Can New Quality Productivity Promote the Carbon Emission Performance—Empirical Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Carbon Emission Performance
2.2. Research on NQP
3. Research Hypotheses
3.1. The Mechanism by Which the NQP on Carbon Emission Performance
3.1.1. The Function of NQP in Science and Technology
3.1.2. NQP Can Reduce the Energy Consumption Intensity
3.2. Mechanisms by Which Green Innovation Influences Carbon Emission Performance
3.3. Spatial Effects of NQP on Carbon Emission Performance
4. Variables, Model, and Data
4.1. Variables
4.1.1. Explained Variable
4.1.2. Explanatory Variable
4.1.3. Control Variables
4.1.4. Mediating Variable
4.2. Model
4.2.1. Fixed-Effects Model
4.2.2. Intermediary Effects Model
4.2.3. Spatial Durbin Model
4.3. Data
5. Empirical Analysis
5.1. Pearson Correlation Test and VIF Test
5.2. Baseline Regression
5.3. Robustness Tests and Endogenous Treatment
5.3.1. Substitution of the Explained Variable
5.3.2. Excluding Special Samples
5.3.3. Lag Treatment
5.3.4. Endogenous Treatment
5.4. Heterogeneity Test
5.4.1. Heterogeneity of Geographic Location
5.4.2. Heterogeneity of Different NQP Levels
6. Impact Mechanism Test
6.1. Mediating Effect Test
6.2. Spatial Spillover Effects Test
6.2.1. Spatial Autocorrelation Analysis
6.2.2. Spatial Model Suitability Tests
6.2.3. Space Spillovers and Decomposition
7. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, S.; Saqib, N.; Mohammed, K.S.; Sahore, N.; Shahzad, U. Pathways towards carbon neutrality in low carbon cities: The role of green patents, R&D and energy use for carbon emissions. Technol. Forecast. Soc. Chang. 2024, 200, 123109. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Sadiq, M.; Chien, F. The impact of non-renewable energy production and energy usage on carbon emissions: Evidence from China. Energy Environ. 2024, 35, 2248–2269. [Google Scholar] [CrossRef]
- Sethi, L.; Behera, B.; Sethi, N. Do green finance, green technology innovation, and institutional quality help achieve environmental sustainability? Evidence from the developing economies. Sustain. Dev. 2024, 32, 2709–2723. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Ullah, S.; Kartal, M.T.; Ali, K.; Pata, U.K.; Aga, M. Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Sci. Total Environ. 2023, 859, 160181. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, C.; Qi, Y.; Stern, N.; Ward, B.; Xie, C.; Zenghelis, D. Towards carbon neutrality and China’s 14th Five-Year Plan: Clean energy transition, sustainable urban development, and investment priorities. Environ. Sci. Ecotechnol. 2021, 8, 100130. [Google Scholar] [CrossRef]
- Chen, X.H.; Tee, K.; Elnahass, M.; Ahmed, R. Assessing the environmental impacts of renewable energy sources: A case study on air pollution and carbon emissions in China. J. Environ. Manag. 2023, 345, 118525. [Google Scholar] [CrossRef]
- Liu, H.; Han, P.; Wang, D.; Wang, S.; Bao, H. Decoding enterprise digital transformation: External oversight and carbon emission reduction performance. J. Environ. Manag. 2024, 359, 121039. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Huang, J.; Zhao, Y.; Zhao, Q. Urban density and spatial carbon emission performance of megacities in China. Sci. Rep. 2024, 14, 23862. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Sang, J.; Zhou, J.; Ding, X.; Li, Z. Can carbon emission trading improve carbon emission performance? Evidence from a quasi-natural experiment in China. Environ. Sci. Pollut. Res. 2023, 30, 124028–124040. [Google Scholar] [CrossRef]
