How Does Artificial Intelligence Application Enable Sustainable Breakthrough Innovation? Evidence from Chinese Enterprises
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. AI Application and Breakthrough Innovation
2.2. AI Application and Knowledge Recombination
2.3. The Mediating Role of Knowledge Recombination
2.4. The Moderating Role of Market Competition
3. Research Design
3.1. Data Source and Sample Selection
3.2. Variable Measurement
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Mediating Variable
3.2.4. Moderating Variable
3.2.5. Control Variables
3.3. Model Selection
4. Empirical Results Analysis
4.1. Descriptive Statistics and Correlation Analysis
4.2. Regression Analysis Results
4.3. Robustness Test
4.3.1. Using Different Models
4.3.2. Changing the Measurement Method of the Dependent Variable
4.3.3. Lagging the Independent Variable
4.4. Heterogeneity Analysis
4.4.1. Property Rights Heterogeneity
4.4.2. Regional Heterogeneity
5. Discussion
6. Main Research Conclusions and Implications
6.1. Main Research Conclusions
6.2. Implications
6.2.1. Implications for Government
6.2.2. Implications for Enterprises
6.3. Research Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dosi, G. Technological Paradigms and Technological Trajectories: A Suggested Interpretation of the Determinants and Directions of Technical Change. Res. Policy 1982, 11, 147–162. [Google Scholar] [CrossRef]
- Dess, G.G.; Davis, P.S. Porter’s Generic Strategies as Determinants of Strategic Group Membership and Organizational Performance. Acad. Manag. J. 1984, 27, 467–488. [Google Scholar] [CrossRef]
- Barnholt, E.W. Fostering Business Growth with Breakthrough Innovation. Res. Technol. Manag. 1997, 40, 12–16. [Google Scholar] [CrossRef]
- Govindarajan, V.; Kopalle, P.K. Disruptiveness of Innovations: Measurement and an Assessment of Reliability and Validity. South. Med. J. 2006, 27, 189–199. [Google Scholar] [CrossRef]
- Christensen, C.M.; Raynor, M.E.; McDonald, R. What is Disruptive Innovation. Harv. Bus. Rev. 2015, 93, 44–53. [Google Scholar]
- Cheng, C.C.F.; Chen, J.S. Breakthrough Innovation: The Roles of Dynamic Innovation Capabilities and Open Innovation Activities. J. Bus. Ind. Mark. 2013, 28, 444–454. [Google Scholar] [CrossRef]
- Liao, S.; Deng, X.; Lu, H.; Niu, L. Configurational Pathways to Breakthrough Innovation in the Digital Age: Evidence from Niche Leaders. Systems 2024, 12, 542. [Google Scholar] [CrossRef]
- Koen, P.A.; Bertels, H.; Elsum, I.R.; Orroth, M.; Tollett, B.L. Breakthrough Innovation Dilemmas. Res. Technol. Manag. 2010, 53, 48–51. [Google Scholar]
- McDermott, C.; Handfield, R. Concurrent Development and Strategic Outsourcing: Do the Rules Change in Breakthrough Innovation? J. High Technol. Manag. Res. 2000, 11, 35–57. [Google Scholar] [CrossRef]
- Baba, Y.; Walsh, J.P. Embeddedness, Social Epistemology and Breakthrough Innovation: The Case of the Development of Statins. Res. Policy 2010, 39, 511–522. [Google Scholar] [CrossRef]
- Christensen, C.M. The Innovator’s Dilemma; Harvard Business School Press: Boston, MA, USA, 1997. [Google Scholar]
- Markides, C. Disruptive Innovation: In Need of Better Theory. J. Prod. Innov. Manag. 2006, 23, 19–25. [Google Scholar] [CrossRef]
