Water Reuse: Contribution of a Decision Support Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. STEP 1: Development of the Hierarchical Structure
2.2. STEP 2: Obtaining Judgments from Experts
2.3. STEP 3: Converting Expert Judgments into Fuzzy Triangular Numbers
2.4. STEP 4: Aggregation of Expert Judgments into a Fuzzy Judgment Matrix
2.5. STEP 5: Consistency Check
2.6. STEP 6: Defuzzification of the Judgment Matrix
2.7. STEP 7: Determination of Local Weights
2.8. STEP 8: Determination of Global Weight
2.9. Decision Support Model
Transport Complexity C11 | Distance (X) Between the WWTP and the Reuse Site (Km) | K11 |
X ≤ 3 | 1 | |
3 < X ≤ 5 | 0.8 | |
5 < X ≤ 10 | 0.6 | |
10 < X ≤ 15 | 0.4 | |
X ≥ 15 | 0.2 | |
Security and Resilience WWTP C12 | % of attendance | K12 |
81–100 | 1 | |
61–80 | 0.8 | |
41–60 | 0.6 | |
21–40 | 0.4 | |
0–20 | 0.2 | |
Existence of Legislation C13 | Scope | K13 |
Municipal | 1 | |
State | 0.8 | |
National | 0.6 | |
International | 0.4 | |
Non-existent | 0.2 |
Degree of Acceptance C21 | % of Acceptance | K21 | |
81–100 | 1 | ||
61–80 | 0.8 | ||
41–60 | 0.6 | ||
21–40 | 0.4 | ||
0–20 | 0.2 | ||
Degree of Need C22 | Vulnerability Category | Class | K22 |
High | 1 | 1 | |
Medium-High | 2 | 0.75 | |
Medium | 3 | 0.50 | |
Low | 4 | 0.25 | |
Universalization of Sewage Collection and Treatment C23 | % of Coverage | K23 | |
81–100 | 1 | ||
61–80 | 0.8 | ||
41–60 | 0.6 | ||
21–40 | 0.4 | ||
0–20 | 0.2 |
Risk to Public Health C31 | Classification | K31 |
Extremely High | 0.2 | |
High | 0.4 | |
Medium High | 0.6 | |
Low Medium | 0.8 | |
Low | 1 | |
Energy Consumption at WWTP C32 | Classification | K32 |
Extremely High | 0.2 | |
High | 0.4 | |
Medium High | 0.6 | |
Low Medium | 0.8 | |
Low | 1 | |
Risk to the Environment C33 | Classification | K33 |
Extremely High | 0.2 | |
High | 0.4 | |
Medium High | 0.6 | |
Low Medium | 0.8 | |
Low | 1 |
Required Investment C41 | Classification | K41 |
Extremely High | 0.2 | |
High | 0.4 | |
Medium High | 0.6 | |
Low Medium | 0.8 | |
Low | 1 | |
Operation and Maintenance Charges C42 | Classification | K42 |
Extremely High | 0.2 | |
High | 0.4 | |
Medium High | 0.6 | |
Low Medium | 0.8 | |
Low | 1 | |
Economic Benefits C43 | Classification | K43 |
Extremely High | 0.2 | |
High | 0.4 | |
Medium High | 0.6 | |
Low Medium | 0.8 | |
Low | 1 |
2.10. Sensitivity Analysis
3. Case Study
3.1. WWTP Safety and Resilience
3.2. Transport Complexity
3.3. Existence of Legislation
3.4. Risk to Public Health
3.5. Energy Consumption by WWTP
3.6. Risk to the Environment
3.7. Degree of Acceptance
3.8. Degree of Need
3.9. Percentage of Sewage Collection and Wastewater Treatment
3.10. Investment Cost
3.11. Operation and Maintenance Costs
3.12. Economic Benefits
3.13. Potential Feasibility Index for Water Reuse in Aquiraz
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrade, E.P.; Nunes, A.B.A.; Alves, K.F.; Ugaya, C.M.L.; Alencar, M.C.; Santos, T.L.; Barros, V.S.; Pastor, A.V.; Figueiredo, M.C. B de. Water scarcity in Brazil: Part 1–regionalization of AWARE model characterization factors. Int. J. Life Cycle Assess. 2020, 25, 2342–2358. [Google Scholar] [CrossRef]