- Li, H.; Du, G.; Qamri, G.M.; Li, S. Green innovation and natural resource efficiency: The role of environmental regulations and resource endowment in Chinese cities. J. Environ. Manag. 2024, 370, 122338. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Zhang, Z.; Su, B. Can green finance policy promote green innovation in cities? Evidence from pilot zones for green finance reform and innovation in China. J. Environ. Manag. 2024, 370, 122816. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.; Meng, F. ESG performance and green innovation of Chinese enterprises: Based on the perspective of financing constraints. J. Environ. Manag. 2024, 370, 122955. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Cao, Y. Low-carbon city construction, spatial spillovers and greenhouse gas emission performance: Evidence from Chinese cities. J. Environ. Manag. 2024, 355, 120405. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Cheng, J.; Wang, Y.; Li, X. Can Digital Finance Promote Comprehensive Carbon Emission Performance? Evidence from Chinese Cities. Int. J. Environ. Res. Public Health 2022, 19, 10255. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Hua, G.; Mahamane, F.; Li, Z. Can green transformation finance contribute to urban carbon emission performance? An empirical analysis based on a spatiotemporal bi-fixed SPDM model. Environ. Sci. Pollut. Res. 2023, 30, 102947–102971. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Z.J.; Lin, B. Evaluating the synergistic effect of digitalization and industrialization on total factor carbon emission performance. J. Environ. Manag. 2023, 348, 119281. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhang, Y.Q. Digital transformation, green innovation, and carbon emission reduction performance of energy-intensive enterprises. Sci. Rep. 2024, 14, 3905. [Google Scholar] [CrossRef]
- Du, M.; Zhou, Q.; Zhang, Y.; Li, F. Towards sustainable development in China: How do green technology innovation and resource misallocation affect carbon emission performance? Front. Psychol. 2022, 13, 929125. [Google Scholar] [CrossRef]
- Handoyo, S.; Yudianto, I.; Dahlan, M. Exploring firm and country’s specific factors affecting carbon emission reduction performance: Study on selected ASEAN countries. Heliyon 2024, 10, e37036. [Google Scholar] [CrossRef]
- Miao, X.; Feng, E.; Siu, Y.L.; Li, S.; Wong, C.W.Y. Can China’s carbon intensity constraint policies improve carbon emission performance? Evidence from regional carbon emissions. J. Environ. Manag. 2023, 348, 119268. [Google Scholar] [CrossRef]
- Gao, S.; Sun, D.; Wang, S. Do development zones increase carbon emission performance of China’s cities? Sci. Total Environ. 2023, 863, 160784. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yuan, T.; Shi, X.; Zhao, L. Heterogeneity in the relationship between carbon emission performance and urbanization: Evidence from China. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1363–1380. [Google Scholar] [CrossRef]
- Tu, C.; Zang, C.; Wu, A.; Long, H.; Yu, C.; Liu, Y. Assessing the impact of industrial intelligence on urban carbon emission performance: Evidence from China. Heliyon 2024, 10, e30144. [Google Scholar] [CrossRef]
- Pei, Y.; Zhu, Y.; Wang, N. How do corruption and energy efficiency affect the carbon emission performance of China’s industrial sectors? Environ. Sci. Pollut. Res. 2021, 28, 31403–31420. [Google Scholar] [CrossRef]
- Li, J.; Noorliza, K.; Zhang, X. Enhancing Environmental, Social, and Governance Performance through New Quality Productivity and Green Innovation. Sustainability 2024, 16, 4843. [Google Scholar] [CrossRef]
- Zou, F.; Hu, Y.; Liu, F. Research on Regional Carbon Emission Policy and Breakthrough Green Technology Innovation Pathways: Based on the Perspective of New Quality Productivity. Glob. Nest J. 2024, 26, 06248. [Google Scholar]
