Evaluation of Sanitary and Environmental Impact of Plant Protection Practices in Vineyards of Southwestern France: Organic and Conventional/Integrated Agriculture
Abstract
:1. Introduction
- -
- Pesticide pressure/use indicators describe trends in the use of pesticides over time. These types of indicators are the simplest, since they require less information;
- -
- Risk indicators are associated with pesticides that relate to potential polluting pressure. They are characterized by a more complex construction, since they integrate the characteristics of active substances and their toxicities.
2. Approach to the Health and Environmental Impact Assessment of Plant Protection Practices in Vineyards
2.1. Presentation of the Study Area
2.2. Approach to Analysis of Wine-Growing Phytosanitary Practices in Organic and Conventional/Integrated Farming Systems
2.2.1. Methodological Approach
2.2.2. Presentation of the Sample of Wine-Growing Farms Surveyed
2.2.3. Indicators for Assessing the Plant Protection Impact of Wine-Growing Phytosanitary Practices
- The treatment frequency indicator (TFI): Plant protection pressure varies from one region to another and depends on soil and climatic conditions, agricultural practices, sanitary pressure, and the crops concerned. Because of their large surface area or their particular sensitivity to one or more pest(s), some crops, particularly fruit trees and vines, accumulate a high proportion of the pesticides used. The treatment frequency indicator (TFI) corresponds to the number of registered doses applied to a plot during a crop year. The registered dose is defined as the effective application dose of a product according to the pair (crop/pest).
- Agri-environmental indicators (IRSA and IRTE): In this study, the choice of parameters was based on the risk indicators IRSA (indicator of risk to applicator health) and IRTE (indicator of toxicity risk to the environment), both calculated using the EToPhy software. These indicators are generic and modular, and they can be calculated at different levels, from plot to farm [38,39,55]. They are subsequently used to analyze the health and environmental risk of plant protection practices by crop. The calculation of IRSA and IRTE indicators is performed for each active ingredient (AI) according to the following equations:
3. Analysis of Wine-Growing Phytosanitary Practices According to Farming Systems
3.1. Overall Analysis of Plant Protection Practices in Vineyards and Comparison Between Departments and Farming Systems
3.2. Results of the Analysis of Plant Protection Practices in Wine-Growing Plots in the Gironde Department
3.2.1. Descriptive Statistical Analysis of Plant Protection Practices in Wine-Growing Plots
3.2.2. Analysis of the Impact of Cropping Treatments on a Wine-Growing Plot in Conventional/Integrated Farming
3.2.3. Analysis of the Impact of Cropping Treatments on a Wine-Growing Plot in Organic Farming
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Category | Name of Product | Active Ingredient [60] |
---|---|---|
Fungicide 1 | AMALFI | Benalaxyl + Folpet |
Fungicide 2 | AMALINE FLOW | Copper compounds + Zoxamide |
Fungicide 3 | FIANAKY | Tebuconazole |
Fungicide 4 | FUNGURAN OH | Copper (II) hydroxide |
Fungicide 5 | GRIP TOP | Dimethomorph + Metiram |
Fungicide 6 | HELIOCUIVRE | Copper (II) hydroxide |
Fungicide 7 | KARATHANE 3D | Meptyldinocap |
Fungicide 8 | LEGEND | Quinoxyfen |
Fungicide 9 | MICROTHIOL SP LIQ | Sulfur |
Fungicide 10 | MILDICUT | Cyazofamid |
Fungicide 11 | NATCHEZ | Trifloxystrobin |
Fungicide 12 | NORDOX 75 WG | Copper (I) oxide |
