Biostimulation of Mesembryanthemum crystallinum L. (The Common Ice Plant) by Plant Growth-Promoting Rhizobacteria: Implication for Cadmium Phytoremediation
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Strains
2.2. Plant Growth-Promotion Characteristics of the Strains
2.3. Plant Material and Growth Conditions
2.4. Determination of Elemental Content and Evaluation of Cd-Accumulation Factors
2.5. Statisitcal Analysis
3. Results and Discussion
3.1. Plant Growth-Promotion Characteristics of the Strains
3.2. Growth Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | 1-aminocyclopropane-1-carboxylic acid |
BAF | Bioaccumulation factor |
CAM | Crassulacean acid metabolism |
CAS | Chrome azurol S (medium) |
CFU | Colony forming units |
DSMZ | Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH—German Collection of Microorganisms and Cell Cultures |
IAA | Indolyl-3-acetic acid |
NBRIP | National Botanical Research Institute’s Phosphate (medium) |
PGP | Plant growth promotion |
PGPB | Plant growth promoting bacteria |
PGPM | Plant growth promoting microorganisms |
PGPR | Plant growth promoting rhizobacteria |
PVK | Pikovskaya (medium) |
SNB | Standard nutrient broth |
TF | Translocation factor |
References
- You, X.D.; Park, J.E.; Takase, M.; Wada, T.; Tojo, M. First report of Pythium aphanidermatum causing root rot on common ice plant (Mesembryanthemum crystallinum). New Dis. Rep. 2015, 32, 36. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Tian, H.; Jiang, H.; Wang, Y.; Yan, C. Identification of interior salt-tolerant bacteria from ice plant Mesembryanthemum crystallinum and evaluation of their promoting effects. Symbiosis 2018, 76, 243–252. [Google Scholar] [CrossRef]
- Agarie, S.; Shimoda, T.; Shimizu, Y.; Bamann, K.; Sungawa, H.; Kondo, A.; Ueno, O.; Nakahara, T.; Nose, A.; Cushman, J.C. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Expt. Bot. 2007, 58, 1957–1967. [Google Scholar] [CrossRef]
- He, J.; Qin, L.; Chong, E.L.C.; Choong, T.-W.; Lee, S.K. Plant growth and photosynthetic characteristics of Mesembryanthemum crystallinum grown aeroponically under different blue- and red-LEDs. Front. Plant Sci. 2017, 17, 00361. [Google Scholar] [CrossRef]
- Nosek, M.; Kaczmarczyk, A.; Śliwa, M.; Jędrzejczyk, R.; Kornaś, A.; Supel, P.; Kaszycki, P.; Miszalski, Z. The response of a model C3/CAM intermediate semi-halophyte Mesembryanthemum crystallinum L. to elevated cadmium concentrations. J. Plant Physiol. 2019, 240, 153005. [Google Scholar] [CrossRef]
- Shen, S.; Li, N.; Wang, Y.; Zhou, R.; Sun, P.; Lin, H.; Chen, W.; Yu, T.; Liu, Z.; Wang, Z.; et al. High-quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from C3 to CAM pathways. Plant Biotechnol. J. 2022, 20, 2107–2122. [Google Scholar] [CrossRef]
- Gul, B.; Khan, M.A.; Weber, D.J. Effect of salinity and planting density on physiological responses of Allenrolfea occidentalis. West. N. Am. Nat. 2000, 60, 188–197. [Google Scholar]
- Agarie, S.; Tada, M.; Kimura, M.; Suzuki, H.; Morokuma, M.; Toyota, M.; Nakamura, I. Growth and salt accumulation capacity of the common ice plant in the tsunami-affected soil. Plant Prod. Sci. 2022, 25, 384–393. [Google Scholar] [CrossRef]
- Śliwa-Cebula, M.; Kaszycki, P.; Kaczmarczyk, A.; Nosek, M.; Lis-Krzyścin, A.; Miszalski, Z. The common ice plant (Mesembryanthemum crystallinum L.) phytoremediation potential for cadmium and chromate-contaminated soils. Plants 2020, 9, 1230. [Google Scholar] [CrossRef] [PubMed]
- Śliwa-Cebula, M.; Koniarz, T.; Szara-Bąk, M.; Baran, A.; Miszalski, Z.; Kaszycki, P. Phytoremediation of metal contaminated bottom sediments by the common ice plant (Mesembryanthemum crystallinum L.) in Poland. J. Soils Sediments 2023, 23, 1065–1082. [Google Scholar] [CrossRef]