- Huang, Q.; Guo, W.; Wang, Y. A Study of the Impact of New Quality Productive Forces on Agricultural Modernization: Empirical Evidence from China. Agriculture 2024, 14, 1935. [Google Scholar] [CrossRef]
- Lin, L.; Gu, T.; Shi, Y. The Influence of New Quality Productive Forces on High-Quality Agricultural Development in China: Mechanisms and Empirical Testing. Agriculture 2024, 14, 1022. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, L.; Zhu, G.; Di, K.; Zhang, X. Research on the driving factors and impact mechanisms of green new quality productive forces in high-tech retail enterprises under China’s Dual Carbon Goals. J. Retail. Consum. Serv. 2025, 82, 104092. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Peng, Z. Study on the Promotional Effect and Mechanism of New Quality Productive Forces on Green Development. Sustainability 2024, 16, 8818. [Google Scholar] [CrossRef]
- Ale, S.B.; Brown, J.S.; Sullivan, A.T. Evolution of cooperation: Combining kin selection and reciprocal altruism into matrix games with social dilemmas. PLoS ONE 2013, 8, e63761. [Google Scholar] [CrossRef]
- Fang, C.; Sun, B. The connotation of new quality productive forces and research priorities for driving urban-rural integrated development from the geographical perspective. Acta Geogr. Sin. 2024, 79, 1357–1370. [Google Scholar]
- He, Z. New Quality Productivity: Conceptual Essence, Main Directions and Key Institutions. Sci. Focus 2024, 19, 8–13. [Google Scholar]
- Yue, S.; Bajuri, N.H.; Khatib, S.F.A.; Lee, Y. New quality productivity and environmental innovation: The hostile moderating roles of managerial empowerment and board centralization. J. Environ. Manag. 2024, 370, 122423. [Google Scholar] [CrossRef] [PubMed]
- Gu, H. Empirical Study on the Impact of New-Quality Productivity on Regional Economic Development in China. J. Econ. Public Financ. 2024, 10, 198. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a Multi-Task Robotic Transplanting Workcell for Greenhouse Seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Ma, R.; Abid, N.; Yang, S.; Ahmad, F. From crisis to resilience: Strengthening climate action in OECD countries through environmental policy and energy transition. Environ. Sci. Pollut. Res. 2023, 30, 115480–115495. [Google Scholar] [CrossRef]
- Naik, B.G.; Ganasen, N.; Roy, D. Recycling glass waste into concrete aggregates: Enhancing mechanical properties and sustainability. Asian J. Civ. Eng. 2024, 26, 1–19. [Google Scholar] [CrossRef]
- Zhu, X.; Chikangaise, P.; Shi, W.; Chen, W.-H.; Yuan, S. Review of intelligent sprinkler irrigation technologies for remote autonomous system. Int. J. Agric. Biol. Eng. 2023, 11, 23–30. [Google Scholar]
- Zhang, L. Understanding the new quality productive forces in the energy sector. Energy Nexus 2024, 16, 100352. [Google Scholar] [CrossRef]
- Tang, L.J.; Wang, D.Y. Optimization of County-Level Land Resource Allocation through the Improvement of Allocation Efficiency from the Perspective of Sustainable Development. Int. J. Environ. Res. Public Health 2018, 15, 2638. [Google Scholar] [CrossRef] [PubMed]
- Pokorski, P.; He, R. Advancing protein hydrolysis and phytosterol encapsulation: Emerging trends and innovations in protein-based microencapsulation techniques—A comprehensive review. Food Res. Int. 2024, 196, 115012. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.; Wang, C.; Zhang, S.; Kuai, P. Does enterprise digital transformation contribute to green innovation? Micro-level evidence from China. J. Environ. Manag. 2024, 370, 122609. [Google Scholar] [CrossRef]