Fungicide 13 | PROSPER | Spiroxamine |
Fungicide 14 | SERVAL | Fosetyl |
Fungicide 15 | SILLAGE | Fosetyl |
Fungicide 16 | SOUFREBE DG | Sulfur |
Fungicide 17 | SULFOJET DF | Sulfur |
Fungicide 18 | TRILOG | Sulfur |
Fungicide 19 | TSAR | Myclobutanil + quinoxyfen |
Herbicide 1 | BASTA F1 | Glufosinate |
Insecticide 1 | STEWARD | Indoxacarb |
Bactericide 1 | COPERNICO HI BIO WG | Copper (II) hydroxide |
Category | Name of Product | Active Ingredient [60] |
---|---|---|
Fungicide 1 | AMODE DF | Sulfur |
Fungicide 2 | BOUILLIE BORDELAISE RSR DISPERSS | Copper sulfate |
Fungicide 3 | KOCIDE 35 DF (ANCIEN) | Copper (II) hydroxide |
Fungicide 4 | PENNTHIOL | Sulfur |
Fungicide 5 | STYROCUIVRE DF | Copper oxychloride |
References
- Meynard, J.M.; Messéan, A.; Charlier, A.; Charrier, F.; Fares, M.; Le Bail, M.; Magrini, M.B.; Savini, I. Freins et leviers à la diversification des cultures. Etude au niveau des exploitations agricoles et des filières. In Synthèse du Rapport d’étude; INRA: Paris, France, 2013; p. 52. [Google Scholar]
- Karimi, B.; Cahurel, J.Y.; Gontier, L.; Charlier, L.; Chovelon, M.; Mahé, H.; Ranjard, L. A meta-analysis of the ecotoxicological impact of viticultural practices on soil biodiversity. Environ. Chem. Lett. 2020, 18, 1947–1966. [Google Scholar] [CrossRef]
- Renaud, C.; Benoît, M.; Thiollet-Sholtus, M.; Jourjon, F. Evaluation globale des impacts environnementaux des itinéraires techniques viticoles: L’Analyse du Cycle de Vie (ACV). Rev. Suisse D’arboriculture Vitic. Arboric. Hortic. 2011, 43, 184–189. [Google Scholar]
- Litskas, V.; Mandoulaki, A.; Vogiatzakis, I.N.; Tzortzakis, N.; Stavrinides, M. Sustainable viticulture: First determination of the environmental footprint of grapes. Sustainability 2020, 12, 8812. [Google Scholar] [CrossRef]
- Butault, J.P.; Delame, N.; Jacquet, F.; Zardet, G. L’utilisation des pesticides en France: État des lieux et perspectives de réduction. NESE 2011, 35, 7–26. Available online: https://www.researchgate.net/publication/309050944_L’utilisation_des_pesticides_en_France_Etat_des_lieux_et_perspectives_de_reduction (accessed on 14 September 2024).
- Marsala, R.Z.; Capri, E.; Russo, E.; Bisagni, M.; Colla, R.; Lucini, L.; Gallo, A.; Suciu, N.A. First evaluation of pesticides occurrence in groundwater of Tidone Valley, an area with intensive viticulture. Sci. Total Environ. 2020, 736, 139730. [Google Scholar] [CrossRef]
- Labite, H.; Holden, N.M.; Richards, K.G.; Kramers, G.; Premrov, A.; Coxon, C.E.; Cummins, E. Comparison of pesticide leaching potential to groundwater under EU FOCUS and site specific conditions. Sci. Total Environ. 2013, 463, 432–441. [Google Scholar] [CrossRef]
- Pompermaier, A.; Carolina Cole Varela, A.; Fortuna, M.; Mendonça-Soare, S.; Koakoski, G.; Aguirre, R.; Oliveira, T.; Sordi, E.; Moterle, D.; Pohl, A.; et al. Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish. Sci. Total Environ. 2021, 757, 143794. [Google Scholar] [CrossRef]
- Yuan, L.; Sinshaw, T.; Forshay, K.J. Review of watershed-scale water quality and nonpoint source pollution models. Geosciences 2020, 10, 25. [Google Scholar] [CrossRef]
- Boulanger-Fassier, S. La viticulture durable, une démarche en faveur de la pérennisation des territoires viticoles français? Géocarrefour 2008, 83, 181–190. [Google Scholar] [CrossRef]
- Harrison, S.; McAree, C.; Mulville, W.; Sullivan, T. The problem of agricultural ‘diffuse’pollution: Getting to the point. Sci. Total Environ. 2019, 677, 700–717. [Google Scholar] [CrossRef]