- Hidalgo, D.; Irusta, R.; Martinez, L.; Fatta, D.; Papadopoulos, A. Development of a multifunction software decision support tool for the promotion of the safe reuse of treated urban wastewater. Desalination 2007, 215, 90–103. [Google Scholar] [CrossRef]
- Gondhalekar, D.; Al-Azzawi, M.; Drewes, J.E. Urban water reclamation with resource recovery as a connerstone of urban climate change resilience. In Handbook of Climate Change Resilience; Filho, W.L., Ed.; Springer: Munich, Germany, 2019; pp. 1–22. [Google Scholar]
- Alberich, J.P.; Mukhtarov, F.; Dieperink, C.; Driessen, P.; Broekman, A. Upscaling urban recycled water schemes: An analysis of the presence of required governance conditions in the city of Sabadell (Spain). Water 2019, 11, 11. [Google Scholar] [CrossRef]
- Do Monte, H.M.; Albuquerque, A. Reutilização de Águas Residuais, 1st ed.; Entidade Reguladora dos Serviços de Água e Resíduos: Lisboa, Portugal, 2010. [Google Scholar]
- Narr, C.F.; Singh, H.; Mayer, P.; Keeley, A.; Faulkner, B.; Beak, D.; Forshay, K.J. Quantifying the effects of surface conveyance of treated wastewater effluent on groundwater, surface water, and nutrient dynamics in a large river floodplain. Ecol. Eng. 2019, 129, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Arborea, S.; Giannoccaro, G.; de Gennaro, B.C.; Iacobellis, V.; Piccinni, A.F. Cost-benefit analysis of wastewater reuse in Puglia, Southern Italy. Water 2017, 9, 175. [Google Scholar] [CrossRef]
- Baresel, C.; Dahlgren, L.; Almemark, M.; Lazic, A. Municipal wastewater reclamation for non-potable reuse-Environmental assessments based on pilot-plant studies and system modelling. Water Sci. Technol. 2015, 72, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Giannoccaro, G.; Arborea, S.; de Gennaro, B.C.; Iacobellis, V.; Piccinni, A.F. Assessing reclaimed urban wastewater for reuse in agriculture: Technical and economic concerns for Mediterranean regions. Water 2019, 11, 1511. [Google Scholar] [CrossRef]
- Mancuso, P.C.S.; Mierzwa, J.C.; Hespanhol, A.; Hespanhol, I. Reúso de Água Potável Como Estratégia Para a Escassez, 1st ed.; Manole: Pacatuba, Brazil, 2021. [Google Scholar]
- Nakazato, C.D.; Rodrigues, K.B. Curso de Análise de Água para Operadores de ETE´s: Nível 2, 1st ed.; ReCESA: Brasilia, Brazil, 2009. [Google Scholar]
- Corrêa, E.C. Construção de um Modelo Multicritério de Apoio ao Processo Decisório. Master’s Thesis, Federal University of Santa Catarina, Florianopolis, Brazil, 2009. [Google Scholar]
- Dias, E.M.P. da S. Modelo de Apoio à Decisão Multicritério para Seleção de Fornecedores de Azeite. Master’s Thesis, Porto University, Porto, Portugal, 2015. [Google Scholar]
- Matzenauer, H.B. Uma Metodologia Multicritério Construtivista de Avaliação de Alternativas para o Planejamento de Recursos Hídricos de Bacias Hidrográficas. Ph.D. Thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2013. [Google Scholar]
