Recovery and Recycling of Selected Waste Fractions with a Grain Size Below 10 mm
Abstract
:1. Introduction
2. Waste Fraction Below 10 mm
3. Waste Extracted from Landfills—Landfill Mining
4. Waste Less than 10 mm Arising from Mechanical–Biological Treatment Installations
5. Household Ashes
6. Construction Waste Below 10 mm
7. Municipal Waste from Street Sweeping
8. Industrial Waste from Coal Preparation (Tailings), and Ash from Coal Combustion
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Sakkari, E.G.; Habashy, M.M.; Abdelmigeed, M.O.; Mohammed, M.G. Review of municipal waste. In Waste-to-Energy; Abomohra, A.E.F., Wang, Q., Huang, J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kwaśnicki, P.; Jarzębski, M.; Kardasz, P.; Inglot, M. Characterization techniques of sandwich-type TiO2/QD composites for low-cost quantum dots’ solar cell. Opto-Electron. Rev. 2019, 27, 105–112. [Google Scholar] [CrossRef]
- Augustowski, D.; Kwaśnicki, P.; Dziedzic, J.; Rysz, J. Magnetron Sputtered Electron Blocking Layer as an Efficient Method to Improve Dye-Sensitized Solar Cell Performance. Energies 2020, 13, 2690. [Google Scholar] [CrossRef]
- Hauser, H.E.; Blumenthal, K. Each Person in the EU Generated 475 kg of Municipal Waste in 2014; Eurostat Press: Luxembourg, 2016; Volume 56. [Google Scholar]
- Jouhara, H.; Czajczyńska, D.; Ghazal, H.; Krzyżyńska, R.; Anguilano, L.; Reynolds, A.J.; Spencer, N. Municipal waste management systems for domestic use. Energy 2017, 139, 485–506. [Google Scholar] [CrossRef]
- Zaman, A.U. A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. J. Clean. Prod. 2016, 124, 41–50. [Google Scholar] [CrossRef]
- Statistics Poland, Agriculture and Environment Department, 2024, ISSN 0867-3217, 148-174 (In Polish). Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2024,1,25.html (accessed on 7 February 2025).
- Mönkäre, T.J.; Palmroth, M.R.T.; Rintala, J.A. Characterization of fine fraction mined from two Finnish landfills. Waste Manag. 2016, 47, 34–39. [Google Scholar] [CrossRef]
- Burlakovs, J.; Jani, Y.; Kriipsalu, M.; Vincevica-Gaile, Z.; Kaczala, F.; Celma, G.; Ozola, R.; Rozina, L.; Rudovica, V.; Hogland, M.; et al. On the way to ‘zero waste’ management: Recovery potential of elements, including rare earth elements, from fine fraction of waste. J. Clean. Prod. 2018, 186, 81–90. [Google Scholar] [CrossRef]
- Haynes, R.J.; Belyaeva, O.N.; Zhou, Y.-F. Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Manag. 2015, 35, 48–54. [Google Scholar] [CrossRef]
- den Boer, E.; Jędrczak, J. Performance of mechanical biological treatment of residual municipal waste in Poland. E3S Web Conf. 2017, 22, 00020. [Google Scholar] [CrossRef]
- Grąz, K. Qualitative Studies of Selected Types of Composts. Rocz. Ochr. Sr. 2024, 26, 700–706. [Google Scholar] [CrossRef]
- Grzesik, K.; Mailinowski, M. Life Cycle Assessment of Mechanical–Biological Treatment of Mixed Municipal Waste. Environ. Eng. Sci. 2024, 34, 207–220. [Google Scholar] [CrossRef]
- Zaman, A.U. Identification of waste management development drivers and potential emerging waste treatment technologies. Int. J. Environ. Sci. Technol. 2013, 10, 455–464. [Google Scholar] [CrossRef]
- Bayard, R.; de Araújo Morais, I.; Ducom, G.; Achour, F.; Rouez, M.; Gourdon, R. Assessment of the effectiveness of an industrial unit of mechanical–biological treatment of municipal solid waste. J. Hazard. Mater. 2010, 175, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Nithikul, J.; Karthikeyan, O.P.; Visvanathan, C. Reject management from a Mechanical Biological Treatment plant in Bangkok, Thailand, Resources. Conserv. Recycl. 2011, 55, 417–422. [Google Scholar] [CrossRef]
- Trulli, E.; Ferronato, N.; Torretta, V.; Piscitelli, M.; Masi, S.; Mancini, I. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. Waste Manag. 2018, 71, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Tintner, J.; Smidt, E.; Böhm, K.; Binner, E. Investigations of biological processes in Austrian MBT plants. Waste Manag. 2010, 30, 1903–1907. [Google Scholar] [CrossRef] [PubMed]