- Agathokleous, E.; Feng, Z.; Iavicoli, I.; Calabrese, E.J. Nano-pesticides: A great challenge for biodiversity? The need for a broader perspective. Nano Today 2020, 30, 100808. [Google Scholar] [CrossRef]
- Le Roux, X.; Barbault, R.; Baudry, J.; Burel, F.; Doussan, I.; Garnier, E.; Herzog, F.; Lavorel, S.; Lifran, R.; Roger-Estrade, J.; et al. Agriculture et biodiversité. Valoriser les synergies. Expertise scientifique collective INRA. Versailles Quae 2008, 177. [Google Scholar]
- Li, Y.; Miao, R.; Khanna, M. Neonicotinoids and decline in bird biodiversity in the United States. Nat. Sustain. 2020, 3, 1027–1035. [Google Scholar] [CrossRef]
- Paiola, A.; Assandri, G.; Brambilla, M.; Zottini, M.; Pedrini, P.; Nascimbene, J. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosytem services: A global-scale systematic review. Sci. Total Environ. 2020, 706, 135839. [Google Scholar] [CrossRef]
- Blouet, A.; Pervanchon, F.; Pervanchon, M. L’agriculture raisonnée. Limites et alternatives de modèle agricole dominant. Futuribles 2003, 283, 27–42. [Google Scholar]
- Bukalasa, J.S.; Brunekreef, B.; Brouwer, M.; Vermeulen, R.; de Jongste, J.C.; van Rossem, L.; Vonk, J.M.; Wijga, A.; Huss, A.; Gehring, U. Proximity to agricultural fields as proxy for environmental exposure to pesticides among children: The PIAMA birth cohort. Sci. Total Env. 2017, 595, 515–520. [Google Scholar] [CrossRef]
- Carles, C.; Bouvier, G.; Esquirol, Y.; Piel, C.; Migault, L.; Pouchieu, C.; Fabbro-Peray, P.; Lebailly, P.; Baldi, I. Residential proximity to agricultural land and risk of brain tumor in the general population. Environ. Res. 2017, 159, 321–330. [Google Scholar] [CrossRef]
- Coste, A.; Goujon, S.; Faure, L.; Hémon, D.; Clavel, J. Agricultural crop density in the municipalities of France and incidence of childhood leukemia: An ecological study. Env. Res. 2020, 187, 109517. [Google Scholar] [CrossRef]
- Gatignol, C.; Etienne, J.C. Pesticides et Santé. 2010. Available online: https://www.assemblee-nationale.fr/13/pdf/rap-off/i2463.pdf (accessed on 12 September 2024).
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Alem, H.; Rigou, P.; Schneider, R.; Ojeda, H.; Torregrosa, L. Impact of agronomic practices on grape aroma composition: A review. J. Sci. Food Agric. 2019, 99, 975–985. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; VanderWeide, J.; Torres-Palacios, C.; Sabbatini, P. Quantitative Metabolomics Unveils the Impact of Agricultural Practices in the Grape Metabolome. ACS Agric. Sci. Technol. 2021, 1, 253–261. [Google Scholar] [CrossRef]
- Parmentier, B.; Pisani, E. Nourrir L’humanité: Les Grands Problèmes de L’agriculture Mondiale au XXIème Siècle; La Découverte: Paris, France, 2004; 294p. [Google Scholar]
- Tissot, C.; Neethling, E.; Rouan, M.; Barbeau, G.; Quénol, H.; Le Coq, C. Modeling Environmental Impacts on Viticultural Ecosystems. Environ. Inf. Syst. 2019, 8, 1403–1422. [Google Scholar]
- Bélis-Bergouignan, M.; Saint-Ges, V. Quelle trajectoire environnementale pour la viticulture ? L’exemple du vignoble girondin. Rev. D’économie Régionale Urbaine 2009, 3, 491–516. [Google Scholar] [CrossRef]
- Rochard, J. Evolution des pratiques viticoles françaises: De la viticulture raisonnée à l’agroécologie. In Proceedings of the 40th World Congress of Vine and Wine, Sofia, Bulgarie, 29 May–2 June 2017; pp. 1–8. [Google Scholar]
- Bélis-Bergouignan, M.; Cazals, C. Démarches environnementales volontaires, conflit d’usage et proximité. Développement Durable Et Territ. 2006, 7, 1–16. [Google Scholar] [CrossRef]
- Alim’agri. L’agriculture Biologique (AB). 2017. Available online: http://agriculture.gouv.fr/lagriculture-biologique-ab (accessed on 13 September 2024).
