from a Fish Kill. Freshwater Biol. 2002, 47, 2443–2452. [Google Scholar] [CrossRef]
- Beklioglu, M.; Tan, C.O. Restoration of a Shallow Mediterranean Lake by Biomanipulation Complicated by Drought. Fund. Appl. Limnol. 2008, 171, 105–118. [Google Scholar] [CrossRef]
- Yin, C.; He, W.; Guo, L.; Gong, L.; Yang, Y.; Yang, J.; Ni, L.; Chen, Y.; Jeppesen, E. Can Top-down Effects of Planktivorous Fish Removal Be Used to Mitigate Cyanobacterial Blooms in Large Subtropical Highland Lakes? Water Res. 2022, 218, 118483. [Google Scholar] [CrossRef]
- Rondel, C.; Arfi, R.; Corbin, D.; Le Bihan, F.; Ndour, E.H.; Lazzaro, X. A Cyanobacterial Bloom Prevents Fish Trophic Cascades. Freshwater Biol. 2008, 53, 637–651. [Google Scholar] [CrossRef]
- Sroczyńska, K.; Barroso, G.; Chícharo, L. In Situ Effective Clearance Rate Measurement of Mangrove Oysters (Crassostrea rhizophorae) in a Tropical Estuary in Brazil. Ecohydrol. Hydrobiol. 2012, 12, 301–310. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Yang, L.; Chen, H.; Zhang, S.; Zhao, H.; Zhang, N. Allelopathic Control of Cyanobacterial Blooms by Periphyton Biofilms. Environ. Microbiol. 2011, 13, 604–615. [Google Scholar] [CrossRef]
- Sharip, Z.; Razak, S.B.A.; Noordin, N.; Yusoff, F.M. Application of an Effective Microorganism Product as a Cyanobacterial Control and Water Quality Improvement Measure in Putrajaya Lake, Malaysia. Earth Syst. Environ. 2019, 4, 213–223. [Google Scholar] [CrossRef]
- Moseman, S.M. Opposite Diel Patterns of Nitrogen Fixation Associated with Salt Marsh Plant Species (Spartina foliosa and Salicornia virginica) in Southern California. Marine Ecol. 2007, 28, 276–287. [Google Scholar] [CrossRef]
- Akao, S.; Hosoi, Y.; Fujiwara, T. Utilization of Water Chestnut for Reclamation of Water Environment and Control of Cyanobacterial Blooms. Environ. Sci. Pollut. Res. 2013, 21, 2249–2255. [Google Scholar] [CrossRef]
- Han, P.; Kumar, P.; Ong, B.-L. Remediation of Nutrient-Rich Waters Using the Terrestrial Plant, Pandanus amaryllifolius Roxb. J. Environ. Sci. 2014, 26, 404–414. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.; Jiang, X.; Wang, Z. Control of Cyanobacterial Blooms via Synergistic Effects of Pulmonates and Submerged Plants. CLEAN–Soil Air Water 2015, 43, 330–335. [Google Scholar] [CrossRef]
- Du, X.; Song, D.; Wang, H.; Yang, J.; Liu, H.; Huo, T. The Combined Effects of Filter-Feeding Bivalves (Cristaria plicata) and Submerged Macrophytes (Hydrilla verticillata) on Phytoplankton Assemblages in Nutrient-Enriched Freshwater Mesocosms. Front. Plant Sci. 2023, 14, 1069593. [Google Scholar] [CrossRef]
- Tazart, Z.; Manganelli, M.; Scardala, S.; Buratti, F.M.; Di Gregorio, F.N.; Douma, M.; Mouhri, K.; Testai, E.; Loudiki, M. Remediation Strategies to Control Toxic Cyanobacterial Blooms: Effects of Macrophyte Aqueous Extracts on Microcystis aeruginosa (Growth, Toxin Production and Oxidative Stress Response) and on Bacterial Ectoenzymatic Activities. Microorganisms 2021, 9, 1782. [Google Scholar] [CrossRef] [PubMed]
- Vörös, L. Effective Control of Nuisance Cyanobacterial Blooms by Biomanipulation. Egypt. J. Phycol. 2000, 1, 267–277. [Google Scholar] [CrossRef]
- Mazzeo, N.; Iglesias, C.; Teixeira-de Mello, F.; Borthagaray, A.; Fosalba, C.; Ballabio, R.; Larrea, D.; Vilches, J.; García, S.; Pacheco, J.P.; et al. Trophic Cascade Effects of Hoplias malabaricus (Characiformes, Erythrinidae) in Subtropical Lakes Food Webs: A Mesocosm Approach. Hydrobiologia 2010, 644, 325–335. [Google Scholar] [CrossRef]
