Turning Waste into Wealth: The Case of Date Palm Composting
Abstract
1. Introduction
- -
- Agronomic assessment: Production of compost from date palm residues and evaluation of its effect on crop productivity in field trials with crop species commonly grown in oases.
- -
- Farmer survey: Collection of local farmers’ perceptions and willingness to use locally produced compost to assess market acceptance.
- -
- Socio-economic viability and business modelling: Evaluation of the production capacity, potential pricing, investment and operational costs, and long-term sustainability of the composting station, combined with the development of a circular business plan using the Ecocanvas tool [14] to visualise the potential added value.
2. Materials and Methods
2.1. Date Palm By-Product Compost as Fertiliser for Oasis Crops
2.2. Field Surveys to Assess the Uptake of Compost by Farmers
2.3. Composting Station Economic Model
3. Results
3.1. Evaluation of Date Palm Compost as an Amendment
3.2. Field Survey Findings on the Uptake of Compost by Farmers
3.3. Economic Analysis and Viability Assessment of the Figuig Composting Station
- ■
- Production scale: 350 tonnes/year:
- ○
- Workforce of two people.
- ○
- Three composting lanes.
- ○
- Under these conditions, the initial investment could be recovered in at least 9 years.
- ■
- Production scale: 1000 tonnes/year:
- ○
- Increase the workforce from 2 to 6, increasing the operating costs by 953 EUR/year.
- ○
- Increase the number of composting lanes from 3 to 10, requiring an additional EUR 33,357 in investment costs.
- ○
- Under these conditions, the initial investment could be recovered in at least 6 years.
- ■
- Production scale: 2000 tonnes/year
- ○
- Invest in more advanced and efficient machinery (shredders and windrow turning) at an additional cost of EUR 238,261.
- ○
- Increase in workforce from 2 to 6 people, increasing operating costs by 953 EUR/year.
- ○
- The initial investment could be recovered in a minimum of 6 years.
- ○
- Increase the number of composting lanes from 10 to 20, requiring an additional investment of EUR 47,652.
- ○
- Under these conditions, the initial investment could be recovered in at least 6 years.
- ■
- Production scale: 3500 tonnes/year
- ○
- Invest in modern machinery, adding EUR 47,652 to the capital cost.
- ○
- Maintain 20 composting lanes.
- ○
- Maintain a workforce of six people.
- ○
- Under these conditions, the initial investment could be recovered in a minimum of 4 years.
- ■
- Adaptation of the Ecocanvas to the Local Context
- ■
- Integration of Environmental, Social, and Economic Dimensions
- ○
- Environmental dimension: Assessing potential contributions to soil fertility restoration, reduced dependence on chemical fertilisers, mitigation of CO2 emissions from residue burning, and improved waste management.
- ○
- Social dimension: Predicting the creation of local employment opportunities, capacity building through farmer training, strengthened partnerships between cooperatives and institutions, and stabilisation of rural populations by reducing youth migration.
- ○
- Economic dimension: Analysing the market potential for compost in the Figuig oasis, assessing pricing strategies, and identifying collaborative mechanisms to improve market penetration and long-term financial viability.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Interviewer Name
- Farmer’s Information
- -
- Full Name: ______
- -
- Contact Number: ______
- -
- Age: ______
- -
- Place of Birth: ______
- -
- Current Residence: ______
- -
- Ksar of Residence: ______