- Christensen, C.M.; Baumann, H.; Ruggles, R.; Sadtler, T.M. Disruptive Innovation for Social Change. Harv. Bus. Rev. 2007, 84, 94–101. [Google Scholar]
- Ritala, P.; Sainio, L.M. Coopetition for Radical Innovation: Technology, Market and Business-Model Perspectives. Technol. Anal. Strateg. Manag. 2014, 26, 155–169. [Google Scholar] [CrossRef]
- Leifer, R.; O’Connor, G.C.; Rice, M. Implementing Radical Innovation in Mature Firms: The Role of Hubs. Acad. Manag. Exec. 2001, 15, 102–113. [Google Scholar] [CrossRef]
- Keupp, M.M.; Gassmann, O. Resource Constraints as Triggers of Radical Innovation: Longitudinal Evidence from the Manufacturing Sector. Res. Policy 2013, 42, 1457–1468. [Google Scholar] [CrossRef]
- Troilo, G.; Luca, L.M.D.; Atuahene-Gima, K. More Innovation with Less? A Strategic Contingency View of Slack Resources, Information Search, and Radical Innovation. J. Prod. Innov. Manag. 2014, 31, 259–277. [Google Scholar] [CrossRef]
- Foss, N.J.; Klein, P.G. Introduction to a Forum on the Judgment-Based Approach to Entrepreneurship: Accomplishments, Challenges, New Directions. J. Institut. Econ. 2015, 11, 585–599. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, Q.; Yu, H. Analysis of the Influence of Entrepreneurial Apprehension and Entrepreneurial Strategic Orientation on Breakthrough Innovation. Sustainability 2023, 15, 7320. [Google Scholar] [CrossRef]
- Erika, F.D.; Per, H.; Pehr-Johan, N.; Lars, P.; Helder, V. Why Entrepreneurs Choose Risky R&D Projects-But Still not Risky Enough. Econ. J. 2017, 127, F164–F199. [Google Scholar]
- Raffaelli, R.L.; Glynn, M.A.; Tushman, M. Frame Flexibility: The Role of Cognitive and Emotional Framing in Innovation Adoption by Incumbent Firms. South. Med. J. 2019, 40, 1013–1039. [Google Scholar] [CrossRef]
- Chen, W.; Luo, Y.; Rao, M.; Zhang, P. Too Much Teamwork? The Effect of Corporate Collaboration Culture on Breakthrough Innovation. Financ. Res. Lett. 2025, 78, 106913. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D. Managing Firm Resources in Dynamic Environments to Create Value: Looking inside the Black Box. Acad. Manag. Rev. 2007, 32, 273–292. [Google Scholar] [CrossRef]
- Kotabe, M.; Jiang, C.X.; Murray, J.Y. Examining the Complementary Effect of Political Networking Capability with Absorptive Capacity on the Innovative Performance of Emerging-Market Firms. J. Manag. 2017, 43, 1131–1156. [Google Scholar] [CrossRef]
- Cooper, R.G.; Kleinschmidt, E.J. Success Factors in Product Innovation. Ind. Mark. Manag. 1987, 16, 215–223. [Google Scholar] [CrossRef]
- Birkinshaw, B.; Delbridge, J. Finding, Forming and Performing: Creating Networks for Discontinuous Innovation. Calif. Manag. Rev. 2007, 49, 67–84. [Google Scholar] [CrossRef]
- Lowik, S.; Kraaijenbrink, J.; Groen, A.J.; Carayannis, E.; Petruzzelli, A.M. Antecedents and Effects of Individual Absorptive Capacity: A Micro-Foundational Perspective on Open Innovation. J. Knowl. Manag. 2017, 21, 1319–1341. [Google Scholar] [CrossRef]
- Arvanitis, S.; Kubli, U.; Woerter, M. Knowledge and Technology Transfer Activities Between Firms and Universities in Switzerland: An Analysis Based on Firm Data. Ind. Innov. 2011, 18, 369–392. [Google Scholar] [CrossRef]
- Czarnitzki, D.; Lopes-Bento, C. Innovation Subsidies: Does the Funding Source Matter for Innovation Intensity and Performance? Empirical Evidence from Germany. Ind. Innov. 2014, 21, 380–409. [Google Scholar] [CrossRef]