- De Lima, M.V.A.; Lopes, A.L.M.; Ensslin, L. Reflexões Sobre a Validação do Processo de Apoio À Decisão. In XXXVI-SBPO; SBPO: São João Del Rei, Brazil, 2011. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, 2nd ed.; McGraw-Hill International Book Company: Irvine, CA, USA, 1980; pp. 1–287. [Google Scholar]
- Nguyen, L.D.; Tran, D.Q. FAHP–Based decision making framework for construction projects. In Fuzzy Analytic Hierarchy Process, 1st ed.; Emrouznejad, A., Ho, W., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 327–346. [Google Scholar]
- de Oliveira, U.C. Proposta Metodológica de Cálculo do Valor da Multa Ambiental por Meio de Análise Multicritério e Sistema de Informação Geográfica (SIG). Ph.D. Thesis, Federal University of Ceara, Fortaleza, Brazil, 2023. [Google Scholar]
- Gomes, K.G.A. Um Método Multicritério para Localização de Unidades Celulares de Intendência da FAB. Master’s Thesis, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Magalhães da Silva, R.; Rodrigues da Silva, M.E.; Milen Firmino, P.I.; Bezerra Dos Santos, A. Análise de desempenho e confiabilidade de reatores UASB em estações de tratamento de esgotos sanitários descentralizadas. DAE 2019, 70, 78–92. [Google Scholar] [CrossRef]
- Niku, S.; Schroeder, E.D.; Samaniego, F.J. Performace of activated sludge process and realiability-based design. J. Water Pollut. Control. Assoc. 1979, 1, 2841–2857. [Google Scholar]
- Silveira, A.G.M. Análise de Eficiência e Confiabilidade em Sistemas de Baixo Custo de Tratamento de Esgotos do Tipo Lagoas de Estabilização. Master’s Thesis, Federal University of Ceara, Fortaleza, Brazil, 2011. [Google Scholar]
- Duong, K.; Saphores, J.-D.M. Obstacles to wastewater reuse: An overview. Wiley Interdiscip. Rev. Water 2015, 2, 199–214. [Google Scholar] [CrossRef]
- Índice Municipal de Alerta–IMA 2023. Available online: https://www.ipece.ce.gov.br/wp-content/uploads/sites/45/2023/12/IMA_2023.pdf (accessed on 24 March 2024).
- Directive of the European Parliament and of the Council: Concerning Urban Wastewater Treatment. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0541 (accessed on 27 December 2024).
- Plano Municipal de Saneamento Básico: Abastecimento de Água e Esgotamento Sanitário. Available online: http://www.aquiraz.ce.gov.br/wp-content/uploads/2018/03/PMSB-AQUIRAZ.pdf (accessed on 6 April 2021).
- Resolução COEMA Nº 02/2017. Available online: https://www.semace.ce.gov.br/wp-content/uploads/sites/46/2019/05/Resolucao-COEMA-02-de-2019.pdf (accessed on 13 April 2020).
- Ferreira, F.; Albuquerque, A.; Castro, D.; Gominho, M.; Matos, J.S. Guia metodológico para a reutilização de águas residuais tratadas em Cabo Verde. Recur. Hídricos 2023, 44, 55–61. [Google Scholar] [CrossRef]
- Guia para Reutilização de Água: Usos não Potáveis. Available online: https://apambiente.pt/sites/default/files/_Agua/DRH/Licenciamento/ApR/APA_Guia_Reutilizacao_v1.pdf (accessed on 3 March 2020).
- Sistema de Informações Geossocioeconômicas do Ceará. Available online: http://ipecedata.ipece.ce.gov.br/ipece-data-web/module/anuario.xhtml?cid=2 (accessed on 17 March 2024).