- Amari, T.; Ghnaya, T.; Debez, A.; Taamali, M.; Youssef, N.B.; Lucchini, G.; Sacchi, G.A.; Abdelly, C. Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: Metal accumulation, nutrient status and photosynthetic activity. J. Plant Physiol. 2014, 171, 1634–1644. [Google Scholar] [CrossRef]
- Kholodova, V.P.; Volkov, K.S.; Kuznetsov, V.V. Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russ. J. Plant Physiol. 2005, 52, 748–757. [Google Scholar] [CrossRef]
- FAO. Global Status of Salt-Affected Soils—Main Report; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Ballabio, C.; Jones, A.; Panagos, P. Cadmium in topsoils of the European Union—An analysis based on LUCAS topsoil database. Sci. Total Environ. 2024, 912, 168710. [Google Scholar] [CrossRef] [PubMed]
- Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012; pp. 273–274. [Google Scholar]
- Pavlaki, M.D.; Araújo, M.J.; Cardoso, D.N.; Silva, A.R.R.; Cruz, A.; Mendo, S.; Soares, A.M.V.M.; Calado, R.; Loureiro, S. Ecotoxicity and genotoxicity of cadmium in different marine trophic levels. Environ. Pollut. 2016, 215, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Adrees, M.; Ibrahim, M.; Tsang, D.C.W.; Zia-ur-Rehman, M.; Zahir, Z.A.; Rinklebe, J.; Tack, F.M.G.; Ok, Y.S. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 2017, 182, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.S.; Bergey, L.; Reichmuth, J.; Candelmo, A. Living in a contaminated estuary: Behavioral changes and ecological consequences for five species. BioScience 2011, 5, 375–385. [Google Scholar] [CrossRef]
- Aoshima, K.; Fan, J.; Cai, Y.; Katoh, T.; Teranishi, H.; Kasuya, M. Assessment of bone metabolism in cadmium-induced renal tubular dysfunction by measurements of biochemical markers. Toxicol. Lett. 2003, 136, 183–192. [Google Scholar] [CrossRef]
- Thompson, J.; Bannigan, J. Toxic effects on the reproductive system and the embryo. Reprod. Toxicol. 2008, 25, 304–315. [Google Scholar] [CrossRef]
- El Rasafi, T.; Oukarroum, A.; Haddioui, A.; Song, H.; Kwon, E.; Bolan, N.; Tack, F.M.G.; Sebastian, A.; Prasad, M.N.V.; Rinklebe, J. Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Crit. Rev. Environ. Sci. Technol. 2020, 52, 675–726. [Google Scholar] [CrossRef]
- He, S.; Yang, X.; He, Z.; Baligar, V.C. Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere 2017, 27, 421–438. [Google Scholar] [CrossRef]
- Rochayati, S.; Du Laing, G.; Rinklebe, J.; Meissner, R.; Verloo, M. Use of reactive phosphate rocks as fertilizer on acid upland soils in Indonesia: Accumulation of cadmium and zinc in soils and shoots of maize plants. J. Plant Nutr. Soil Sci. 2011, 174, 186–194. [Google Scholar] [CrossRef]
- Manoj, S.R.; Karthik, C.; Kadirvelu, K.; Arulselvi, P.I.; Shanmugasundaram, T.; Bruno, B.; Rajkumar, M. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. J. Environ. Manag. 2020, 254, 109779. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Praveen, R.; Nagalakshmi, R. Review on bioremediation and phytoremediation techniques of heavy metals in contaminated soil from dump site. Mater. Today Proc. 2022, 68, 1562–1567. [Google Scholar] [CrossRef]
- Khatoon, Z.; Orozco-Mosqueda, M.d.C.; Santoyo, G. Microbial contributions to heavy metal phytoremediation in agricultural soils: A review. Microorganisms 2024, 12, 1945. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Babalola, O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Feitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.R.A.; Yin, Q.; Oliveira, R.S.; Silva, E.F.; Novo, L.A.B. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. Sci. Total Environ. 2022, 838, 156435. [Google Scholar] [CrossRef]
- Montreemuk, J.; Stewart, T.N.; Prapagdee, B. Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environ. Technol. Innnov. 2024, 33, 103488. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Use of plant growth-promoting bacteria to facilitate phytoremediation. AIMS Microbiol. 2024, 10, 10–415. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ramli, N.N.; Said, N.S.M.; Alias, J.; Imron, M.F.; Abdullan, S.R.S.; Othman, A.R.; Purwanti, I.F.; Hasan, H.A. Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon 2022, 8, e08995. [Google Scholar] [CrossRef]