- Hekkert, M.P.; Suurs, R.A.A.; Negro, S.O.; Kuhlmann, S.; Smits, R.E.H.M. Functions of Innovation Systems: A New Approach for Analyzing Technological Change. Technol. Forecast. Soc. Change 2007, 74, 413–432. [Google Scholar] [CrossRef]
- Mikalef, P.; Gupta, M. Artificial Intelligence Capability: Conceptualization, Measurement Calibration, and Empirical Study on its Impact on Organizational Creativity and Firm Performance. Inf. Manag. 2021, 58, 103434. [Google Scholar] [CrossRef]
- Dubey, R.; Bryde, D.J.; Blome, C.; Roubaud, D.; Giannakis, M. Facilitating Artificial Intelligence Powered Supply Chain Analytics through Alliance Management during the Pandemic Crises in the B2B Context. Ind. Mark. Manag. 2021, 96, 135–146. [Google Scholar] [CrossRef]
- Czarnitzki, D.; Fernández, G.P.; Rammer, C. Artificial Intelligence and Firm-Level Productivity. J. Econ. Behav. Organ. 2023, 211, 188–205. [Google Scholar] [CrossRef]
- Müller, J.M.; Buliga, O.; Voigt, K.I. Fortune Favors the Prepared: How Smes Approach Business Model Innovations in Industry 4.0. Technol. Forecast. Soc. Change 2018, 132, 2–17. [Google Scholar] [CrossRef]
- Kakatkar, C.; Bilgram, V.; Dalton, C.M. Innovation Analytics: Leveraging Artificial Intelligence in the Innovation Process. Bus. Horiz. 2020, 63, 171–181. [Google Scholar] [CrossRef]
- Ameen, N.; Tarba, S.; Cheah, J.H.; Xia, S.; Sharma, G.D. Coupling Artificial Intelligence Capability and Strategic Agility for Enhanced Product and Service Creativity. Br. J. Manag. 2024, 35, 1916–1934. [Google Scholar] [CrossRef]
- Cockburn, I.; Henderson, R.; Stern, S. The Impact of Artificial Intelligence on Innovation; NBER Working Paper; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 2018; p. 24449. [Google Scholar]
- Ameen, N.; Sharma, G.D.; Tarba, S.; Rao, A.; Chopra, R. Toward Advancing Theory on Creativity in Marketing and Artificial Intelligence. Psychol. Mark. 2022, 39, 1802–1825. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, Y.L.; Yang, B. Influence of Artificial Intelligence on Technological Innovation: Evidence from the Panel Data of China’s Manufacturing Sectors. Technol. Forecast. Soc. Change 2020, 158, 120142. [Google Scholar] [CrossRef]
- Bouschery, S.G.; Blazevic, V.; Piller, F.T. Augmenting Human Innovation Teams with Artificial Intelligence: Exploring Transformer-Based Language Models. J. Prod. Innov. Manag. 2023, 40, 139–153. [Google Scholar] [CrossRef]
- Prem, E. Artificial Intelligence for Innovation in Austria. Technol. Innov. Manag. Rev. 2019, 9, 5–15. [Google Scholar] [CrossRef]
- Ghasemaghaei, M.; Ebrahimi, S.; Hassanein, K. Data Analytics Competency for Improving Firm Decision Making Performance. J. Strateg. Inf. Syst. 2018, 27, 101–113. [Google Scholar] [CrossRef]
- Mariani, M.M.; Machado, I.; Magrelli, V.; Dwivedi, Y.K. Artificial Intelligence in Innovation Research: A Systematic Review, Conceptual Framework, and Future Research Directions. Technovation 2023, 122, 102623. [Google Scholar] [CrossRef]
- Shamim, S.; Yang, Y.; Zia, N.U.; Khan, Z.; Shariq, S.M. Mechanisms of Cognitive Trust Development in Artificial Intelligence among Front Line Employees: An Empirical Examination from a Developing Economy. J. Bus. Res. 2023, 167, 114168. [Google Scholar] [CrossRef]