- Du, Q.; Deng, Y.; Zhou, J.; Wu, J.; Pang, Q. Spatial spillover effect of carbon emission efficiency in the construction industry of China. Environ. Sci. Pollut. Res. 2022, 29, 2466–2479. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Duan, M. Emission reductions, industrial competitiveness, and spillover effects under China’s regional emission trading systems: Evidence from the iron and steel sector. J. Environ. Manag. 2023, 344, 118481. [Google Scholar] [CrossRef] [PubMed]
- Caniani, D.; Caivano, M.; Pascale, R.; Bianco, G.; Mancini, I.M.; Masi, S.; Mazzone, G.; Firouzian, M.; Rosso, D. CO2 and N2 O from water resource recovery facilities: Evaluation of emissions from biological treatment, settling, disinfection, and receiving water body. Sci. Total Environ. 2019, 648, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Jeong, C.H.; Hilker, N.; Shairsingh, K.K.; Healy, R.M.; Sofowote, U.; Debosz, J.; Su, Y.; McGaughey, M.; Doerksen, G.; et al. Near-Road Air Pollutant Measurements: Accounting for Inter-Site Variability Using Emission Factors. Environ. Sci. Technol. 2018, 52, 9495–9504. [Google Scholar] [CrossRef]
- Aamir, M.; Ur Rehman, J. Dynamic nexus among fossil fuels utilization, economic growth, and urbanization: A tri-regional selected countries analysis. Environ. Sci. Pollut. Res. 2024, 31, 43381–43395. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, C.; Zeng, X.; Jiang, Y.; Liu, W. Carbon emission performance evaluation and allocation in Chinese cities. J. Clean. Prod. 2018, 172, 1254–1272. [Google Scholar] [CrossRef]
- Tang, X.; Liu, S.; Wang, Y.; Wan, Y. Study on carbon emission reduction countermeasures based on carbon emission influencing factors and trends. Environ. Sci. Pollut. Res. 2024, 31, 14003–14022. [Google Scholar] [CrossRef]
- Shao, C.; Dong, H.; Gao, Y. New Quality Productivity and Industrial Structure in China: The Moderating Effect of Environmental Regulation. Sustainability 2024, 16, 6796. [Google Scholar] [CrossRef]
- Zhang, J.; Shan, Y.; Jiang, S.; Xin, B.; Miao, Y.; Zhang, Y. Study on the coordinated development degree of new quality productivity and manufacturing carbon emission efficiency in provincial regions of China. Environ. Dev. Sustain. 2024, 1–35. [Google Scholar] [CrossRef]
- Han, W.; Zhang, R.; Zhao, F. The Measurement of New Quality Productivity and New Driving Force of the Chinese Economy. Quant. Tech. Econ. 2024, 41, 5–25. [Google Scholar]
- Moshiri, S.; Daneshmand, A. How effective is government spending on environmental protection in a developing country? J. Econ. Stud. 2020, 47, 789–803. [Google Scholar] [CrossRef]
- Chen, G.; Sheng, L.Q. Fiscal spending and green economic growth: Evidence from highly polluting Asian economic. Environ. Sci. Pollut. Res. 2024, 31, 834–844. [Google Scholar] [CrossRef]
- Yu, S.; Hu, X.; Fan, J.-L.; Cheng, J. Convergence of carbon emissions intensity across Chinese industrial sectors. J. Clean. Prod. 2018, 194, 179–192. [Google Scholar] [CrossRef]
- Resitoglu, I.A.; Altinisik, K.; Keskin, A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol. Environ. Policy 2015, 17, 15–27. [Google Scholar] [CrossRef]
- He, Q.; Jiang, H. Digital Inclusive Finance, Digital Technology Innovation, and Carbon Emission Intensity. Sustainability 2024, 16, 6407. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Z.; Li, M.; Huang, X. Assessing the Spatiotemporal Dynamics of Vegetation Coverage in Urban Built-Up Areas. Land 2023, 12, 235. [Google Scholar] [CrossRef]
- Guan, W.F.; Guo, W.Z.; Chen, F.; Han, X.B.; Wang, H.G.; Sun, W.T.; Zhao, Q.; Jia, D.D.; Wei, X.M.; Zhu, Q.Z. Multi-Span Greenhouse Energy Saving by External Insulation: System Design and Implementation. Agriculture 2024, 14, 281. [Google Scholar] [CrossRef]
- Wu, L.; Jia, X.Y.; Gao, L.; Zhou, Y.Q. Effects of population flow on regional carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 62628–62639. [Google Scholar] [CrossRef]