- Poupin, M.J.; Timmermann, T.; Vega, A.; Zuniga, A.; González, B. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS ONE 2013, 8, e69435. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.A.W.; Bending, G.D.; White, P.J. Biological costs and benefits to plant-microbe interactions in the rhizosphere. J. Exp. Bot. 2005, 56, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Supel, P.; Śliwa-Cebula, M.; Miszalski, Z.; Kaszycki, P. Cadmium-tolerant rhizospheric bacteria of the C3/CAM intermediate semi-halophytic common ice plant (Mesembryanthemum crystallinum L.) grown in contaminated soils. Front. Plant Sci. 2022, 13, 820097. [Google Scholar] [CrossRef]
- Lelapalli, S.; Baskar, S.; Jacob, S.; Paranthaman, S. Characterization of phosphate solubilizing plant growth promoting rhizobacterium Lysinibacillus pakistanensis strain PCPSMR15 isolated from Oryza sativa. Curr. Res. Microbiol. Sci. 2021, 2, 100080. [Google Scholar] [CrossRef]
- Martinez-Toledo, M.; de la Rubia, T.; Moreno, J. Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum. Plant Soil 1988, 110, 149–152. [Google Scholar] [CrossRef]
- Kizilkaya, R. Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. J. Environ. Biol. 2009, 30, 73–82. [Google Scholar]
- Dsmz.de. Available online: https://www.dsmz.de/ (accessed on 1 July 2025).
- Louden, B.; Haarmann, D.; Lynne, A. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumar, V.; Babu Tripathi, R. Isolation of phosphate solubilizing microorganism (psms) from soil. J. Microbiol. Biotech. Res. 2011, 1, 90–95. [Google Scholar]
- Tirry, N.; Joutey, H.; Sayel, A.; Kouchou, W.; Bahafid, M.; Asri, N. Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. J. Gen. Eng. Biot. 2018, 16, 613–619. [Google Scholar] [CrossRef]
- Chaiharn, M.; Chunhaleuchanon, S.; Kozo, A.; Lumyong, S. Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci. Tech. J. 2008, 8, 18–23. [Google Scholar]
- Pailin, T.; Kang, D.; Schmidt, K.; Fung, D. Detection of extracellular bound proteinase in eps-producing lactic acid bacteria cultures on skim milk agar. Lett. Appl. Microbiol. 2001, 33, 45–49. [Google Scholar] [CrossRef]
- Supel, P.; Kaszycki, P.; Kasperczyk, M.; Kacorzyk, P. Changes in biochemical and microbiological quality of silage produced with the use of innovative films. Agronomy 2022, 12, 2642. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 2024, 281, 127602. [Google Scholar] [CrossRef]
- Weselowski, B.; Nathoo, N.; Eastman, A.W.; MacDonald, J.; Yuan, Z.C. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 2016, 16, 244. [Google Scholar] [CrossRef] [PubMed]
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate acquisition. Plant Soil 2006, 274, 37–49. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.; Glick, B. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotech. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Paravar, A.; Piri, R.; Balouchi, H.; Ma, Y. Microbial seed coating: An attractive tool for sustainable agriculture. Biotechnol. Rep. 2023, 73, e00781. [Google Scholar] [CrossRef]
- Whipps, J.M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 2001, 52, 487–511. [Google Scholar] [CrossRef]
- Kieu, N.P.; Aznar, A.; Segond, D.; Rigault, M.; Simond-Côte, E.; Kunz, C.; Soulie, M.C.; Expert, D.; Dellagi, A. Iron deficiency affects plant defense responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Mol. Plant. Pathol. 2012, 13, 816–827. [Google Scholar] [CrossRef]
- Flores-Duarte, N.; Pajuelo, E.; Mateos-Naranjo, E.; Navarro-Torre, S.; Rodríguez-Llorente, I.; Redondo-Gómez, S.; Carrasco López, J. A culturomics-based bacterial synthetic community for improving resilience towards arsenic and heavy metals in the nutraceutical plant Mesembryanthemum crystallinum. Int. J. Mol. Sci. 2023, 24, 7003. [Google Scholar] [CrossRef]