- Education Level (Select one)
- □
- No formal education
- □
- Primary
- □
- Secondary
- □
- Higher education
- Professional Information
- -
- Primary Occupation: ______
- -
- Years of Farming Experience: ______
- Main Activity Sector (Select one)
- □
- Production
- □
- Local distribution
- □
- Processing
- Cooperative Membership
- -
- Member of a cooperative? (Y/N)
- -
- If yes:
- -
- Date of cooperative establishment: ______
- -
- Number of members: ______
- -
- Cooperative location: ______
- -
- Main activities: ______
- Farm Characteristics
- -
- GPS Coordinates: ______
- -
- Palm Grove Name: ______
- -
- Farm Area (m2): ______
- Workforce
- -
- Seasonal Workers: ______
- -
- Permanent Workers: ______
- -
- Female Workers: ______
- -
- Workers aged 16–35: ______
- -
- Worker Origins: ______
- Farm Details
- -
- Number of Date Palms: ______
- -
- Bayoud-infected Palms: ______
- -
- Other Crops: ______
- -
- Crop Type: ______
- -
- Average Daily Work Hours: ______
- Financial Information (in MAD)
- -
- Annual Investment: ______
- -
- Cost Structure: ______
- -
- Annual Profit: ______
- -
- Income Value: ______
- -
- Does income meet needs? (Y/N)
- -
- If no, other income sources: ______
- Soil Amendment Selection Criteria (Select all that apply)
- □
- Availability
- □
- NPK Content
- □
- Environmental Impact
- □
- Soil Health
- □
- Organic Matter Proportion
- □
- Vendor Trustworthiness
- □
- Price
- □
- Proximity of Purchase Point
- Soil Analysis
- -
- Conduct soil tests? (Y/N)
- -
- If yes:
- -
- Test Type: ______
- -
- Frequency: ______
- -
- Soil Quality Assessment: (Select one)
- □
- Depleted
- □
- Poor
- □
- Average
- □
- Good
- □
- Excellent
- Fertiliser Use
- -
- Type: ______
- -
- Quantity: ______
- -
- Application Frequency (per year): ______
- -
- Source: ______
- Date Palm Management
- -
- Pruning Frequency: ______
- -
- By-product Storage Method: ______
- -
- By-product Utilisation: ______
- -
- By-product Disposal Method: ______
- Compost Knowledge and Use
- -
- Familiar with compost? (Y/N)
- -
- Use compost? (Y/N)
- -
- If yes:
- -
- Quantity: ______
- -
- Source: ______
- -
- Know SEMO experimental compost station? (Y/N)
- -
- Willing to:
- -
- Purchase SEMO compost? (Y/N)
- -
- Price willing to pay (MAD/kg): ______
- -
- Sell by-products to SEMO? (Y/N)
- -
- Expected price: ______
- -
- Exchange by-products for compost? (Y/N)
- Additional Comments: ______
References
- El Janati, M.; Akkal-Corfini, N.; Bouaziz, A.; Oukarroum, A.; Robin, P.; Sabri, A.; Chikhaoui, M.; Thomas, Z. Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases. Sustainability 2021, 13, 4713. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations—FAO (Représentation au Maroc). Moroccan Oasis in the Agricultural World Heritage (Des Oasis Marocaines Au Patrimoine Agricole Mondial); Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Sedra, M.H. Le Palmier Dattier Base de La Mise En Valeur Des Oasis Au Maroc: Techniques Phoénicicoles et Création D’oasis; INRA: France, Paris, 2003; ISBN 9981-1994-3-5. [Google Scholar]
- Ibrahimi, M.; Brhadda, N.; Ziri, R.; Fokar, M.; Iraqi, D.; Gaboun, F.; Labhilili, M.; Habach, A.; Meziani, R.; Elfadile, J. Analysis of Genetic Diversity and Population Structure of Moroccan Date Palm (Phoenix dactylifera L.) Using SSR and DAMD Molecular Markers. J. Genet. Eng. Biotechnol. 2023, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Janati, M.E.; Akkal-Corfini, N.; Robin, P.; Oukarroum, A.; Sabri, A.; Thomas, Z.; Chikhaoui, M.; Bouaziz, A. Compost from Date Palm Residues Increases Soil Nutrient Availability and Growth of Silage Corn (Zea mays L.) in an Arid Agroecosystem. J. Soil Sci. Plant Nutr. 2022, 22, 3727–3739. [Google Scholar] [CrossRef]