- Van Hoang, T.H.; Przychodzen, W.; Przychodzen, J.; Segbotangni, E.A. Does it pay to be green? A disaggregated analysis of U.S. firms with green patents. Bus. Strategy Environ. 2020, 29, 1331–1361. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, K.; Chong, D.; Niu, D.; Lin, P.; Liu, X.; Niu, Y.; Jing, R. Evaluation of photocatalytic micro-surfacing mixture: Road performance, vehicle exhaust gas degradation capacity and environmental impacts. Constr. Build. Mater. 2022, 345, 128367. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y. Research on the impact of carbon finance on the green transformation of China’s marine industry. J. Clean. Prod. 2023, 418, 138143. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Y.; Xu, W.; Sun, J.; Zhang, Y. Carbon emission calculation and influencing factor analysis based on industrial big data in the “double carbon” era. Comput. Intell. Neurosci. 2022, 2022, 2815940. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, X. The impacts of population change on carbon emissions in China during 1978–2008. Environ. Impact Assess. Rev. 2012, 36, 1–8. [Google Scholar] [CrossRef]
- Blom-Hansen, J.; Houlberg, K.; Serritzlew, S.; Treisman, D. Jurisdiction Size and Local Government Policy Expenditure: Assessing the Effect of Municipal Amalgamation. Am. Political Sci. Rev. 2016, 110, 812–831. [Google Scholar] [CrossRef]
- Sun, H.; Samad, S.; Rehman, S.U.; Usman, M. Clean and green: The relevance of hotels’ website quality and environmental management initiatives for green customer loyalty. Br. Food J. 2022, 124, 4266–4285. [Google Scholar] [CrossRef]
- Xu, N.; Qiao, Y.; Zhao, S.; Yang, X.; Li, J.; Fok, M. Optimizing the test locations and replicates in multi-environmental cotton registration trials in southern Xinjiang, China. Crop Sci. 2022, 63, 1866–1879. [Google Scholar] [CrossRef]
- Arshad, A.; Gulzar, O.; Shahid, O.B.; Nawaz, F. Exploring the mediating role of financial inclusion in the relationship between economic policy uncertainty and CO2 emissions: A global perspective. Environ. Sci. Pollut. Res. 2024, 31, 46965–46978. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Wu, R.; Wang, S. Spatial network analysis and driving forces of urban carbon emission performance: Insights from Guangdong Province. Sci. Total Environ. 2024, 951, 175538. [Google Scholar] [CrossRef]
- Gao, C.; Tao, S.; He, Y.; Su, B.; Sun, M.; Mensah, I.A. Effect of population migration on spatial carbon emission transfers in China. Energy Policy 2021, 156, 112450. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Miao, J.; Sun, H. Can Green Finance Effectively Promote the Carbon Emission Reduction in “Local-Neighborhood” Areas—Empirical Evidence from China. Agriculture 2022, 12, 1550. [Google Scholar] [CrossRef]
Goal | Criteria | Level 1 | Level 2 | Level 3 | Measurement Method | Direction of Effect |
---|---|---|---|---|---|---|
NQP | Laborer | Labor productivity | Economic output | GDP per capita | GDP/total population | + |
Economic income | Wage per capita | Average wage of employees | + | |||
Employment structure | Employment proportion of tertiary industry | Employment in tertiary industry/total employment | + | |||
Labor quality | Education | Proportion of higher Education | Average years of education per capita | + | ||
Education expenditure | Intensity of education spending | Education expenditure/total fiscal expenditure | + | |||
Education for future | Student structure | Number of enrolled students/total population | + | |||
Labor spirit | Creative spirit | Human investment for innovation | R&D personnel full-time equivalent | + | ||
Enterprising spirit | Entrepreneurial activity | Startups per 100 people | + | |||