- Gu, J.; Jin, H.; He, H.; Ning, X.; Yu, J.; Tan, B.; Jeppesen, E.; Li, K. Effects of Small-Sized Crucian Carp (Carassius carassius) on the Growth of Submerged Macrophytes: Implications for Shallow Lake Restoration. Ecol. Eng. 2016, 95, 567–573. [Google Scholar] [CrossRef]
- He, H.; Hu, E.; Yu, J.; Luo, X.; Li, K.; Jeppesen, E.; Liu, Z. Does Turbidity Induced by Carassius carassius Limit Phytoplankton Growth? A Mesocosm Study. Environ. Sci. Pollut. Res. 2016, 24, 5012–5018. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Gu, X.; Chen, H.; Mao, Z.; Zeng, Q.; Jeppesen, E. Combining Bivalve (Corbicula fluminea) and Filter-Feeding Fish (Aristichthys nobilis) Enhances the Bioremediation Effect of Algae: An Outdoor Mesocosm Study. Sci. Total Environ. 2020, 727, 138692. [Google Scholar] [CrossRef]
- Pani, S.; Wanganeo, A. Algal Management of Lakes through Biomanipulation-a Case Study of a Tropical Lake. Ecol. Environ. Conser. 2005, 11, 61. [Google Scholar]
- Fernández, R.; Nandini, S.; Sarma, S.S.S. A Comparative Study on the Ability of Tropical Micro-Crustaceans to Feed and Grow on Cyanobacterial Diets. J. Plankton Res. 2012, 34, 719–731. [Google Scholar] [CrossRef]
- Marroni, S.; Mazzeo, N.; Pacheco, J.P.; Clemente, J.; Iglesias, C. Interactions between Bivalves and Zooplankton: Competition or Intraguild Predation? Implications for Biomanipulation in Subtropical Shallow Lakes. Mar. Freshwater Res. 2016, 68, 1036–1043. [Google Scholar] [CrossRef]
- Zhang, L.; Mei, X.; Tang, Y.; Razlutskij, V.; Peterka, J.; Taylor, W.D.; Naselli-Flores, L.; Liu, Z.; Tong, C.; Zhang, X. Effects of Nile Tilapia (Oreochromis niloticus) on Phytoplankton Community Structure and Water Quality: A Short-Term Mesocosm Study. Knowl. Manag. Aquat. Ecosyst. 2022, 423, 11. [Google Scholar] [CrossRef]
- Kim, B.; Hwang, S.; Kim, Y.; Hwang, S.; Takamura, N.; Han, M. Effects of Biological Control Agents on Nuisance Cyanobacterial and Diatom Blooms in Freshwater Systems. Microbes Environ. 2007, 22, 52–58. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Elnour, R.O.; Alamri, S.; Hashem, M. Paramecium jenningsi Effectively Grazes on Toxic Raphidiopsis raciborskii and Degrades Cylindrospermopsin: Implications for Control Harmful Cyanobacterial Blooms. Ecohydrol. Hydrobiol. 2023, 23, 614–622. [Google Scholar] [CrossRef]
- Weragoda, S.K.; Jinadasa, K.B.S.N.; Zhang, D.Q.; Gersberg, R.M.; Tan, S.K.; Tanaka, N.; Jern, N.W. Tropical Application of Floating Treatment Wetlands. Wetlands 2012, 32, 955–961. [Google Scholar] [CrossRef]
- Zainuddin, Z.; Lalung, J.; Yusof, T.; Rafatullah, M.; Ismail, N. Biological Control of Cyanobacterial Bloom by Leaf Biomass. Desal. Water Treat. 2021, 219, 157–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Dong, J.; Yang, H.; Van Zwieten, L.; Lu, H.; Alshameri, A.; Zhan, Z.; Chen, X.; Jiang, X.; et al. A Critical Review of Methods for Analyzing Freshwater Eutrophication. Water 2021, 13, 225. [Google Scholar] [CrossRef]