- Lorange, R.; Redon, E.; Lagier, T.; Hébé, I.; Carré, J. Performance of a low cost MBT prior to landfilling: Study of the biological treatment of size reduced MSW without mechanical sorting. Waste Manag. 2007, 27, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Di Lonardo, M.C.; Lombardi, F.; Gavasci, R. Quality evaluation and improvement of mechanically–biologically treated municipal solid waste in view of a possible recovery. Int. J. Environ. Sci. Technol. 2015, 12, 3243–3254. [Google Scholar] [CrossRef]
- Di Lonardo, M.C.; Lombardi, F.; Gavasci, R. Characterization of MBT plants input and outputs: A review. Rev. Environ. Sci. Biotechnol. 2012, 11, 353–363. [Google Scholar] [CrossRef]
- Lieto, A.; Zingaretti, D.; Lombardi, F.; Gavasci, R. Effect of a Further Maturation Phase on the Chemical and Environmental Properties of a Bio-stabilised Waste from a Mechanical–Biological Treatment Plant. Waste Biomass Valorization 2019, 10, 3659–3671. [Google Scholar] [CrossRef]
- Alvarez-Gallego, C.J.; Fdez-Güelfo, L.A.; Romero Aguilar, M.d.l.A.; Romero García, L.I. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant. Int. J. Mol. Sci. 2015, 16, 3769–3782. [Google Scholar] [CrossRef]
- Jędrczak, A.; Suchowska-Kisielewicz, M. Comparison of waste stability indicators in mechanical-biological treatment and composting plants. Int. J. Environ. Res. Public Health 2018, 15, 2585. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.; Wagland, S.; Coulon, F. Investigation into the non-biological outputs of mechanical–biological treatment facilities. Waste Manag. 2015, 46, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Śniadecka, N.; Tonderski, A.; Hänel, A.; Wojda-Gburek, J.; Hupka, J. Mineral matter in municipal solid waste. Physicochem. Probl. Miner. Process. 2016, 52, 973. [Google Scholar] [CrossRef]
- Sharifi, Z.; Renella, G. Assessment of a particle size fractionation as a technology for reducing heavy metal, salinity and impurities from compost produced by municipal solid waste. Waste Manag. 2015, 38, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Gronba-Chyła, A.; Generowicz, A. Municipal waste fraction below 10 mm and possibility of its use in ceramic building materials. Przemysł Chem. 2020, 99, 1318–1321. [Google Scholar] [CrossRef]
- Cimpan, C.; Maul, A.; Jansen, M.; Pretz, T.; Wenzel, H. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling. J. Environ. Manag. 2015, 156, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Chesworth, S.; Khalid, M.; Iqbal, Z. Assessing the addition of mineral processing waste to green waste-derived compost: An agronomic, environmental and economic appraisal. Bioresour. Technol. 2009, 100, 770–777. [Google Scholar] [CrossRef]
- Van Gestel, K.; Mergaert, J.; Swings, J.; Coosemans, J.; Ryckeboer, J. Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ. Pollut. 2003, 125, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Mazur, I.; Jagustyn, B.; Sajdak, M. The detection of ash derived from the illegal co-combustion of solid waste with coal in domestic boilers with the aid of spectrometric approaches and statistical learning. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100758. [Google Scholar] [CrossRef]
- Kicińska, A. Chemical and mineral composition of fly ashes from home furnaces, and health and environmental risk related to their presence in the environment. Chemosphere 2019, 215, 574–585. [Google Scholar] [CrossRef]
- Galvín, A.P.; Ayuso, J.; García, I.; Jiménez, J.R.; Gutiérrez, F. The effect of compaction on the leaching and pollutant emission time of recycled aggregates from construction and demolition waste. J. Clean. Prod. 2014, 83, 294–304. [Google Scholar] [CrossRef]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ponti, J.; Valsesia, A.; La Spina, R.; Zacco, A.; Bontempi, E. Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash. J. Clean. Prod. 2020, 245, 118779. [Google Scholar] [CrossRef]