Subject of labor | Level of industrial development | Level of informatization | Level of enterprise informatization | Number of e-commerce enterprises/total number of enterprises | + | |
Proportion of strategic industries | Proportion of emerging strategic industries | Added value of emerging strategic industries/GDP | + | |||
Industry of the future | Robot installation density | Number of industrial robots installed/total population | + | |||
NQP | Subject of labor | Ecological environment | Green ecology | Green Resources | Forest cover ratio | + |
Environmental protection efforts’ intensity | Environmental protection expenditure/government public finance expenditure | + | ||||
Green production | Quality of pollution control | Chemical oxygen demand emissions/GDP | − | |||
Sulfur dioxide emissions/GDP | − | |||||
Achievements of green inventions | Number of green patent applications/number of patent applications | + | ||||
Tools of labor | Material labor Tools | Infrastructure | Traditional infrastructure | Highway mileage | + | |
Rail mileage | + | |||||
Digital infrastructure | Fiber length | + | ||||
Number of Internet broadband access ports per capita | + | |||||
Level of energy utilization | Energy intensity | Energy consumption/GDP | − | |||
Level of green energy consumption | Low-carbon index of energy consumption structure | + | ||||
Capacity of energy utilization | Capacity of pollution control | Capacity of waste gas treatment facilities | + | |||
Intangible labor Tools | Level of technological innovation | Per capita quantity of patents | Number of patents granted/total population | + | ||
Economic investment in new products | New product development funds/GDP | + | ||||
Digitalization level | Digital economy | Digital economy index | + | |||
Enterprise digitalization | Enterprise digitalization level | + |
Variable Type | Variable Name | Definition |
---|---|---|
Explained variable | CEG | The ratio of carbon emissions to GDP in a province |
Explained variable | NQP | The NQP index |
Control variables | FEE | The ratio of environmental expenditure to fiscal expenditure in the province |
CWF | The logarithm of the exhaust gas treatment capacity | |
GCR | The green coverage of built-up areas in a province | |
FIN | The logarithm of the added value of the financial industry | |
IND | The ratio of industrial added value to GDP | |
POP | The logarithmic value of the population in a province | |
Mediating variable | NGP | The logarithms of the newly applied green patent in a province |
Variables | Observations | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
CEG | 330 | 0.643 | 0.526 | 0.0620 | 0.449 | 2.477 |
NQP | 330 | 0.285 | 0.130 | 0.102 | 0.253 | 0.747 |
FEE | 330 | 0 | 0.001 | 0 | 0 | 0.019 |
CWF | 330 | 8.937 | 0.898 | 6.316 | 8.931 | 10.96 |
GCR | 330 | 40.16 | 3.492 | 29.80 | 40.50 | 49.80 |
FIN | 330 | 7.243 | 0.940 | 4.559 | 7.237 | 9.355 |
IND | 330 | 0.328 | 0.077 | 0.100 | 0.330 | 0.542 |
POP | 330 | 8.209 | 0.741 | 6.345 | 8.280 | 9.447 |
NGP | 330 | 6.478 | 0.554 | 4.760 | 6.615 | 7.403 |
Variables | CEG | NQP | FEE | CWF | FIN | GCR | IND | POP | NGP |
---|---|---|---|---|---|---|---|---|---|
CEG | 1 | ||||||||
NQP | −0.471 *** | 1 | |||||||
FEE | 0.085 | 0.029 | 1 | ||||||
CWF | −0.170 *** | 0.586 *** | −0.015 | 1 | |||||
FIN | −0.597 *** | 0.763 *** | −0.037 | 0.718 *** | 1 | ||||
GCR | −0.273 *** | 0.461 *** | −0.008 | 0.369 *** | 0.560 *** | 1 | |||
IND | 0.235 *** | 0.200 *** | −0.035 | 0.513 *** | 0.064 | −0.035 | 1 | ||
POP | −0.421 *** | 0.518 *** | −0.052 | 0.807 *** | 0.669 *** | 0.346 *** | 0.412 *** | 1 | |
NGP | 0.221 *** | −0.130 ** | 0.076 | −0.190 *** | −0.246 *** | −0.198 *** | −0.172 *** | −0.229 *** | 1 |
Variable | VIF | 1/VIF |
---|---|---|