- Havens, K.E.; Paerl, H.W. Climate Change at a Crossroad for Control of Harmful Algal Blooms. Environ. Sci. Technol. 2015, 49, 12605–12606. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems Impacted by Climate Change and Anthropogenic Nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Church, J.; Son, Y.; Kim, K.-T.; Lee, W.H. Recent Advances in Ultrasonic Treatment: Challenges and Field Applications for Controlling Harmful Algal Blooms (HABs). Ultrason. Sonochem. 2017, 38, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, Z.; Wang, M.; Shi, X.; Zhou, Y.; Zhou, Y.; Kong, Y. Inactivation of Harmful Anabaena flos-Aquae by Ultrasound Irradiation: Cell Disruption Mechanism and Enhanced Coagulation. Ultrason. Sonochem. 2020, 69, 105254. [Google Scholar] [CrossRef]
- Rajasekhar, P.; Fan, L.; Nguyen, T.; Roddick, F.A. A Review of the Use of Sonication to Control Cyanobacterial Blooms. Water Res. 2012, 46, 4319–4329. [Google Scholar] [CrossRef]
- Lürling, M.; Tolman, Y. Beating the Blues: Is There Any Music in Fighting Cyanobacteria with Ultrasound? Water Res. 2014, 66, 361–373. [Google Scholar] [CrossRef]
- Skinner, M.M.; Moore, B.C.; Swanson, M.E. Hypolimnetic Oxygenation in Twin Lakes, WA. Part II: Feeding Ecology of a Mixed Cold- and Warm-water Fish Community. Lake Reser. Manag. 2014, 30, 240–249. [Google Scholar] [CrossRef]
- Jilbert, T.; Couture, R.M.; Huser, B.J.; Salonen, K. Restoration of Eutrophic Lakes: Current Practices and Future Challenges. Hydrobiologia 2020, 847, 4343–4357. [Google Scholar] [CrossRef]
- Lürling, M.; Mucci, M. Mitigating Eutrophication Nuisance: In-Lake Measures Are Becoming Inevitable in Eutrophic Waters in the Netherlands. Hydrobiologia 2020, 847, 4447–4467. [Google Scholar] [CrossRef]
- McNeary, W.W.; Erickson, L.E. Sustainable Management of Algae in Eutrophic Ecosystems. J. Environ. Prot. 2013, 4, 9–19. [Google Scholar] [CrossRef]
- Visser, P.M.; Ibelings, B.W.; Bormans, M.; Huisman, J. Artificial Mixing to Control Cyanobacterial Blooms: A Review. Aquat. Ecol. 2016, 50, 423–441. [Google Scholar] [CrossRef]
- Matthijs, H.C.P.; Jančula, D.; Visser, P.M.; Maršálek, B. Existing and Emerging Cyanocidal Compounds: New Perspectives for Cyanobacterial Bloom Mitigation. Aquatic Ecol. 2016, 50, 443–460. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, H.; He, X.; Shi, H.; Stephan, C.; Jiang, H.; Wan, C.; Eichholz, T. Evaluating the Treatment Effectiveness of Copper-Based Algaecides on Toxic Algae Microcystis aeruginosa Using Single Cell-Inductively Coupled Plasma-Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 5531–5543. [Google Scholar] [CrossRef]
- Zamir Bin Alam, M.; Otaki, M.; Furumai, H.; Ohgaki, S. Direct and Indirect Inactivation of Microcystis aeruginosa by UV-Radiation. Water Res. 2001, 35, 1008–1014. [Google Scholar] [CrossRef]
- Pang, C.; Fan, X.; Zhou, J.; Wu, S. Optimal Dosing Time of Acid Algaecide for Restraining Algal Growth. Water Sci. Eng. 2013, 6, 402–408. [Google Scholar] [CrossRef]
- Schuurmans, J.M.; Brinkmann, B.W.; Makower, A.K.; Dittmann, E.; Huisman, J.; Matthijs, H.C.P. Microcystin Interferes with Defense against High Oxidative Stress in Harmful Cyanobacteria. Harmful Algae 2018, 78, 47–55. [Google Scholar] [CrossRef]
- Santos, A.A.; Guedes, D.O.; Barros, M.U.G.; Oliveira, S.; Pacheco, A.B.F.; Azevedo, S.M.F.O.; Magalhães, V.F.; Pestana, C.J.; Edwards, C.; Lawton, L.A.; et al. Effect of Hydrogen Peroxide on Natural Phytoplankton and Bacterioplankton in a Drinking Water Reservoir: Mesocosm-Scale Study. Water Res. 2021, 197, 117069. [Google Scholar] [CrossRef]