- Khardi, A.; Nogot, A.; Abdellaoui, M.; Jaiti, F. Valorisation des sous-produits du palmier-dattier pour contribuer à la durabilité es oasis du Maroc. Cah. Agric. 2024, 33, 3. [Google Scholar] [CrossRef]
- Ravitz Wyngaard, S.; Kissinger, M. Embracing a footprint assessment approach for analyzing desert-based agricultural systems: The case of Medjool dates. Agron. Sustain. Dev. 2022, 42, 68. [Google Scholar] [CrossRef]
- Ghouili, E.; Abid, G.; Hogue, R.; Jeanne, T.; D’Astous-Pagé, J.; Sassi, K.; Hidri, Y.; Cheikh M’hamed, H.; Somenahally, A.; Xue, Q.; et al. Date palm waste compost application increases soil microbial community diversity in a cropping barley (Hordeum vulgare L.) field. Biology 2023, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Vico, A.; Pérez-Murcia, M.D.; Bustamante, M.A.; Agulló, E.; Marhuenda-Egea, F.C.; Sáez, J.A.; Paredes, C.; Pérez-Espinosa, A.; Moral, R. Valorization of date palm (Phoenix dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. J. Environ. Manag. 2018, 226, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Abid, W.; Ben Mahmoud, I.; Masmoudi, S.; Triki, M.A.; Mounier, S.; Ammar, E. Physico-chemical and spectroscopic quality assessment of compost from date palm (Phoenix dactylifera L.) waste valorization. J. Environ. Manag. 2020, 264, 110492. [Google Scholar] [CrossRef] [PubMed]
- Kavvadias, V.; Le Guyader, E.; El Mazlouzi, M.; Gommeaux, M.; Boumaraf, B.; Moussa, M.; Lamine, H.; Sbih, M.; Zoghlami, I.R.; Guimeur, K. Using Date Palm Residues to Improve Soil Properties: The Case of Compost and Biochar. Soil Syst. 2024, 8, 69. [Google Scholar] [CrossRef]
- Le Guyader, E.; Morvan, X.; Miconnet, V.; Marin, B.; Moussa, M.; Intrigliolo, D.S.; Delgado-Iniesta, M.J.; Girods, P.; Fontana, S.; Sbih, M.; et al. Influence of date palm-based biochar and compost on water retention properties of soils with different sand contents. Forests 2024, 15, 304. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. In Sustainable Agriculture Volume 2; Springer: Berlin/Heidelberg, Germany, 2011; pp. 761–786. [Google Scholar]
- Daou, A.; Mallat, C.; Chammas, G.; Cerantola, N.; Kayed, S.; Saliba, N.A. The Ecocanvas as a Business Model Canvas for a Circular Economy. J. Clean. Prod. 2020, 258, 120938. [Google Scholar] [CrossRef]
- Souna, F.; Chafi, A.; Chakroune, K.; Himri, I.; Bouakka, M.; Hakkou, A. Effect of Mycorhization and Compost on the Growth and the Protection of Date Palm (Phoenix dactylifera L.) against Bayoud Disease. Am.-Eurasian J. Sustain. Agric. 2010, 4, 260–267. [Google Scholar]
- Gwara, S.; Wale, E.; Lundhede, T.; Jourdain, D.; Odindo, A. Ex-Ante Demand Assessment and Willingness to Pay for Human Excreta Derived Co-Compost: Empirical Evidence from Rural South Africa. J. Clean. Prod. 2023, 388, 135570. [Google Scholar] [CrossRef]
- Lal, R. Digging Deeper: A Holistic Perspective of Factors Affecting Soil Organic Carbon Sequestration in Agroecosystems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- Baba, M.; Mzabri, B.; Mimouni, J.; Berrichi, A. Effets de changement climatique sur le taux de parthénocarpie du palmier dattier (Phoenix dactylifera L.): Cas du cultivar Assiane dans l’oasis de Figuig. Rev. Marocaine Sci. Agron. Vétérinaires 2022, 10, 323–330. [Google Scholar]