- Chowdhury, S.; Dey, P.; Edgar, S.J.; Bhattacharya, S.; Rodriguez-Espindola, O.; Abadie, A.; Truong, L. Unlocking the Value of Artificial Intelligence in Human Resource Management through AI Capability Framework. Hum. Resour. Manag. Rev. 2023, 33, 100899. [Google Scholar] [CrossRef]
- Kogut, B.; Zander, U. Knowledge of the Firm and the Evolutionary Theory of the Multinational Corporation. J. Int. Bus. Stud. 1993, 24, 625–645. [Google Scholar] [CrossRef]
- Grant, R.M. Toward a Knowledge-Based Theory of the Firm. Strateg. Manag. J. 1996, 17, 109–122. [Google Scholar] [CrossRef]
- Fleming, L. Recombinant Uncertainty in Technological Search. Manag. Sci. 2001, 47, 117–132. [Google Scholar] [CrossRef]
- Xiao, T.; Makhija, M.; Karim, S. A Knowledge Recombination Perspective of Innovation: Review and New Research Directions. J. Manag. 2022, 48, 1724–1777. [Google Scholar] [CrossRef]
- Carnabuci, G.; Operti, E. Where Do Firms’Recombinant Capabilities Come From? Intra-Organizational Networks, Knowledge, and Firms’ Ability to Innovate through Technological Recombination. Strateg. Manag. J. 2013, 34, 1591–1613. [Google Scholar] [CrossRef]
- Raisch, S.; Fomina, K. Combining Human and Artificial Intelligence: Hybrid Problem-Solving in Organizations. Acad. Manag. Rev. 2025, 50, 441–464. [Google Scholar] [CrossRef]
- Liu, Y.; Ying, Z.Z.; Ying, Y.; Wang, D.; Chen, J. Artificial Intelligence Orientation and Internationalization Speed: A Knowledge Management Perspective. Technol. Forecast. Soc. Change 2024, 205, 123517. [Google Scholar] [CrossRef]
- Weitzman, M.L. Recombinant Growth. Q. J. Econ. 1998, 113, 331–360. [Google Scholar] [CrossRef]
- Antonelli, C.; Orsatti, G.; Pialli, G. The Knowledge-Intensive Direction of Technological Change. Eurasian Bus. Rev. 2023, 13, 1–27. [Google Scholar] [CrossRef]
- Roberts, P.W. Product Innovation, Product-Market Competition and Persistent Profitability in the U.S. Pharmaceutical Industry. Strateg. Manag. J. 1999, 20, 655–670. [Google Scholar] [CrossRef]
- Lin, X.; Lu, T.J.; Chen, X. Technological Innovation, Market Competition, and Regulatory Reform in Telecommunications. Wirel. Pers. Commun. 2018, 102, 997–1007. [Google Scholar] [CrossRef]
- Bianchini, S.; Müller, M.; Pelletier, P. Artificial Intelligence in Science: An Emerging General Method of Invention. Res. Policy 2022, 51, 104604. [Google Scholar] [CrossRef]
- Arshi, T.A.; Rao, V.; Begum, V.; Capar, N. Early Internationalisation of Entrepreneurial Firms: The Role of Artificial Intelligence Enhanced Business Models. J. Int. Bus. Entrep. Dev. 2022, 14, 536–556. [Google Scholar] [CrossRef]
- Doshi, A.R.; Bell, J.J.; Mirzayev, E.; Vanneste, B.S. Generative Artificial Intelligence and Evaluating Strategic Decisions. Strateg. Manag. J. 2025, 46, 583–610. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Mcafee, A. Artificial Intelligence, for Real. Harv. Bus. Rev. 2017, 1, 1–31. [Google Scholar]
- Liu, W.; Cao, M.; Zheng, J.; Zhang, J.Z. Independence or Interdependence: The Role of Artificial Intelligence in Corporate Entry Mode for Overseas Energy Investments. J. Innov. Knowl. 2024, 9, 100518. [Google Scholar] [CrossRef]
- Zhou, K.Z.; Yim, C.K.; Tse, D.K. The Effects of Strategic Orientations on Technology-and Market-Based Breakthrough Innovations. J. Mark. 2005, 69, 42–60. [Google Scholar] [CrossRef]