- Fan, F.; Shi, X.; Zhang, M.; Liu, C.; Chen, K. Comparison of Algal Harvest and Hydrogen Peroxide Treatment in Mitigating Cyanobacterial Blooms via an in Situ Mesocosm Experiment. Sci. Total Environ. 2019, 694, 133721. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Chang, D.-W.; Tseng, J.-H.; Burch, M.D.; Lin, T.-F. Exposure of Microcystis aeruginosa to Hydrogen Peroxide under Light: Kinetic Modeling of Cell Rupture and Simultaneous Microcystin Degradation. Environ. Sci. Technol. 2015, 49, 5502–5510. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Sun, W.; Ray, M.B.; Ray, A.K.; Huang, T.; Chen, J. Optimization and Modeling of Coagulation-Flocculation to Remove Algae and Organic Matter from Surface Water by Response Surface Methodology. Front. Environ. Sci. Eng. 2019, 13, 75. [Google Scholar] [CrossRef]
- Melnikova, A.A.; Komova, A.V.; Vasilev, R.A.; Namsaraev, Z.B.; Gorin, K.V. Flocculation-Based Methods of Microalgae Removal from the Eutrophic Pond Enrichment Culture. Water Supp. 2021, 21, 4254–4262. [Google Scholar] [CrossRef]
- Beklioğlu, M.; Bucak, T.; Coppens, J.; Bezirci, G.; Tavşanoğlu, Ü.N.; Çakıroğlu, A.Í.; Levi, E.E.; Erdoğan, Ş.; Filiz, N.; Özkan, K.; et al. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes. Water 2017, 9, 127. [Google Scholar] [CrossRef]
- Iglesias, C.; Mazzeo, N.; Meerhoff, M.; Lacerot, G.; Clemente, J.M.; Scasso, F.; Kruk, C.; Goyenola, G.; García-Alonso, J.; Amsinck, S.L.; et al. High Predation is of Key Importance for Dominance of Small-Bodied Zooplankton in Warm Shallow Lakes: Evidence from Lakes, Fish Exclosures and Surface Sediments. Hydrobiologia 2017, 667, 133–147. [Google Scholar] [CrossRef]
- Yi, C.; Guo, L.; Ni, L.; Luo, C. Silver Carp Exhibited an Enhanced Ability of Biomanipulation to Control Cyanobacteria Cloom Compared to Bighead Carp in Hypereutrophic Lake Taihu Mesocosms. Ecol. Eng. 2016, 89, 7–13. [Google Scholar] [CrossRef]
- Miranda, L.E. Reservoir Fish Habitat Management; Lightning Press: Totowa, NJ, USA, 2017. [Google Scholar]
- Tammeorg, O.; Chorus, I.; Spears, B.; Nõges, P.; Nürnberg, G.K.; Tammeorg, P.; Søndergaard, M.; Jeppesen, E.; Paerl, H.; Huser, B.; et al. Sustainable lake restoration: From challenges to solutions. WIREs Water 2024, 11, e1689. [Google Scholar] [CrossRef]
- Thiemer, K.; Immerzeel, B.; Schneider, S.; Sebola, K.; Coetzee, J.; Baldo, M.; Thiebaut, G.; Hilt, S.; Köhler, J.; Harpenslager, S.F.; et al. Drivers of Perceived Nuisance Growth by Aquatic Plants. Environ. Manag. 2023, 71, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Poikane, S.; Kelly, M.; Free, G.; Carvalho, L.; Hamilton, D.P.; Katsanou, K.; Lurling, M.; Warner, S.; Spears, B.M.; Irvine, K.A. Global Assessment of Lake Restoration in Practice: New Insights and Future Perspectives. Ecol. Indic. 2024, 158, 111330. [Google Scholar] [CrossRef]
- Spivak, A.C.; Vanni, M.J.; Mette, E.M. Moving on Up: Can Results from Simple Aquatic Mesocosm Experiments Be Applied Across Broad Spatial Scales? Freshw. Biol. 2011, 56, 279–291. [Google Scholar] [CrossRef]
Strategies | Main Findings | Limitations | References |
---|---|---|---|
Bloom barrier/ Shallow lake | Phytoplankton reduction | [13] | |
Sonication/ Shallow lake | Nutrients, chlorophyll-a, and cyanobacteria reduction | [14] | |
Sonication/ Laboratory | Cyanobacteria reduction | Cyanobacteria regrowth with low frequencies | [15] |
Electrolysis/ Laboratory | Cyanobacteria inactivation | [16] | |
Shading/ Laboratory | Cyanobacteria reduction | Cyanobacteria were replaced by chlorophytes | [17] |