- Caracciolo, A.; Terenzi, V. Rhizosphere microbial communities and heavy metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef]
- Xia, J.; Mattson, N. Response of common ice plant (Mesembryanthemum crystallinum L.) to sodium chloride concentration in hydroponic nutrient solution. Hort. Sci. 2022, 57, 750–756. [Google Scholar] [CrossRef]
- Salaskar, D.A.; Padwal, M.K.; Gupta, A.; Basu, B.; Kale, S.P. Proteomic perspective of cadmium tolerance in Providencia rettgeri strain KDM3 and its in-situ bioremediation potential in rice ecosystem. Front. Microbiol. 2022, 13, 852697. [Google Scholar] [CrossRef]
- Nosek, M.; Kaczmarczyk, A.; Jędrzejczyk, R.J.; Supel, P.; Kaszycki, P.; Miszalski, Z. Expression of genes involved in heavy metal trafficking in plants exposed to salinity stress and elevated Cd concentrations. Plants 2020, 9, 475. [Google Scholar] [CrossRef]
- Shevyakova, N.; Netronina, I.; Aronova, E.; Kuznetsov, V. Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russ. J. Plant Physiol. 2003, 50, 678–685. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Smolders, E.; Degryse, F. Fixation of cadmium and zinc in soils: Implications for risk assessment. In Natural Attenuation of Trace Element Availability in Soils; Hamon, R., McLaughlin, M., Lombi, E., Eds.; Taylor & Francis: Abingdon, UK, 2006; pp. 157–171. [Google Scholar]
- Du Laing, G.; De Vos, R.; Vandecasteele, B.; Lesage, E.; Tack, F.M.G.; Verloo, M.G. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuar. Coast. Shelf Sci. 2008, 77, 589–602. [Google Scholar] [CrossRef]
- Ghallab, A.; Usman, A.R. Effect of sodium choride-induced salinity of phytoavailability and speciation of Cd in soil solution. Water Air Soil Pollut. 2007, 185, 43–51. [Google Scholar] [CrossRef]
Tested Strain | Nitrogen Fixation | IAA Production | Phosphate Solubilization | Ammonia Production | Protease Production | Siderophore Production | |||
---|---|---|---|---|---|---|---|---|---|
DSMZ | Burk | Ashby | PVK | NBRIP | |||||
R. erythropolis S4 | + | + | + | + | − | − | + | − | − |
P. glucanolyticus S7 | + | + | + | + | − | − | + | − | + |
R. erythropolis S10 | + | + | + | +/− | − | − | + | − | + |
P. rettgeri W6 | + | − | − | − | − | − | + | − | ++ |
P. rettgeri W7 | − | − | − | − | + | + | + | − | + |
TF (Shoot/Root) | With Microorganisms | Control | ||
---|---|---|---|---|
+NaCl | +Water | +NaCl | +Water | |
1 mM Cd | 0.73 | 3.29 | 1.85 | 0.49 |
10 mM Cd | 0.91 | 1.89 | 1.46 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supel, P.; Kaszycki, P.; Olatunji, S.; Faruga, A.; Miszalski, Z. Biostimulation of Mesembryanthemum crystallinum L. (The Common Ice Plant) by Plant Growth-Promoting Rhizobacteria: Implication for Cadmium Phytoremediation. Sustainability 2025, 17, 8073. https://doi.org/10.3390/su17178073
Supel P, Kaszycki P, Olatunji S, Faruga A, Miszalski Z. Biostimulation of Mesembryanthemum crystallinum L. (The Common Ice Plant) by Plant Growth-Promoting Rhizobacteria: Implication for Cadmium Phytoremediation. Sustainability. 2025; 17(17):8073. https://doi.org/10.3390/su17178073
Chicago/Turabian StyleSupel, Paulina, Paweł Kaszycki, Sileola Olatunji, Anna Faruga, and Zbigniew Miszalski. 2025. "Biostimulation of Mesembryanthemum crystallinum L. (The Common Ice Plant) by Plant Growth-Promoting Rhizobacteria: Implication for Cadmium Phytoremediation" Sustainability 17, no. 17: 8073. https://doi.org/10.3390/su17178073
APA StyleSupel, P., Kaszycki, P., Olatunji, S., Faruga, A., & Miszalski, Z. (2025). Biostimulation of Mesembryanthemum crystallinum L. (The Common Ice Plant) by Plant Growth-Promoting Rhizobacteria: Implication for Cadmium Phytoremediation. Sustainability, 17(17), 8073. https://doi.org/10.3390/su17178073