- Brancolia, P.; Boltona, K.; Eriksson, M. Environmental impacts of waste management and valorisation pathways for surplus bread in Sweden. Waste Manag. 2020, 117, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Van Praagh, M.; Modin, H. Leaching of chloride, sulphate, heavy metals, dissolved organic carbon and phenolic organic pesticides from contaminated concrete. Waste Manag. 2016, 56, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Querol, X. Leaching behaviour of elements from coal combustion fly ash: An overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef]
- Wyrzykowska, B.; Hanari, N.; Orlikowska, A.; Yamashita, N.; Falandysz, J. Dioxin-like compound compositional profiles of furnace bottom ashes from household combustion in Poland and their possible associations with contamination status of agricultural soil and pine needles. Chemosphere 2009, 76, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Mizerna, K. Determination of forms of heavy metals in bottom ash from households using sequential extraction. E3S Web Conf. 2018, 44, 00116. [Google Scholar] [CrossRef]
- Smołka-Danielowska, D.; Jabłońska, M. Chemical and mineral composition of ashes from wood biomass combustion in domestic wood-fired furnaces. Int. J. Environ. Sci. Technol. 2022, 19, 5359–5372. [Google Scholar] [CrossRef]
- Đolić, M.; Ćujić, M.; Stanišić, T.; Čičkarić, D.; Ristić, M.; Perić Grujić, A. Contribution to the Serbian coal ranking and fly ash characterization using Pb isotopic ratio. Metall. Mater. Eng. 2022, 28, 675–684. [Google Scholar] [CrossRef]
- Nurmesniemi, H.; Manskinen, K.; Pöykiö, R.; Dahl, O. Forest fertilizer properties of the bottom ash and fly ash from a large-sized (115 mw) industrial power plant incinerating wood-based biomass residues. J. Univ. Chem. Technol. Metall. 2012, 47, 43–52. [Google Scholar]
- James, A.K.; Thring, R.W.; Helle, S.; Ghuman, H.S. Ash Management Review—Applications of Biomass Bottom Ash. Energies 2012, 5, 3856–3873. [Google Scholar] [CrossRef]
- Khan, A.; Jong, W.; Jansens, P.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remidies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Gomez-Barea, A.; Vilches, L.; Campoy, M.; Fernandez-Pereira, C. Plant optimization and ash recycling in fluidised waste gasification. Chem. Eng. J. 2009, 146, 227–236. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Fabiańska, M.J.; Smółka-Danielowska, D. Biomarker compounds in ash from coal combustion in domestic furnaces (Upper Silesia Coal Basin, Poland). Fuel 2012, 102, 333–344. [Google Scholar] [CrossRef]
- Cieślik, E.; Fabiańska, M.J. Preservation of geochemical markers during co-combustion of hard coal and various domestic waste materials. Sci. Total Environ. 2021, 768, 144638. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Diaz, A.R. The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control. Energy 2009, 34, 348–354. [Google Scholar] [CrossRef]
- Maroto-Valer, M.M.; Taulbee, D.N.; Hower, J.C. Characterization of differing forms of unburned carbon present in fly ash separated by density gradient centrifugation. Fuel 2001, 80, 795–800. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, Z.; Gao, X.; Yu, G.; Gong, X. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier. Fuel Process. Technol. 2009, 90, 1062–1070. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, T.F.; Mendonça Filho, J.G.; Flores, D. Fly ash from coal combustion—An environmental source of organic compounds. Appl. Geochem. 2014, 44, 103–110. [Google Scholar] [CrossRef]
- Saha, A.K. Effect of class F fly ash on the durability properties of concrete. Sustain. Environ. Res. 2018, 28, 25–31. [Google Scholar] [CrossRef]
- Şahmaran, M.; Li, V.C. Durability properties of micro-cracked ECC containing high volumes fly ash. Cem. Concr. Res. 2009, 39, 1033–1043. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X. Properties of concrete incorporating fly ash and ground granulated blast-furnace slag. Cem. Concr. Compos. 2003, 25, 293–299. [Google Scholar] [CrossRef]