- Agence Bio. Chiffres de la bio en France. 2018. Available online: http://www.agencebio.org/les-chiffres-cles/ (accessed on 28 August 2024).
- Agence Bio. La Production et le Marché bio en France en. 2020. Available online: http://www.agencebio.org/les-chiffres-cles/ (accessed on 28 August 2024).
- InterBio Occitanie. L’observatoire Régional de L’agriculture Biologique D’Occitanie: Les Fiches Filière—Viticulture. 2018. Available online: https://www.interbio-occitanie.com/content/uploads/2019/12/fiche_filiere_viti_2018_vd.pdf (accessed on 13 September 2024).
- Meissner, G.; Athmann, M.E.; Fritz, J.; Kauer, R.; Stoll, M.; Schultz, H.R. Conversion to organic and biodynamic viticultural practices: Impact on soil, grapevine development and grape quality. Oeno One 2019, 53. [Google Scholar] [CrossRef]
- Defer, A.; Gautier, M.; Georges, A.; Girard, D.; Hadrane, S.; Irrien, A.; Julliand, B.; Pigeon, H.; Pineau, N.; Commune par Commune, la Carte de France des Pesticides. Médiapart. 2019. Available online: https://www.mediapart.fr/journal/france/040719/commune-par-commune-la-carte-de-france-des-pesticides?onglet=full (accessed on 18 September 2024).
- Zahm, F. Méthodes de Diagnostic des Exploitations Agricoles et Indicateurs: Panorama et cas Particuliers Appliqués à L’évaluation des Pratiques Phytosanitaires. Sci. Eaux Territ. 2003, 33, 13–34. Available online: https://hal-sde.archives-ouvertes.fr/hal-00465539/document (accessed on 17 September 2024).
- Ayadi, H. Outils de Gestion de la Pollution Phytosanitaire Diffuse au Niveau d’un Territoire: Cas D’application Zone Humide Ramsar de la Merja Zerga au Maroc. Doctoral Dissertation, Université Paul Valéry-Montpellier III, Montpellier, France, 2013. [Google Scholar]
- Ayadi, H.; Le Bars, M.; Le Grusse, P.; Mandart, E.; Fabre, J.; Bouaziz, A.; Bord, J.P. SimPhy: A simulation game to lessen the impact of phytosanitaries on health and the environment-the case of Merja Zerga in Morocco. Environ. Sci. Pollut. Res. 2014, 21, 4950–4963. [Google Scholar] [CrossRef]
- Mghirbi, O.; Ellefi, K.; Le Grusse, P.; Mandart, E.; Fabre, J.; Ayadi, H.; Bord, J.P. Assessing plant protection practices using pressure indicator and toxicity risk indicators: Analysis of the relationship between these indicators for improved risk management, application in viticulture. Environ. Sci. Pollut. Res. 2015, 22, 8058–8074. [Google Scholar]
- Mghirbi, O. Résilience des Exploitations Agricoles Face au Changement des Pratiques Phytosanitaires: Conception D’outils De gestion des Risques Liés Aux Pesticides—Cas du Bassin Versant de L’étang de L’or en France. Ph.D. Dissertation, Université Paul Valéry Montpellier 3, Montpellier, France, 2016. [Google Scholar]
- Devillers, J.; Farret, R.; Girardin, P.; Rirvière, J.L.; Soulas, G. Indicateurs Pour Evaluer les Risques liés à L’utilisation des Pesticides; Tec et Doc: New York, NY, USA, 2005; p. 278. [Google Scholar]
- Samuel, O.; Dion, S.; ST-Laurent, L.; April, M.H. Indicateur de Risque des Pesticides du Québec, 2nd ed.; IRPeQ: Québec, QC, Canada, 2012; 48p, (Santé et environnement). Ministère de l’Agriculture, des Pêcheries et de l’Alimentation/Ministère du Développement Durable, de l’Environnement et des Parcs/Institut National de Santé Publique du Québec; Available online: https://www.inspq.qc.ca/publications/1504 (accessed on 12 September 2024).