- de Oliveira Marinho, L.E.; Coraucci Filho, B.; Roston, D.M.; Stefanutti, R.; Tonetti, A.L. Evaluation of the Productivity of Irrigated Eucalyptus grandis with Reclaimed Wastewater and Effects on Soil. Water Air Soil Pollut. 2014, 225, 1830. [Google Scholar] [CrossRef]
EMI+ | MMI+ | MI+ | SMI+ | EI | SLI− | LI− | MLI− | ELI− | ||
C11 | x | C12 | ||||||||
C11 | x | C13 | ||||||||
C12 | x | C13 |
Experts | Stage 2: Judgment of Experts | ||
---|---|---|---|
C11 × C12 | C11 × C13 | C12 × C13 | |
1 | 3 | 7 | 3 |
2 | 1/5 | 1/7 | 1 |
3 | 1/3 | 1/3 | 1 |
4 | 1/5 | 1/3 | 3 |
5 | 1/3 | 1 | 3 |
Experts | Stage 3: Conversion of Judgments into Fuzzy Triangular Numbers | ||||||||
---|---|---|---|---|---|---|---|---|---|
C11 × C12 | C11 × C13 | C12 × C13 | |||||||
l | m | u | l | m | u | l | m | u | |
1 | 2 | 3 | 4 | 6 | 7 | 8 | 2 | 3 | 4 |
2 | 1/6 | 1/5 | 1/4 | 1/8 | 1/7 | 1/6 | 1 | 1 | 1 |
3 | 1/4 | 1/3 | 1/2 | 1/4 | 1/3 | 1/2 | 1 | 1 | 1 |
4 | 1/6 | 1/5 | 1/4 | 1/4 | 1/3 | 1/2 | 2 | 3 | 4 |
5 | 1/4 | 1/3 | 1/2 | 1 | 1 | 1 | 2 | 3 | 4 |
Min (l), Max (u) and Geometric Mean (m) | 0.17 | 0.42 | 4 | 0.13 | 0.64 | 8 | 1 | 1.93 | 4 |
C11 | C12 | C13 | |||||||
l | m | u | l | m | u | l | m | u | |
C11 | 1 | 1 | 1 | 0.17 | 0.42 | 4 | 0.13 | 0.64 | 8 |
C12 | 0.25 | 2.37 | 5.88 | 1 | 1 | 1 | 1 | 1.93 | 4 |
C13 | 0.13 | 1.55 | 7.69 | 0.25 | 0.52 | 1 | 1 | 1 | 1 |
Matrix A | Sum | Eigenvector w | N | A × w | λ | λmax | IC | IR | RC | |||
C11 | C12 | C13 | ||||||||||
C11 | 1 | 0.42 | 0.64 | 2.066 | 0.1979 | 3 | 0.6016 | 3.03 | 3 | 0.003 | 0.52 | 0.006 |
C12 | 2.37 | 1 | 1.93 | 5.30 | 0.5081 | 1.5457 | 3.04 | |||||
C13 | 1.55 | 0.52 | 1 | 3.07 | 0.2939 | 0.8639 | 2.93 | |||||
Total | 10.43 |
Z11 | Z12 | Z13 | |
Z11 | 1 | 1.253 | 2.354 |
Z12 | 2.718 | 1 | 2.216 |
Z13 | 2.730 | 0.571 | 1 |
Indicator | Local Weight | Parameters | Local Weight | Global Weight |
---|---|---|---|---|
Ci | Cij | Wij | ||
Technical | 0.354 | Transport complexity | 0.340 | 0.12 |
WWTP safety and resilience | 0.391 | 0.14 | ||
Existence of legislation | 0.268 | 0.10 | ||
Social | 0.242 | Degree of acceptance | 0.435 | 0.11 |
Degree of need | 0.332 | 0.08 | ||
% of sewage collection and treatment | 0.233 | 0.06 | ||
Environmental | 0.132 | Risk of public health | 0.676 | 0.09 |
Energy consumption by WWTP | 0.130 | 0.02 | ||
Risk to the environment | 0.194 | 0.03 | ||
Economic | 0.272 | Necessary investment | 0.373 | 0.10 |
Operation and maintenance charges | 0.133 | 0.04 | ||
Economic benefits | 0.493 | 0.13 |
Water Reuse Potential Feasibility Index (RFI) | RFI (%) | Classification |
81–100 | Very High Viability | |
61–80 | High Viability | |
41–60 | Medium Viability | |
21–40 | Low Viability | |
0–20 | Very Low Viability |
% | Technical | Social | Environmental | Economic |
---|---|---|---|---|