- Hefni, Y.; Abd El Zaher, Y.; Wahab, M.A. Influence of activation of fly ash on the mechanical properties of concrete. Constr. Build. Mater. 2018, 172, 728–734. [Google Scholar] [CrossRef]
- Swinnerton, S.; Kurtz, K.; Neba Nforsoh, S.; Caver, V.; Tsai, C. The manufacturing process and consequent occupational health and environmental risks associated with the use of plastic waste in construction bricks in small-scale recycling plants. J. Clean. Prod. 2024, 477, 143818. [Google Scholar] [CrossRef]
- Thomas, J.; Wilson, P.M. Construction waste management in India. Am. J. Eng. Res. (AJER) 2013, 2, 6–9. [Google Scholar]
- Lam, P.T.I.; Yu, A.T.W.; Wu, Z.; Poon, C.S. Methodology for upstream estimation of construction waste for new building projects. J. Clean. Prod. 2019, 230, 1003–1012. [Google Scholar] [CrossRef]
- Omer, M.M.; Rahman, R.A.; Almutairi, S. Construction waste recycling: Enhancement strategies and organization size. Phys. Chem. Earth Parts A/B/C 2022, 126, 103114. [Google Scholar] [CrossRef]
- Ramos, M.; Martinho, G. Influence of construction company size on the determining factors for construction and demolition waste management. Waste Manag. 2021, 136, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.H.; Stämpfli, D.M. Material Balance of a Construction Waste Sorting Plant. Waste Manag. Res. 1993, 11, 27–48. [Google Scholar] [CrossRef]
- Llatas, C. A model for quantifying construction waste in projects according to the European waste list. Waste Manag. 2011, 31, 1261–1276. [Google Scholar] [CrossRef]
- Young, J.M.; Kelly, T.M.; Vance, L. Determination of size fractions and concentrations of airborne particulate matter generated from construction and demolition waste processing facilities. Air Qual. Atmos. Health 2008, 1, 91–100. [Google Scholar] [CrossRef]
- Cocco, P.L.; Ruggiero, R. From rubbles to digital material bank. A digital methodology for construction and demolition waste management in post-disaster areas. Environ. Res. Technol. 2021, 6, 151–158. [Google Scholar] [CrossRef]
- Gálvez-Martos, J.-L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and demolition waste best management practice in Europe, Resources. Conserv. Recycl. 2018, 136, 166–178. [Google Scholar] [CrossRef]
- Bao, Z.; Lee, W.M.W.; Lu, W. Implementing on-site construction waste recycling in Hong Kong: Barriers and facilitators. Sci. Total Environ. 2020, 747, 141091. [Google Scholar] [CrossRef] [PubMed]
- Panizza, M.; Natali, M.; Garbin, E.; Tamburini, S.; Secco, M. Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material. Constr. Build. Mater. 2018, 181, 119–133. [Google Scholar] [CrossRef]
- Besklubova, S.; Kravchenko, E.; Tan, B.Q.; Zhong, R.Y. A feasibility analysis of waste concrete powder recycling market establishment: Hong Kong case. Environ. Impact Assess. Rev. 2023, 103, 107225. [Google Scholar] [CrossRef]
- Schildkamp, M.; Silvestri, S.; Araki, Y. Rubble stone masonry buildings with cement mortar: Design specifications in seismic and masonry codes worldwide. Front. Built Environ. 2020, 6, 590520. [Google Scholar] [CrossRef]
- Del Rey, I.; Ayuso, J.; Barbudo, A.; Galvín, A.P.; Agrela, F.; de Brito, J. Feasibility study of cement-treated 0–8 mm recycled aggregates from construction and demolition waste as road base layer. Road Mater. Pavement Des. 2015, 17, 678–692. [Google Scholar] [CrossRef]
- Weimann, K.; Giese, L.B.; Mellmann, G.; Simon, F.-G. Building Materials from Waste. Mater. Trans. 2003, 44, 1255–1258. [Google Scholar] [CrossRef]
- Munir, Q.; Abdulkareem, M.; Horttanainen, M.; Kärki, T. A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete. Sci. Total Environ. 2023, 865, 161230. [Google Scholar] [CrossRef] [PubMed]
- Munir, Q.; Lahtela, V.; Kärki, T.; Koivula, A. Assessing life cycle sustainability: A comprehensive review of concrete produced from construction waste fine fractions. J. Environ. Manag. 2024, 366, 121734. [Google Scholar] [CrossRef] [PubMed]