- Kniss, A.R.; Coburn, C.W. Quantitative evaluation of the environmental impact quotient (EIQ) for comparing herbicides. PLoS ONE 2015, 10, e0131200. [Google Scholar] [CrossRef]
- Bockstaller, C.; Pierlot, F.; Marks-Perreau, J.; Réal, B.; Constant, T.; Lioeddine, A.; Carluer, N.; Miralles, A.; Morin, A.; Villerd, J. Evaluation de la qualité prédictive d’indicateurs pesticides de transfert vers les eaux: Le projet EQUIPE. Innov. Agron. 2017, 59, 25–39. [Google Scholar]
- Le Grusse, P.; Mandart, E.; Bouaziz, A.; Le Bars, M.; Bord, J.P.; Fabre, J. Gestion de la Toxicité en Zone Ramsar (TRam): Rapport Final. 2014. Available online: https://www.researchgate.net/publication/334049279_Gestion_de_la_Toxicite_en_zone_Ramsar_TRam_rapport_final (accessed on 16 June 2024).
- Mghirbi, O.; Le Grusse, P.; Fabre, J.; Mandart, E.; Bord, J.P. OptiPhy, a technical economic optimisation model for improving the management of plant protection practices in agriculture: A decision-support tool for controlling the toxicity risks related to pesticides. Environ. Sci. Pollut. Res. 2017, 24, 6951–6972. [Google Scholar] [CrossRef]
- Juan, G.; Barataud, F.; Billy, C.; Bouchet, L.; Carpentier, A.; Gouy, V.; Le Hénaff, G.; Voltz, M. Référentiel sur les Outils de la Recherche Pour Réduire les Pollutions de L’eau par les Pesticides. Rapport final 2018, Convention INRA-AFB. Available online: https://odeliane.com/wp-content/uploads/2019/11/Referentiel_outils_pesticide_version_finale_230218.pdf (accessed on 14 August 2024).
- Moreau, S.; Janin, L.; Carrière, C.; Patin, F.; Janvier, F.; Vénus, S. Plan de Réduction des Produits Phytopharmaceutiques et Sortie du Glyphosate: Etat des Lieux des Ventes et des Achats en France. Paris (France): Datalab. 2019. Available online: https://www.statistiques.developpementdurable.gouv.fr/sites/default/files/2019-04/datalab-essentiel-172-plan%20de%20reductionavril2019.pdf (accessed on 14 August 2024).
- SDES—Service des Données et Etudes Statistiques. 2020. Available online: https://www.statistiques.developpement-durable.gouv.fr/etat-des-lieux-des-ventes-et-des-achats-de-produits-phytopharmaceutiques-en-france-en-2020?rubrique=&dossier=211 (accessed on 15 June 2024).
- Millesime Bio. Mondial du vin et des Autres Boissons Alcolisées Biologiques: Dossier de Presse. 2021. Available online: https://www.millesime-bio.com/files/download/documents/Dossier%20de%20presse%20Mill%C3%A9sime-Bio%202021-%20DIGITAL.pdf (accessed on 10 September 2024).
- FranceAgriMer. La Filière vin. 2017. Available online: https://www.franceagrimer.fr/filieres-Vin-et-cidre (accessed on 5 September 2024).