- Rammer, C.; Fernández, G.P.; Czarnitzki, D. Artificial Intelligence and Industrial Innovation: Evidence from German Firm-Level Data. Res. Policy 2022, 51, 104555. [Google Scholar] [CrossRef]
- Loureiro, S.M.C.; Guerreiro, J.; Tussyadiah, I. Artificial Intelligence in Business: State of the Art and Future Research Agenda. J. Bus. Res. 2021, 129, 911–926. [Google Scholar] [CrossRef]
- Ahi, A.A.; Sinkovics, N.; Shildibekov, Y.; Sinkovics, R.R.; Mehandjiev, N. Advanced Technologies and International Business: A Multidisciplinary Analysis of the Literature. Int. Bus. Rev. 2022, 31, 101967. [Google Scholar] [CrossRef]
- Huang, M.H.; Rust, R.T. A Strategic Framework for Artificial Intelligence in Marketing. J. Acad. Mark. Sci. 2021, 49, 30–50. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial Intelligence to Deep Learning: Machine Intelligence Approach for Drug Discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef]
- Krakowski, S.; Luger, J.; Raisch, S. Artificial Intelligence and the Changing Sources of Competitive Advantage. Strateg. Manag. J. 2023, 44, 1425–1452. [Google Scholar] [CrossRef]
- Jarrahi, M.H.; Askay, D.; Eshraghi, A.; Smith, P. Artificial Intelligence and Knowledge Management: A Partnership Between Human and AI. Bus. Horiz. 2023, 66, 87–99. [Google Scholar] [CrossRef]
- Ta’Amnha, M.A.; Magableh, I.K.; Asad, M.; Al-Qudah, S. Open Innovation: The Missing Link Between Synergetic Effect of Entrepreneurial Orientation and Knowledge Management over Product Innovation Performance. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100147. [Google Scholar] [CrossRef]
- Wang, E.; Klein, G.; Jiang, J.J. It Support in Manufacturing Firms for a Knowledge Management Dynamic Capability Link to Performance. Int. J. Prod. Res. 2007, 45, 2419–2434. [Google Scholar] [CrossRef]
- Papa, A.; Dezi, L.; Gregori, G.L.; Mueller, J.; Miglietta, N. Improving Innovation Performance Through Knowledge Acquisition: The Moderating Role of Employee Retention and Human Resource Management Practices. J. Knowl. Manag. 2020, 24, 589–605. [Google Scholar] [CrossRef]
- Dubey, R.; Bryde, D.J.; Dwivedi, Y.K.; Graham, G.; Foropon, C. Impact of Artificial Intelligence-Driven Big Data Analytics Culture on Agility and Resilience in Humanitarian Supply Chain: A Practice-Based View. Int. J. Prod. Econ. 2022, 250, 108618. [Google Scholar] [CrossRef]
- Triguero, A.; Córcoles, D. Understanding Innovation: An Analysis of Persistence for Spanish Manufacturing Firms. Res. Policy 2013, 42, 340–352. [Google Scholar] [CrossRef]
- Strumsky, D.; Lobo, J. Identifying the Sources of Technological Novelty in the Process of Invention. Res. Policy 2015, 44, 1445–1461. [Google Scholar] [CrossRef]
- Kaplan, S.; Vakili, K. The Double-Edged Sword of Recombination in Breakthrough Innovation. Strateg. Manag. J. 2015, 36, 1435–1457. [Google Scholar] [CrossRef]
- Achim, H.; Alois, G. The Influence of Product Market Competition on Technological and Management Innovation: Firm-Level Evidence from a Large-Scale Survey. Eur. Manag. Rev. 2013, 10, 17–33. [Google Scholar]
- Mariani, M.M.; Nambisan, S. Innovation Analytics and Digital Innovation Experimentation: The Rise of Research-Driven Online Review Platforms. Technol. Forecast. Soc. Change 2021, 172, 121009. [Google Scholar] [CrossRef]