- Kul, A.; Ozel, B.F.; Ozcelikci, E.; Gunal, M.F.; Ulugol, H.; Yildirim, G.; Sahmaran, M. Characterization and life cycle assessment of geopolymer mortars with masonry units and recycled concrete aggregates assorted from construction and demolition waste. J. Build. Eng. 2023, 78, 107546. [Google Scholar] [CrossRef]
- Liang, G.; Luo, L.; Yao, W. Reusing waste red brick powder as partial mineral precursor in eco-friendly binders: Reaction kinetics, microstructure and life-cycle assessment. Resources. Conserv. Recycl. 2022, 185, 106523. [Google Scholar] [CrossRef]
- Joseph, H.S.; Pachiappan, T.; Avudaiappan, S.; Maureira-Carsalade, N.; Roco-Videla, Á.; Guindos, P.; Parra, P.F. A comprehensive review on recycling of construction demolition waste in concrete. Sustainability 2023, 15, 4932. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; He, B.; Yi, S.; Tang, L. Recycling fine powder collected from construction and demolition wastes as partial alternatives to cement: A comprehensive analysis on effects, mechanism, cost and CO2 emission. J. Build. Eng. 2023, 71, 106507. [Google Scholar] [CrossRef]
- Wu, H.; Yang, D.; Ma, Z. Micro-structure, mechanical and transport properties of cementitious materials with high-volume waste concrete powder and thermal modification. Constr. Build. Mater. 2021, 313, 125477. [Google Scholar] [CrossRef]
- Xue, C.; Qiao, H.; Cao, H.; Feng, Q.; Li, Q. Analysis on the strength of cement mortar mixed with construction waste brick powder. Adv. Civ. Eng. 2021, 2021, 8871280. [Google Scholar] [CrossRef]
- Horsakulthai, V. Effect of recycled concrete powder on strength, electrical resistivity, and water absorption of self-compacting mortars. Case Stud. Constr. Mater. 2021, 15, e00725. [Google Scholar] [CrossRef]
- Rocha, S.; Sousa-Coutinho, J. Construction and demolition waste as partial cement replacement. Adv. Cem. Res. 2019, 31, 411–422. [Google Scholar] [CrossRef]
- Irki, I.; Debieb, F.; Ouzadid, S.; Dilmi, H.L.; Settari, C.; Boukhelkhel, D. Effect of Blaine fineness of recycling brick powder replacing cementitious materials in self compacting mortar. J. Adhes. Sci. Technol. 2018, 32, 963–975. [Google Scholar] [CrossRef]
- Sui, Y.; Ou, C.; Liu, S.; Zhang, J.; Tian, Q. Study on properties of waste concrete powder by thermal treatment and application in mortar. Appl. Sci. 2020, 10, 998. [Google Scholar] [CrossRef]
- Dawood, A.O.; Hayder, A.K.; Falih, R.S. Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Stud. Constr. Mater. 2021, 14, e00482. [Google Scholar] [CrossRef]
- Gronba-Chyła, A. Experimental Investigation on the Properties of Street and Sidewalk Cleaning Waste. Archit. Civ. Eng. Environ. 2023, 16, 149–153. [Google Scholar] [CrossRef]
- Wahab, B.; Ogunlola, B. The Nature and Challenges of Street Sweeping in Ado-Ekiti. Afr. J. Psychol. Stud. Soc. Issues 2014, 17, 145–167. [Google Scholar]
- Hajduga, G.; Generowicz, A.; Kryłów, M. Human health risk assessment of heavy metals in road dust collected in Cracow. In Proceedings of the 11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering, EKO-DOK 2019, Polanica-Zdroj, Poland, 8–10 April 2019; Volume 100, p. 00026. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Cai, L.; Ma, L. Designing visually and operationally attractive routes to improve driver acceptance in road cleaning vehicle routing problem. Comput. Oper. Res. 2025, 177, 106973. [Google Scholar] [CrossRef]
- Kryłów, M.; Generowicz, A. Impact of Street Sweeping and Washing on the PM10 and PM2.5 Concentrations in Cracow (Poland). Rocz. Ochr. Sr. 2019, 21, 691–711. [Google Scholar]
- Ragazzi, M.; Zuccato, C.; Schiavon, M.; Rada, E.C. Overview and possible approach to street sweeping criticalities. Energy Rep. 2023, 9, 117–124. [Google Scholar] [CrossRef]
- Järlskog, I.; Strömvall, A.M.; Magnusson, K.; Galfi, H.; Björklund, K.; Polukarova, M.; Garção, R.; Markiewicz, A.; Aronsson, M.; Gustafsson, M.; et al. Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction. Sci. Total Environ. 2021, 774, 145503. [Google Scholar] [CrossRef]