- Aouadi, N.; Macary, F.; Ugaglia, A.A. Évaluation multicritère des performances socio-économiques et environnementales de systèmes viticoles et de scénarios de transition agroécologique. Cah. Agric. 2020, 29, 19. [Google Scholar] [CrossRef]
- Aouadi, N.; Macary, F.; Delière, L.; Roby, J.P. New Scenarios for a Shift towards Agroecology in Viticulture. Agric. Sci. 2021, 12, 1003–1033. [Google Scholar] [CrossRef]
- Mghirbi, O.; Bord, J.P.; Le Grusse, P.; Mandart, E.; Fabre, J. Mapping for the management of diffuse pollution risks related to agricultural plant protection practices: Case of the Etang de l’Or catchment area in France. Environ. Sci. Pollut. Res. 2018, 25, 14117–14137. [Google Scholar] [CrossRef] [PubMed]
- Pingault, N.; Pleyber, E.; Champeaux, C.; Guichard, L.; Omon, B. Produits Phytosanitaires et Protection Intégrée des Cultures: L’indicateur de Fréquence de Traitement. Notes Et Études Socio-Économiques 2009, 32, 61–94. [Google Scholar]
- Grimene, C.; Mghirbi, O.; Louvet, S.; Le Grusse, P. Caractérisation spatiale de la Vulnérabilité des Ressources Naturelles et Gestion des Risques de Pollution Diffuse liés aux Pratiques Phytosanitaires Agricoles. In Proceedings of the 49. Congrès du Groupe Français des Pesticides: Pesticides et Transition Agroécologique: Enjeux et Avancées, Montpellier, France, May 2019; pp. 103–105. Available online: https://hal.science/hal-03046570 (accessed on 17 June 2024).
- Grimene, C.; Mghirbi, O.; Louvet, S.; Bord, J.P.; Le Grusse, P. Spatial characterization of surface water vulnerability to diffuse pollution related to pesticide contamination: Case of the Gimone watershed in France. Environ. Sci. Pollut. Res. 2022, 29, 17–39. [Google Scholar] [CrossRef]
- Agreste Agreste les Dossiers. Enquetes Pratiques Phytosanitaires en Viticulture en 2016: Nombre de Traitement et Indicateurs de Fréquence de Traitement. N° 2019-2—Février 2019. Available online: https://agreste.agriculture.gouv.fr/agreste-web/download/publication/publie/Dos1902/Dossier2019-2.pdf (accessed on 26 June 2024).
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef]
- Pesce, S.; Mamy, L.; Sanchez, W.; Artigas, J.; Bérard, A.; Betoulle, S.; Chaumot, A.; Coutellec, M.-A.; Crouzet, O.; Leenhardt, S. The use of copper as plant protection product contributes to environmental contamination and resulting impacts on terrestrial and aquatic biodiversity and ecosystem functions. In Environmental Science and Pollution Research; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–17. [Google Scholar]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Human. Ecol. Risk Assess. An. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
Department | Crop | Number of Farms | Number of Plots | Area (ha) |
---|---|---|---|---|
Gironde | Conv/integrated vineyard | 30 | 467 | 726.60 |
Organic vineyard | 9 | 40 | 195.83 | |
Hérault | Conv/integrated vineyard | 9 | 180 | 348.74 |
Organic vineyard | 1 | 10 | 19.82 | |
Total | 49 | 697 | 1291 |
Most Used Products (High TFI/ha) | Most Used Active Ingredients (High AI Quantity/ha) | ||||||
---|---|---|---|---|---|---|---|
Gironde | Hérault | Gironde | Hérault | ||||
Product | Active Ingredient | Product | Active Ingredient | Active Ingredient | AI Qtity (kg/ha) | Active Ingredient | AI Qtity (kg/ha) |
Chaoline | Fosetyl- aluminum | Abilis | Triadimenol | Sulphur * | 10.0 | Sulphur * | 10.0 |