- Gong, H.; Li, C.H. Breakthroughs in Technology Bottlenecks: The Influence of Knowledge Development Mode on the Key Technologies and Derivative Technologies of Enterprises. Sci. Technol. Prog. Policy 2024, 41, 56–65. [Google Scholar]
- Han, S.Z.; Wang, C.F.; Zhang, H.S.; Li, H. Intelligent Manufacturing Promotes Enterprise Green Innovation: Based on the Moderating Effect of External Pressure and Support. J. Manag. 2025, 38, 114–133. [Google Scholar]
- Cui, N.; Chen, S.J.; Li, J. How does Industrial Robot Application Affect Enterprise Innovation? Stat. Res. 2025, 42, 58–69. [Google Scholar]
- Pang, C.; Wang, Q.; Carayannis, E.G. How Digital Transformation Promotes Disruptive Innovation? Evidence from Chinese Entrepreneurial Firms. J. Knowl. Econ. 2024, 15, 7788–7818. [Google Scholar] [CrossRef]
- Yao, J.Q.; Zang, K.P.; Guo, L.P.; Feng, X. How does Artificial Intelligence Improve Enterprise Productivity?—Based on the Perspective of Labor Skill Restructuring. Manag. World 2024, 40, 101–116. [Google Scholar]
- Yu, L.R.; Yu, B. Research on the Influence Mechanism of Knowledge Reorganization on Innovation Performance of High-Tech Firms. R&D Manag. 2024, 55, 70–83. [Google Scholar]
- Guo, X.L.; Li, K.; Shi, J.G. Buyer’s Market Power, Market Competitive Environment and R&D Investment-Empirical Evidence based on High-Tech Listed Companies. Res. Manag. 2021, 42, 129–136. [Google Scholar]
- Faleye, O.; Kovacs, T.; Venkateswaran, A. Do Better-Connected CEOs Innovate More? J. Financ. Quant. Anal. 2014, 49, 1201–1225. [Google Scholar] [CrossRef]
- Liu, N.; Du, Y.T.; Mao, J.Q.; Wang, C.M. The Impact of Firms’ Knowledge Structure Attributes on Breakthrough Innovation Performance. Res. Manag. 2024, 45, 137–144. [Google Scholar]
- Wu, Q.; Huang, F.; Wang, P. Artificial Intelligence Technology and Firms’ Innovation Performance-Analyzing the Enabling Role of New Quality Productivity. Res. Financ. Issues 2024, 10, 67–80. [Google Scholar]
- Zhu, G.P.; Wang, K. Artificial Intelligence Application and Green Innovation in Manufacturing Enterprises. J. Ind. Technol. Econ. 2024, 44, 73–81. [Google Scholar]
- Tao, F.M.; Lu, Y.; Wang, T. Relational Embedding, Knowledge Integration Capability and Practice Renewal-The Moderating Role of Innovative Corporate Culture. J. Ind. Technol. Econ. 2023, 43, 92–101. [Google Scholar]
- Chen, L.Y.; Zhang, J.Q.; Zeng, D.M.; Xu, L.Y. A Study on the Impact of Knowledge Reorganization and Depth of Collaborative R&D on Firms’ Technical Standard Setting. J. Manag. 2019, 46, 531–540. [Google Scholar]
Form | AI Keywords |
---|---|
Basic techniques and algorithms | Machine Learning, Artificial Intelligence, Deep Learning, Neural Networks, Speech Recognition, Image Recognition, Data Mining, Feature Recognition, Speech Synthesis, Knowledge Graph, Support Vector Machines (SVMs), Long Short-Term Memory (LSTMs), Recurrent Neural Networks, Reinforcement Learning, Pattern Recognition, Distributed Computing, Edge Computing, Smart Computing, Deep Neural Networks |
Hardware and infrastructure | AI chips, smart sensors, smart chips, wearables, big data platforms, cloud computing, IoT |