- Kupiainen, K.; Ritola, R.; Stojiljkovic, A.; Pirjola, L.; Malinen, A.; Niemi, J. Contribution of mineral dust sources to street side ambient and suspension PM10 samples. Atmos. Environ. 2016, 147, 178–189. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Chou, C.-M.; Su, K.-T.; Tseng, C.-H. Effectiveness of Street Sweeping and Washing for Controlling Ambient TSP. Atmos. Environ. 2005, 39, 1891–1902. [Google Scholar] [CrossRef]
- Aldrin, M.; Hobæk Haff, I.; Rosland, P. The Effect of Salting with Magnesium Chloride on the Concentration of Particular Matter in a Road Tunnel. Atmos. Environ. 2008, 42, 1762–1776. [Google Scholar] [CrossRef]
- Järlskog, I.; Strömvall, A.-M.; Magnusson, K.; Gustafsson, M.; Polukarova, M.; Galfi, H.; Aronsson, M.; Andersson-Sköld, Y. Occurrence of tire and bitumen wear microplastics on urban streets andin sweepsand and washwater. Sci. Total Environ. 2020, 729, 138950. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.F.; Smith, P.G.; Neilson, G.; Dinnie, R.M. Chemical characterization and legal classification of sludges from road sweepings. Water Environ. Manag. 2000, 14, 99–102. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Bartkowiak, A. The assessment of the possible use of municipal waste—Code 20 03 03 based on its physicochemical and biochemical properties. Arch. Waste Manag. Environ. Prot. 2015, 17, 79–86. [Google Scholar]
- Aryal, R.; Beecham, S.; Sarkar, B.; Chong, M.N.; Kinsela, A.; Kandasamy, J.; Vigneswaran, S. Readily Wash-Off Road Dust and Associated Heavy Metals on Motorways. Water Air Soil Pollut. 2017, 228, 1. [Google Scholar] [CrossRef]
- Generowicz, A.; Wassilkowska, A.; Kryłów, M. Qualitative composition of waste from street cleaning on the example of research carried out in Krakow. Przemysł Chem. 2020, 99, 1312–1314. [Google Scholar] [CrossRef]
- Generowicz, A.; Gronba-Chyła, A.; Kulczycka, J.; Harazin, P.; Gaska, K.; Ciuła, J.; Ocłoń, P. Life Cycle Assessment for the environmental impact assessment of a city’ cleaning system. The case of Cracow (Poland). J. Clean. Prod. 2023, 382, 135184. [Google Scholar] [CrossRef]
- Beylot, A.; Muller, S.; Descat, M.; Ménard, Y.; Villeneuve, J. Life cycle assessment of the French municipal solid waste incineration sector. Waste Manag. 2018, 80, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Lu, S.; Zhao, H.; Kai, X.; Jiaxian, P.; Win, M.S.; Yu, S.; Yonemochi, S.; Wang, W. Magnetic, geochemical characterization and health risk assessment of road dust Xuanwei and Fuyuan, China. Environ. Geochem. Health 2018, 40, 1541–1555. [Google Scholar] [CrossRef]
- German, J.; Svensson, G. Metal content and particle size distribution of street sediments and street sweeping waste. Water Sci. Technol. 2002, 46, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Bartolozzi, I.; Baldereschi, E.; Daddi, T.; Iraldo, F. The application of life cycle assessment (LCA) in municipal solid waste management: A comparative study on street sweeping services. J. Clean. Prod. 2018, 182, 455–465. [Google Scholar] [CrossRef]
- Acosta, J.A.; Gabarrón, M.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Arocena, J.M. Influence of Population Density on the Concentration and Speciation of Metals in the Soil and Street Dust from Urban Areas. Chemosphere 2015, 134, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Gronba-Chyła, A.; Generowicz, A.; Kwaśnicki, P.; Cycoń, D.; Kwaśny, J.; Grąz, K.; Gaska, K.; Ciuła, J. Determining the Effectiveness of Street Cleaning with the Use of Decision Analysis and Research on the Reduction in Chloride in Waste. Energies 2022, 15, 3538. [Google Scholar] [CrossRef]