−15% | 0.3009 | 0.2616 | 0.1433 | 0.2942 |
−10% | 0.3187 | 0.2549 | 0.1397 | 0.2867 |
−5% | 0.3364 | 0.2483 | 0.1360 | 0.2793 |
0% | 0.3541 | 0.2417 | 0.1324 | 0.2718 |
5% | 0.3718 | 0.2351 | 0.1288 | 0.2644 |
10% | 0.3895 | 0.2285 | 0.1252 | 0.2569 |
15% | 0.4072 | 0.2218 | 0.1215 | 0.2495 |
Item | Amount | Value (USD) | Total Value (USD) |
---|---|---|---|
5 hp three-phase pump | 2 | 674.83 | 1.349.66 |
2-inch tube | 355.53 m | 7.28/6 m | 431.37 |
Drip irrigation set | 5 | 1.804.08 | 9.020.40 |
Elevated reservoir (service and material) | 1 | 30.585.07 | 30.585.07 |
Total | (USD) 41.386.50 |
Indicator | Local Weight | Parameters | Local Weight | Global Weight | Kij | Wij × Kij |
---|---|---|---|---|---|---|
Ci | Cij | Wij | ||||
Technical | 0.354 | Transport complexity | 0.340 | 0.12 | 1 | 0.12 |
WWTP safety and resilience | 0.391 | 0.14 | 1 | 0.14 | ||
Existence of legislation | 0.268 | 0.10 | 0.8 | 0.08 | ||
Social | 0.242 | Degree of acceptance | 0.435 | 0.11 | 0.6 | 0.06 |
Degree of need | 0.332 | 0.08 | 0.5 | 0.04 | ||
% of ewage collection and treatment | 0.233 | 0.06 | 0.6 | 0.03 | ||
Environmental | 0.132 | Risk to public health | 0.676 | 0.09 | 1 | 0.09 |
Energy consumption by WWTP | 0.130 | 0.02 | 0.8 | 0.01 | ||
Risk to the environment | 0.194 | 0.03 | 1 | 0.03 | ||
Economic | 0.272 | Necessary investment | 0.373 | 0.10 | 0.8 | 0.08 |
Operation and maintenance charges | 0.133 | 0.04 | 0.8 | 0.03 | ||
Economic benefits | 0.493 | 0.13 | 0.8 | 0.11 | ||
RFI (%) | 81.85% |
% | Technical | Social | Environmental | Economic | RFI |
---|---|---|---|---|---|
−15% | 0.3009 | 0.2616 | 0.1433 | 0.2942 | 80.80% |
−10% | 0.3187 | 0.2549 | 0.1397 | 0.2867 | 81.15% |
−5% | 0.3364 | 0.2483 | 0.1360 | 0.2793 | 81.50% |
0% | 0.3541 | 0.2417 | 0.1324 | 0.2718 | 81.85% |
5% | 0.3718 | 0.2351 | 0.1288 | 0.2644 | 82.21% |
10% | 0.3895 | 0.2285 | 0.1252 | 0.2569 | 82.56% |
15% | 0.4072 | 0.2218 | 0.1215 | 0.2495 | 82.90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filho, E.H.C.; Stefanutti, R.; Oliveira, U.C.d.; Matos, J.S. Water Reuse: Contribution of a Decision Support Model. Sustainability 2025, 17, 692. https://doi.org/10.3390/su17020692
Filho EHC, Stefanutti R, Oliveira UCd, Matos JS. Water Reuse: Contribution of a Decision Support Model. Sustainability. 2025; 17(2):692. https://doi.org/10.3390/su17020692
Chicago/Turabian StyleFilho, Edilson Holanda Costa, Ronaldo Stefanutti, Ulisses Costa de Oliveira, and José Saldanha Matos. 2025. "Water Reuse: Contribution of a Decision Support Model" Sustainability 17, no. 2: 692. https://doi.org/10.3390/su17020692
APA StyleFilho, E. H. C., Stefanutti, R., Oliveira, U. C. d., & Matos, J. S. (2025). Water Reuse: Contribution of a Decision Support Model. Sustainability, 17(2), 692. https://doi.org/10.3390/su17020692