Areas of application | AI products, machine translation, computer vision, human–computer interaction, intelligent supervision, intelligent banking, intelligent insurance, human-computer collaboration, intelligent investment advisor, intelligent education, intelligent customer service, intelligent retail, intelligent agriculture, intelligent voice, augmented reality, virtual reality, intelligent medical care, intelligent speakers, voiceprint recognition, intelligent government, automatic driving, intelligent transportation, convolutional neural network, face recognition, feature extraction, Driverless, smart home, Q&A system, smart body, business intelligence, smart finance, big data processing, smart aging, big data marketing, big data risk control, big data analytics, smart voice, human-computer dialogue, big data operation, biometrics, natural language processing, robotic process automation |
Var Types | Vars | Description | Measurement |
---|---|---|---|
Dependent Variable | HIT | Breakthrough Innovation | The number of authorized invention patents by enterprises. |
Independent Variable | AI | AI Application | The frequency of occurrence of keywords in the AI dictionary. |
Mediating Variable | KRC | Knowledge Recombination Creation | The number of times of knowledge recombination creation of enterprise i in t-3, t-2, t-1 years. |
KRR | Knowledge Recombination Reuse | The number of times of knowledge recombination reuse of enterprise i in t-3, t-2, t-1 years. | |
Moderating Variable | PCM | Market Competition | 1-HHI |
Control Variables | Age | Enterprise Age | The number of years since the enterprise was founded. |
ROA | Enterprise Performance | The return on assets of the enterprise. | |
RGR | Revenue Growth Rate | The growth amount of revenue divided by the total revenue of the previous year’s enterprise. | |
OC | Ownership Concentration | The shareholding proportion of the top ten shareholders. | |
BS | Board Scale | The total number of directors constituting the board of directors. |
Variables | HIT | AI | KRC | KRR | PCM | Age | ROA | RGR | OC | BS |
---|---|---|---|---|---|---|---|---|---|---|
HIT | 1.000 | |||||||||
AI | 0.090 *** | 1.000 | ||||||||
KRC | 0.741 *** | 0.049 *** | 1.000 | |||||||
KRR | 0.758 *** | 0.028 *** | 0.879 *** | 1.000 | ||||||
PCM | 0.031 *** | 0.052 *** | 0.014 | 0.007 | 1.000 | |||||
Age | 0.077 *** | −0.034 *** | 0.105 *** | 0.081 *** | 0.006 | 1.000 | ||||
ROA | −0.006 | 0.019 ** | −0.011 | −0.008 | 0.003 | −0.019 ** | 1.000 | |||
RGR | 0.008 | −0.037 *** | 0.021** | 0.013 | 0.014 | −0.034 *** | 0.012 | 1.000 | ||
OC | −0.009 | −0.152 *** | 0.017 * | 0.007 | −0.083 *** | −0.119 *** | 0.009 | 0.161 *** | 1.000 | |
BS | 0.090 *** | −0.066 *** | 0.078 *** | 0.075 *** | −0.043 *** | 0.122 *** | 0.007 | 0.024 ** | 0.028 *** | 1.000 |
Mean | 31.499 | 2.009 | 106.861 | 19.464 | 0.876 | 18.617 | 0.46 | 0.031 | 58.557 | 8.353 |
Std. Dev. | 166.314 | 1.163 | 358.770 | 108.818 | 0.120 | 5.862 | 5.707 | 0.136 | 15.235 | 1.763 |
Min | 0.000 | 0.693 | 0.000 | 0.000 | 0.000 | 3.000 | −7.655 | −7.700 | 8.779 | 0.000 |
Max | 3950.000 | 6.250 | 14,769.000 | 6156.000 | 0.968 | 64.000 | 434.593 | 1.408 | 100.970 | 18.000 |
VIF | — | 1.05 | 4.68 | 4.62 | 1.01 | 1.11 | 1.00 | 1.03 | 1.07 | 1.11 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
HIT | KRC | KRR | HIT | HIT | HIT | |