FIN | 5.240 | 0.191 |
CWF | 4.850 | 0.206 |
POP | 3.090 | 0.324 |
NQP | 2.620 | 0.381 |
IND | 2.010 | 0.498 |
GCR | 1.480 | 0.677 |
FEE | 1.020 | 0.981 |
Mean VIF | 2.900 |
Variables | (1) | (2) |
---|---|---|
CEG | CEG | |
NQP | −0.312 ** | −0.613 *** |
(−1.79) | (−2.45) | |
FEE | 5.054 | |
(1.33) | ||
CWF | 0.0584 * | |
(1.80) | ||
GCR | −0.011 ** | |
(−1.86) | ||
FIN | −0.110 ** | |
(−1.79) | ||
IND | −1.090 *** | |
(−3.31) | ||
POP | 0.540 *** | |
(2.96) | ||
Constant | 0.732 *** | −2.530 ** |
(14.74) | (−1.78) | |
Observations | 330 | 330 |
R2 | 0.987 | 0.991 |
Number of id | 30 | 30 |
Area | YES | YES |
Year | YES | YES |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
CEG | CEG | CEG | CEG | CEG | |
NQP | −2.220 ** | −0.617 * | −0.395 * | −0.698 *** | |
(0.024) | (0.058) | (0.099) | (0.008) | ||
FEE | 27.002 ** | 4.979 | 0.766 | −4.979 *** | 25.290 *** |
(0.047) | (0.298) | (0.817) | (0.000) | (0.000) | |
CWF | 0.163 | 0.067 * | 0.056 | 0.049 | 0.482 *** |
(0.151) | (0.095) | (0.118) | (0.148) | (0.000) | |
GCR | −0.029 | −0.012 | −0.012 ** | −0.011 * | 0.019 ** |
(0.174) | (0.112) | (0.048) | (0.060) | (0.012) | |
FIN | −0.706 *** | −0.122 * | −0.147 * | −0.162 ** | −0.404 *** |
(0.003) | (0.089) | (0.064) | (0.042) | (0.000) | |
IND | −10.864 *** | −1.152 *** | −1.110 *** | −1.158 *** | 1.052 *** |
(0.000) | (0.002) | (0.003) | (0.002) | (0.001) | |
POP | 1.079 | 0.518 ** | 0.473 ** | 0.426 ** | −0.439 *** |
(0.274) | (0.017) | (0.022) | (0.043) | (0.000) | |
L.NQP | −0.278 ** | −0.342 ** | |||
(0.040) | (0.039) | ||||
Constant | 2.146 | −2.288 | −1.666 | −1.205 | 1.945 *** |
(0.775) | (0.155) | (0.263) | (0.439) | (0.000) | |
Observations | 330 | 286 | 260 | 260 | 330 |
Number of id | 30 | 30 | 30 | 30 | 30 |
Area | YES | YES | YES | YES | |
Year | YES | YES | YES | YES |
Variable | EAST CEG | CENT CEG | WEST CEG |
---|---|---|---|
NQP | −0.470 * | 0.152 | −0.903 * |
(0.071) | (0.807) | (0.078) | |
FEE | −22.255 | 18.774 | 9.411 |
(0.604) | (0.873) | (0.174) | |
CWF | 0.036 | 0.030 | 0.102 * |
(0.189) | (0.361) | (0.089) | |
GCR | −0.004 | −0.001 | −0.022 |
(0.597) | (0.910) | (0.108) | |
FIN | 0.055 | 0.123 *** | −0.259 *** |
(0.585) | (0.003) | (0.007) | |
IND | 0.841 | −1.775 *** | −1.298 *** |
(0.168) | (0.004) | (0.002) | |
POP | 0.969 * | −2.355 ** | 0.849 ** |
(0.095) | (0.030) | (0.049) | |
Constant | −8.342 ** | 20.432 ** | −3.531 |
(0.048) | (0.030) | (0.353) | |
Observations | 110 | 66 | 121 |
R2 | 0.977 | 0.994 | 0.992 |
Number of id | 10 | 6 | 11 |
Area FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
Variable | NQP-High | NQP-Mid | NQP-Low |
---|---|---|---|
CEG | CEG | CEG | |
NQP | −1.065 * | −0.055 | −0.200 * |
(0.069) | (0.901) | (0.055) | |
FEE | 11.342 | 40.333 | 26.397 |
(0.149) | (0.629) | (0.386) | |
CWF | 0.053 | 0.063 | 0.016 |
(0.276) | (0.195) | (0.217) | |
GCR | −0.021 * | 0.006 | 0.005 * |
(0.081) | (0.378) | (0.055) | |
FIN | −0.430 * | −0.093 | 0.076 * |
(0.050) | (0.363) | (0.062) | |
IND | −1.136 *** | −1.429 *** | 0.755 ** |
(0.006) | (0.009) | (0.032) | |
POP | 0.694 ** | 0.329 | 0.523 ** |
(0.016) | (0.484) | (0.015) | |
Constant | −1.070 | −1.489 | −5.349 ** |
(0.636) | (0.634) | (0.012) | |
Observations | 110 | 143 | 77 |
R2 | 0.988 | 0.993 | 0.980 |
Number of id | 10 | 13 | 8 |
Area FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
Variable | (1) | (2) | (3) |
---|---|---|---|
CEG | NGP | CEG | |
NQP | −0.693 ** | 0.966 ** | −0.781 *** |
(−3.16) | (2.71) | (−3.56) | |
FEE | 25.25 | 20.89 | 23.35 |
(1.46) | (0.74) | (1.36) | |
CWF | 0.482 *** | 0.194 ** | 0.465 *** |
(11.17) | (2.75) | (10.74) | |
GCR | 0.0189 ** | −0.0193 | 0.0207 *** |
(3.08) | (−1.93) | (3.38) | |
FIN | −0.404 *** | −0.286 *** | −0.378 *** |