Steward | Indoxacarb | Bouillie bordelaise RSR disperss | Copper sulfate | Potassium bicarbonates * | 4.2 | Potassium phosphonates * | 2.9 |
Ysayo | Cyazofamid | Kavea DG | Mancozeb | Potassium phosphonates * | 3.0 | Oryzalin | 2.9 |
Jokari | Acrinathrin | Turkoise | Fenazaquin | Copper sulfate * | 3.0 | Metiram | 2.8 |
Consist | Trifloxystrobin | Clameur | Alpha-cypermethrin | Metiram * | 2.8 | Mancozeb | 2.6 |
AIs with Higher Risk to Human Health (High IRSA/ha) | AIs with Higher Risk to Environment (High IRTE/ha) | ||||||
---|---|---|---|---|---|---|---|
Gironde | Hérault | Gironde | Hérault | ||||
Active Ingredient | IRSA/ha | Active Ingredient | IRSA/ha | Active Ingredient | IRTE/ha | Active Ingredient | IRTE/ha |
Diquat * | 3880 | Copper oxychloride | 1768 | Diquat * | 900 | Dimethoate | 1469 |
Fluazinam * | 1167 | Chlorothalonil | 1353 | Chlorpyrifos -methyl * | 756 | Chlorpyrifos | 1024 |
Maneb * | 837 | Fluazinam | 1247 | Cyfluthrin | 650 | Chlorpyrifos-methyl * | 711 |
Alpha-cypermethrin * | 820 | Chlorpyrifos | 879 | Sulfur * | 506 | Copper oxychloride | 676 |
Meptyldinocap * | 774 | Meptyldinocap * | 853 | Emamectine Benzoate * | 473 | Cyfluthrin | 652 |
Indicators | Min. | Max. | Median | Mean | STDEV | CV |
---|---|---|---|---|---|---|
IRSA/ha | 2274 | 18,097 | 8346 | 8786 | 2206 | 0.25 |
IRTE/ha | 1693 | 8983 | 4737 | 4745 | 1038 | 0.22 |
Acute IRSA/ha | 1463 | 11,730 | 5766 | 5853 | 1423 | 0.24 |
Chronic IRSA/ha | 539 | 6500 | 2893 | 2933 | 974 | 0.33 |
IRTE T/ha | 0 | 1494 | 559 | 512 | 278 | 0.54 |
IRTE B/ha | 304 | 4383 | 1415 | 1439 | 565 | 0.39 |
IRTE A/ha | 938 | 6661 | 2772 | 2789 | 645 | 0.23 |
TFI/ha | 4.3 | 34.9 | 15.9 | 16.1 | 2.8 | 0.17 |
Indicators | Min. | Max. | Median | Mean | STDEV | CV |
---|---|---|---|---|---|---|
IRSA/ha | 8065 | 14,669 | 11,048 | 11,469 | 3047 | 0.26 |
IRTE/ha | 6256 | 10,273 | 9289 | 8227 | 1426 | 0.17 |
Acute IRSA/ha | 6677 | 12,920 | 9403 | 9839 | 2848 | 0.29 |
Chronic IRSA/ha | 1118 | 3189 | 1709 | 1630 | 329 | 0.20 |
IRTE T/ha | 0 | 890 | 415 | 294 | 218 | 0.74 |
IRTE B/ha | 2265 | 4509 | 3678 | 3567 | 440 | 0.12 |
IRTE A/ha | 3242 | 5684 | 5111 | 4343 | 980 | 0.22 |
TFI/ha | 7.3 | 11.3 | 9.9 | 9.3 | 1.0 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimene, C.; Mghirbi, O.; Le Grusse, P.; Bord, J.-P. Evaluation of Sanitary and Environmental Impact of Plant Protection Practices in Vineyards of Southwestern France: Organic and Conventional/Integrated Agriculture. Sustainability 2025, 17, 583. https://doi.org/10.3390/su17020583
Grimene C, Mghirbi O, Le Grusse P, Bord J-P. Evaluation of Sanitary and Environmental Impact of Plant Protection Practices in Vineyards of Southwestern France: Organic and Conventional/Integrated Agriculture. Sustainability. 2025; 17(2):583. https://doi.org/10.3390/su17020583
Chicago/Turabian StyleGrimene, Chaima, Oussama Mghirbi, Philippe Le Grusse, and Jean-Paul Bord. 2025. "Evaluation of Sanitary and Environmental Impact of Plant Protection Practices in Vineyards of Southwestern France: Organic and Conventional/Integrated Agriculture" Sustainability 17, no. 2: 583. https://doi.org/10.3390/su17020583
APA StyleGrimene, C., Mghirbi, O., Le Grusse, P., & Bord, J.-P. (2025). Evaluation of Sanitary and Environmental Impact of Plant Protection Practices in Vineyards of Southwestern France: Organic and Conventional/Integrated Agriculture. Sustainability, 17(2), 583. https://doi.org/10.3390/su17020583