- Valenzuela Ruiz, V.; Cubedo-Ruiz, E.; Maldonado Vega, M.; Garatuza Payan, J.; Yépez González, E.; Parra Cota, F.I.; de los Santos Villalobos, S. Cultivable Rhizosphere Microbial Community Structure in the Yaqui Valley’s Agroecosystems. Soil Syst. 2024, 8, 112. [Google Scholar] [CrossRef]
- Ghouili, E.; Hidri, Y.; Cheikh M’hamed, H.; Somenahally, A.C.; Xue, Q.; Znaïdi, I.E.A.; Jebara, M.; Nefissi Ouertani, R.; Muhovski, Y.; Riahi, J. Assessment of Phytotoxicity and Efficiency of Date Palm Waste Compost on Barley Seeds Germination and Seedlings Growth. Commun. Soil Sci. Plant Anal. 2024, 55, 2126–2139. [Google Scholar] [CrossRef]
- Ben Zineb, A.; Lamine, M.; Khallef, A.; Hamdi, H.; Ahmed, T.; Al-Jabri, H.; Alsafran, M.; Mliki, A.; Sayadi, S.; Gargouri, M. Harnessing Rhizospheric Core Microbiomes from Arid Regions for Enhancing Date Palm Resilience to Climate Change Effects. Front. Microbiol. 2024, 15, 1362722. [Google Scholar] [CrossRef] [PubMed]
- Barkat, K.; Guimeur, K.; Bedjaoui, H. Impact of Compost and Biochar Amendment on Date (Phoenix dactylifera) Production at Different Phenological Stages; IOP Publishing: Bristol, UK, 2025; Volume 1455, p. 012011. [Google Scholar]
Unit | Quantity | Unit Price (in EUR) | Total Price (in EUR) | |
---|---|---|---|---|
By-product | m3 | 75 | 7 | 525 |
Manure | m3 | 25 | 19 | 475 |
Grinding costs | tonne | 30 | 14 | 420 |
Water | m3 | 50 | 0.4 | 20 |
Workforce | workers | 2 | 238 | 476 |
Total cost for a windrow of 100 m3 with 30 tonnes of production | 1916 | |||
Cost per kg | 0.06 |
350 Tonnes/Year | 1000 Tonnes/Year | 2000 Tonnes/Year | 3500 Tonnes/Year | |
---|---|---|---|---|
Investment costs (in EUR) | 238,261 3 composting lanes | 271,617 10 composting lanes | 557,530 20 composting lanes and additional equipment | 605,183 20 composting lanes and additional equipment |
Operating costs for 30 tonnes (in EUR) | 1916 (2 workers) | 2869 (6 workers) | 2869 (6 workers) | 2869 (6 workers) |
Total operating costs (in EUR) (B) | 22,353 | 95,633 | 191,266 | 334,716 |
Income after sales at 0,14 EUR/kg of compost (EUR/year) (A) | 49,000 | 140,000 | 280,000 | 490,000 |
Profit (A-B) (in EUR) | 26,647 | 44,367 | 88,734 | 155,284 |
Minimum years return on investment (=investment costs/profit) (in years) | 9 | 6 | 6 | 4 |
Amendment | Unitary Price (EUR/kg) | Requirement (kg/year) | Cost (EUR/year) |
---|---|---|---|
Commercially available chemical fertiliser (NPK) | 0.4 | 1 | 0.4 |
Compost produced at Figuig station | 0.14 | 15 | 2.1 |
Commercially available compost | 0.14 | 15 | 2.1 |
Cattle manure | 0.1 | 25 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalukuta Mahina, L.; Gagou, E.; Chakroune, K.; Hakkou, A.; El Jaziri, M.; Lamkami, T.; Van Pottelsberghe de la Potterie, B. Turning Waste into Wealth: The Case of Date Palm Composting. Sustainability 2025, 17, 7980. https://doi.org/10.3390/su17177980
Kalukuta Mahina L, Gagou E, Chakroune K, Hakkou A, El Jaziri M, Lamkami T, Van Pottelsberghe de la Potterie B. Turning Waste into Wealth: The Case of Date Palm Composting. Sustainability. 2025; 17(17):7980. https://doi.org/10.3390/su17177980
Chicago/Turabian StyleKalukuta Mahina, Lena, Elmostafa Gagou, Khadija Chakroune, Abdelkader Hakkou, Mondher El Jaziri, Touria Lamkami, and Bruno Van Pottelsberghe de la Potterie. 2025. "Turning Waste into Wealth: The Case of Date Palm Composting" Sustainability 17, no. 17: 7980. https://doi.org/10.3390/su17177980
APA StyleKalukuta Mahina, L., Gagou, E., Chakroune, K., Hakkou, A., El Jaziri, M., Lamkami, T., & Van Pottelsberghe de la Potterie, B. (2025). Turning Waste into Wealth: The Case of Date Palm Composting. Sustainability, 17(17), 7980. https://doi.org/10.3390/su17177980