(−9.42) | (−4.08) | (−8.67) | |
IND | 1.050 ** | −2.198 *** | 1.251 *** |
(3.25) | (−4.17) | (3.81) | |
POP | −0.439 *** | −0.0796 | −0.432 *** |
(−10.51) | (−1.17) | (−10.41) | |
NGP | 0.0912 ** | ||
(2.69) | |||
Constant | 1.948 *** | 8.681 *** | 1.156 ** |
(6.89) | (18.86) | (2.85) | |
Observations | 330 | 330 | 330 |
R2 | 0.638 | 0.134 | 0.646 |
Variable | Coefficient | Std Error | Z | p > |Z| |
---|---|---|---|---|
Sobel | 0.088 | 0.046 | 1.910 | 0.056 |
Goodman-1 (Aroian) | 0.088 | 0.047 | 1.847 | 0.064 |
Goodman-2 | 0.088 | 0.044 | 1.979 | 0.048 |
a coefficient | 0.966 | 0.356 | 2.707 | 0.006 |
b coefficient | 0.091 | 0.034 | 2.693 | 0.007 |
Indirect effect | 0.088 | 0.046 | 1.909 | 0.056 |
Direct effect | −0.781 | 0.219 | −3.561 | 0.000 |
Total effect | −0.693 | 0.219 | −3.164 | 0.001 |
Proportion of total effect that is mediated | −0.127 | |||
Ratio of indirect to direct effect | −0.112 | |||
Ratio of total to direct effect | 0.887 |
Year | CEG | NQP | ||
---|---|---|---|---|
I | Z | I | Z | |
2012 | 0.461 *** | 4.260 | 0.361 *** | 3.332 |
2013 | 0.436 *** | 4.051 | 0.283 *** | 2.722 |
2014 | 0.438 *** | 4.072 | 0.268 *** | 2.586 |
2015 | 0.424 *** | 3.965 | 0.297 *** | 2.840 |
2016 | 0.426 *** | 3.943 | 0.294 *** | 2.814 |
2017 | 0.406 *** | 3.843 | 0.304 *** | 2.929 |
2018 | 0.396 *** | 3.782 | 0.191 ** | 1.938 |
2019 | 0.395 *** | 3.784 | 0.316 *** | 3.069 |
2020 | 0.402 *** | 3.833 | 0.366 *** | 3.466 |
2021 | 0.394 *** | 3.803 | 0.371 *** | 3.509 |
2022 | 0.395 *** | 3.828 | 0.335 *** | 3.186 |
Method | Statistical Value | Prob |
---|---|---|
LM—spatial error | 17.30 | 0.0000 |
LM—spatial lag | 40.16 | 0.0000 |
LR—spatial error | 29.32 | 0.0006 |
LR—spatial lag | 266.58 | 0.0000 |
Wald—spatial lag 1 | 17.03 | 0.0092 |
Wald—spatial lag 2 | 54.35 | 0.0000 |
Wald—spatial error 1 | 13.41 | 0.0370 |
Wald—spatial error 2 | 15.20 | 0.0336 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Main | Wx | Direct Effect | Indirect Effect | Total Effect | |
NQP | −0.552 ** | 0.695 *** | −0.508 ** | 0.373 *** | −0.135 * |
(−2.162) | (2.619) | (−1.993) | (2.662) | (−1.938) | |
FEE | 3.577 | −10.54 *** | 2.815 | −11.92 *** | −9.109 *** |
(1.123) | (−3.199) | (0.856) | (−4.189) | (−3.065) | |
CWF | 0.0486 | 0.00159 | 0.0524 | 0.0186 | 0.0710 |
(1.327) | (0.046) | (1.481) | (0.477) | (1.504) | |
FIN | −0.264 *** | 0.0161 | −0.268 *** | −0.0762 | −0.344 *** |
(−4.042) | (0.238) | (−4.322) | (−1.137) | (−5.433) | |
GCR | −0.0117 * | 0.00208 | −0.0119 ** | −0.0003 | −0.0122 |
(−1.934) | (0.262) | (−2.047) | (−0.034) | (−1.320) | |
IND | −1.014 *** | 0.509 * | −0.987 *** | 0.274 | −0.713 |
(−3.298) | (1.847) | (−3.267) | (0.820) | (−1.459) | |
POP | 0.312 | 0.338 | 0.339 | 0.566 | 0.905 ** |
(1.130) | (0.759) | (1.350) | (1.109) | (2.081) | |
Spatial | 0.277 *** | ||||
rho | (3.256) | ||||
Variance | 0.003 *** | ||||
sigma2_e | (4.745) | ||||
N | 330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, F. Can New Quality Productivity Promote the Carbon Emission Performance—Empirical Evidence from China. Sustainability 2025, 17, 567. https://doi.org/10.3390/su17020567
Wang S, Chen F. Can New Quality Productivity Promote the Carbon Emission Performance—Empirical Evidence from China. Sustainability. 2025; 17(2):567. https://doi.org/10.3390/su17020567
Chicago/Turabian StyleWang, Shubin, and Feng Chen. 2025. "Can New Quality Productivity Promote the Carbon Emission Performance—Empirical Evidence from China" Sustainability 17, no. 2: 567. https://doi.org/10.3390/su17020567
APA StyleWang, S., & Chen, F. (2025). Can New Quality Productivity Promote the Carbon Emission Performance—Empirical Evidence from China. Sustainability, 17(2), 567. https://doi.org/10.3390/su17020567