Mechanical mixing/ Deep lakes | Phytoplankton reduction | Nutrient load increases and algal blooms appear after mixing | [18,19] |
Dredging/ Deep lakes | Nutrients, phytoplankton, and chlorophyll a reduction | [20] | |
Reactive oxygen species/ Shallow lakes | Phytoplankton and chlorophyll a reduction | Phytoplankton regrowth, replaced toxic cyanobacteria with non-toxic cyanobacteria | [21,22,23] |
Reactive oxygen species/ Laboratory | Phytoplankton and phycocyanins reduction | H2O2 was not efficient | [24,25] |
Peptides/ Laboratory | Phytoplankton reduction | [26,27] | |
Allelochemicals/ Laboratory | Cyanobacteria reduction | Only short inhibition (10 days) | [28] |
Coagulants and flocculants/ Shallow lakes | Nutrients, chlorophyll-a, turbidity, POM, and microcystin reduction | Planosol and iron chloride were ineffective, and the nutrients were reloaded | [29,30] |
Coagulants and flocculants/ Laboratory | Nutrients and cyanobacteria reduction by sedimentation | High cyanobacteria abundance reduces coagulant effects | [31,32,33,34] |
Coagulants and flocculants/ Deep lakes | Nutrients, phytoplankton, and chlorophyll a reduction, sinking of cyanobacteria | Turbidity increases, replaced by algal groups, and cyanobacteria appear after treatment | [35,36,37] |
Strategies | Main Findings | Limitations | References |
---|---|---|---|
Submerged, floating, and emergent macrophytes | Turbidity, nutrients, and phytoplankton reduction | Chlorophytes replaced Cyanobacteria DO decrease Falling leaves increase nutrients | [37,38,39,40,41,42,43,44] |
Submerged macrophytes and extracts | Cyanobacteria reduction | Macrophyte extracts did not affect chlorophytes | [45] |
Macrophytes and the removal of omnivorous fish | Nutrients and phytoplankton reduction, Increase in transparency and cladocerans | During the summer, cyanobacterial toxic blooms increase | [40,46,47,48] |
Zooplankton and submerged macrophytes | Cyanobacteria reduction | Zooplankton did not decrease cyanobacteria biomass | [6] |
Filtering, omnivorous, and piscivorous fish | Nutrients, phytoplankton, and cyanotoxins reduction | Chlorophytes and small phytoplankton increased | [49,50,51] |
Omnivorous fish and macroinvertebrates | Phytoplankton reduction | Omnivorous fish increase phytoplankton biomass | [52] |
Zooplankton | Phytoplankton reduction | [53] | |
Macroalgae and bivalves | Nutrients, POM, and phytoplankton reduction | Negative effects on feeding rates due to high food concentration | [54,55] |
Ciliates | Cyanobacteria biomass reduction | Large colonies reduced ciliates’ feeding | [56] |
Woody debris | Chlorophyll-a reduction | [57] | |
Periphyton culture | Cyanobacteria and cyanotoxin reduction | [58] |
Strategies | Main Findings | Limitations | References |
---|---|---|---|
Introduction of macrophyte leaves | N and P reduction up to 2–2.8% and 0.12–0.16% | [59] | |
Submerged, floating, and emergent macrophytes | Reductions of up to 94.6% in cyanobacteria, chlorophyll a, and TN were observed, along with increased water transparency (Secchi depth > 120 cm) and an up to 8-fold increase in green algae | Phytoplankton increased, and chlorophytes replaced cyanobacteria | [60,61,62,63] |
Filtering fish | Chlorophyll a was reduced by up to 82%, and phytoplankton decreased by 60–80% | It only works for a while | [64,65] |
Omnivorous fish removal | Chlorophyll a and TP were reduced by up to 33% and 34%, respectively, while macrophyte coverage increased by 50–90% | [66,67] | |