AI | 0.051 ** (2.239) | 0.005 *** (2.656) | 0.040 * (1.906) | 0.019 (1.529) | 0.026 ** (2.100) | 0.019 (1.606) |
KRC | 0.595 *** (7.285) | 0.416 *** (5.0243) | ||||
KRR | 0.628 *** (6.65) | 0.244 ** (2.0802) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Firm fixed | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes | Yes | Yes |
N | 9322 | 9322 | 9322 | 9322 | 9322 | 9322 |
R2 | 0.054 | 0.068 | 0.039 | 0.446 | 0.401 | 0.462 |
Mediating Variable | Type of Effect | Coefficient | Standard Error | Confidence Interval |
---|---|---|---|---|
Knowledge Recombination Creation | Indirect Effect | 0.012 | 0.002 | [0.007, 0.017] |
Direct effect | 0.013 | 0.002 | [0.010, 0.017] | |
Total effect | 0.026 | 0.003 | [0.019, 0.032] |
Mediating Variable | Type of Effect | Coefficient | Standard Error | Confidence Interval |
---|---|---|---|---|
Knowledge Recombination Reuse | Indirect Effect | 0.008 | 0.003 | [0.003, 0.013] |
Direct effect | 0.018 | 0.002 | [0.013, 0.022] | |
Total effect | 0.026 | 0.003 | [0.019, 0.032] |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
HIT | HIT | HIT | HIT | |
KRC | 0.596 *** (7.269) | −0.325 * (−1.688) | ||
KRC×PCM | 0.881 *** (3.388) | |||
KRR | 0.628 *** (6.639) | −0.336 * (−1.869) | ||
KRR×PCM | 0.869 *** (3.510) | |||
Controls | Yes | Yes | Yes | Yes |
Firm fixed | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes |
N | 9303 | 9303 | 9303 | 9303 |
R2 | 0.446 | 0.460 | 0.401 | 0.418 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
---|---|---|---|---|---|
HIT | HIT | HIT | HIT | HIT | |
AI | 0.100 *** (8.865) | 0.041 * (1.877) | |||
L.AI | 0.047 ** (2.438) | ||||
L2.AI | 0.049 ** (2.44) | ||||
L3.AI | 0.054 ** (2.417) | ||||
Controls | Yes | Yes | Yes | Yes | Yes |
Firm fixed | Yes | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes | Yes |
N | 9322 | 8454 | 6275 | 4857 | 3813 |
R2 | 0.055 | 0.058 | 0.055 | 0.064 | 0.060 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
---|---|---|---|---|---|
State-Owned | Non-State-Owned | The East | The Central | The West | |
AI | 0.119 * (1.78) | 0.050 ** (2.153) | 0.055 ** (2.297) | −0.065 (−1.127) | 0.004 (0.063) |
Controls | Yes | Yes | Yes | Yes | Yes |
Firm fixed | Yes | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes | Yes |
N | 2034 | 7124 | 7751 | 959 | 597 |
R2 | 0.125 | 0.027 | 0.057 | 0.080 | 0.090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Wu, X.; Dong, Y.; Lou, X. How Does Artificial Intelligence Application Enable Sustainable Breakthrough Innovation? Evidence from Chinese Enterprises. Sustainability 2025, 17, 7787. https://doi.org/10.3390/su17177787
Sun Z, Wu X, Dong Y, Lou X. How Does Artificial Intelligence Application Enable Sustainable Breakthrough Innovation? Evidence from Chinese Enterprises. Sustainability. 2025; 17(17):7787. https://doi.org/10.3390/su17177787
Chicago/Turabian StyleSun, Zhongyuan, Xuelong Wu, Ying Dong, and Xuming Lou. 2025. "How Does Artificial Intelligence Application Enable Sustainable Breakthrough Innovation? Evidence from Chinese Enterprises" Sustainability 17, no. 17: 7787. https://doi.org/10.3390/su17177787
APA StyleSun, Z., Wu, X., Dong, Y., & Lou, X. (2025). How Does Artificial Intelligence Application Enable Sustainable Breakthrough Innovation? Evidence from Chinese Enterprises. Sustainability, 17(17), 7787. https://doi.org/10.3390/su17177787