Planktivorous fish removal | Phytoplankton reduction and an increase in zooplankton | [68] | |
Planktivorous and omnivorous fish removal | Phytoplankton increased by 200%; N and P increased by less than 9% | Excess of nutrients and phytoplankton reduces cascade effects | [69] |
Bivalves | Chlorophyll a reduction up to 55–37% | [70] | |
Periphyton biofilms | Elimination of 99% of M. aeruginosa | [71] | |
Bacteria, fungi, and yeast | Cyanobacteria were reduced by up to 61%, followed by an increase of over 50% | It only works for a while | [72] |
Strategies | Main Findings | Limitations | References |
---|---|---|---|
Emergent, floating macrophytes and terrestrial plants | Up to 100% of nutrient reduction and 50% of phytoplankton inhibition | [73,74,75] | |
Submerged macrophytes and mollusks | Nutrient reduction up to 40% and chlorophyll a reduction between 76 and 90% | Mollusks increase nutrients | [76,77] |
Macrophyte extracts | Cyanotoxin reduction and up to 100% of cyanobacteria decrease | Low extract concentration increased the cyanobacteria | [78] |
Filtering, planktivorous, benthivorous, and piscivorous fish | Transparency (Secchi depth > 50 cm) and zooplankton abundance increased by up to 85%: chlo-a was reduced by up to 89% and phytoplankton biomass decreased by 15% | Lower digestion of chlorophytes and mucilaginous algae. Nutrients, phytoplankton, and periphyton increase due to fecal nutrients | [79,80,81,82] |
Bivalves and filtering fish | Reductions of up to 42–34% in TN, 66–35% in TP, and 84% in Chlorophyll a. Fish abundance rose by up to 600%, while phytoplankton declined by 93% before rebounding to 400% above initial levels | With fish, increased nutrients and chlorophyll a, and Microcystis sp. were dominant | [83] |
Zooplankton and bivalves | Phytoplankton reduction up to 60–85% | [84,85,86] | |
Fish removal | Phytoplankton reduction up to 50% | [87] | |
Bacteria and ciliates | Cyanobacteria reduction and inhibition up to 80% | Cyanotoxins were not reduced | [88,89] |
Floating islands | N and P reduction up to 80% and 90% respectively | [90] | |
Adherent carrier diatoms | Cyanobacteria reduction up to, and Nitzschia increased to 70% | No effects on different groups of algae | [15] |
Leaves of terrestrial plants | Cyanobacteria reduction | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Rodríguez, C.A.; Montes-Campos, L.J.; Rivera-De la Parra, L.; Pérez-Morales, A.; Lugo-Vázquez, A. Strategies for Eutrophication Control in Tropical and Subtropical Lakes. Sustainability 2025, 17, 7755. https://doi.org/10.3390/su17177755
Espinosa-Rodríguez CA, Montes-Campos LJ, Rivera-De la Parra L, Pérez-Morales A, Lugo-Vázquez A. Strategies for Eutrophication Control in Tropical and Subtropical Lakes. Sustainability. 2025; 17(17):7755. https://doi.org/10.3390/su17177755
Chicago/Turabian StyleEspinosa-Rodríguez, Cristian Alberto, Luz Jazmin Montes-Campos, Ligia Rivera-De la Parra, Alfredo Pérez-Morales, and Alfonso Lugo-Vázquez. 2025. "Strategies for Eutrophication Control in Tropical and Subtropical Lakes" Sustainability 17, no. 17: 7755. https://doi.org/10.3390/su17177755
APA StyleEspinosa-Rodríguez, C. A., Montes-Campos, L. J., Rivera-De la Parra, L., Pérez-Morales, A., & Lugo-Vázquez, A. (2025). Strategies for Eutrophication Control in Tropical and Subtropical Lakes. Sustainability, 17(17), 7755. https://doi.org/10.3390/su17177755