- Rienda, I.C.; Alves, C.A. Road dust resuspension: A review. Atmos. Res. 2021, 261, 105740. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, A.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. J. Geochem. Explor. 2014, 144 Pt B, 298–305. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, M.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Amato, F.; Querol, X.; Johansson, C.; Nagl, C.; Alastuey, A. A Review on the Effectiveness of Street Sweeping, Washing and Dust Suppressants as Urban PM Control Methods. Sci. Total Environ. 2010, 408, 3070–3084. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.A.; Evtyugina, M.; Vicente, A.M.P.; Vicente, E.D.; Nunes, T.V.; Silva, P.M.A.; Duarte, M.A.C.; Pio, C.A.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Aubert, J.E.; Husson, B.; Vaquier, A. Use of municipal solid waste incineration fly ash in concreto. Cem. Concr. Res. 2007, 34, 957–963. [Google Scholar] [CrossRef]
- Ayati, B.; Ferrándiz-Mas, V.; Newport, D.; Cheeseman, C. Use of clay in the manufacture of lightweight aggregate. Constr. Build. Mater. 2018, 162, 124–131. [Google Scholar] [CrossRef]
- Balapour, M.; Rao, R.; Garboczi, E.J.; Spatari, S.; Hsuan, Y.G.; Billen, P.; Farnam, Y. Thermochemical principles of the production of lightweight aggregates from waste coal bottom ash. J. Am. Ceram. Soc. 2021, 104, 613–634. [Google Scholar] [CrossRef]
- Chen, H.J.; Yang, M.D.; Tang, C.W.; Wang, S.Y. Producing synthetic lightweight aggregates from reservoir sediments. Constr. Build. Mater. 2011, 28, 387–394. [Google Scholar] [CrossRef]
- Gronba-Chyła, A.; Generowicz, A.; Alwaeli, M.; Mannheim, V.; Grąz, K.; Kwaśnicki, P.; Kramek, A. Municipal waste utilization as a substitute for natural aggregate in the light of the circular economy. J. Clean. Prod. 2024, 440, 140907. [Google Scholar] [CrossRef]
- Benassi, L.; Dalipi, R.; Consigli, V.; Pasquali, M.; Borgese, L.; Depero, L.E.; Clegg, F.; Bingham, P.A.; Bontempi, E. Integrated management of ash from industrial and domestic combustion: A new sustainable approach for reducing greenhouse gas emissions from energy conversion. Environ. Sci. Pollut. Res. 2017, 24, 14834–14846. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-g.; Jiang, G.-w.; Li, A.; Li, Y. Technology, cost, a performance of waste-to-energy incineration industry in China. Renew. Sustain. Energy Rev. 2016, 55, 115–130. [Google Scholar] [CrossRef]
- Guarienti, M.; Gianoncelli, A.; Bontempi, E.; Moscoso Cardozo, S.; Borgese, L.; Zilioli, D.; Mitola, S.; Depero, L.E.; Presta, M. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology. J. Hazard. Mater. 2014, 279, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Siddique, R. An overview of geopolymers derived from industrial by-products. Constr. Build. Mater. 2016, 127, 183–198. [Google Scholar] [CrossRef]
- Colangelo, F.; Cioffi, R.; Montagnaro, F.; Santoro, L. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Manag. 2012, 32, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Bosio, A.; Zacco, A.; Borgese, L.; Rodella, N.; Colombi, P.; Benassi, L.; Depero, L.E.; Bontempi, E. A sustainable technology for Pb and Zn stabilization based on the use of only waste materials: A green chemistry approach to avoid chemicals and promote CO2 sequestration. Chem. Eng. J. 2014, 253, 377–384. [Google Scholar] [CrossRef]
- Zacco, A.; Borgese, L.; Gianoncelli, A.; Struis, R.P.W.J.; Depero, L.E.; Bontempi, E. Review of fly ash inertisation treatments and recycling. Environ. Chem. Lett. 2014, 12, 153–175. [Google Scholar] [CrossRef]
- Przydatek, G.; Kochanek, A.; Basta, M. Analysis of changes in municipal waste management at the county level. J. Ecol. Eng. 2017, 18, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Kochanek, A.J.; Kobylarczyk, S. The Analysis of the Main Geospatial Factors Using Geoinformation Programs Required for the Planning, Design and Construction of a Photovoltaic Power Plant. J. Ecol. Eng. 2024, 25, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Kochanek, A.; Ciuła, J.; Generowicz, A.; Mitryasova, O.; Jasińska, A.; Jurkowski, S.; Kwaśnicki, P. The Analysis of Geospatial Factors Necessary for the Planning, Design, and Construction of Agricultural Biogas Plants in the Context of Sustainable Development. Energie 2024, 17, 5619. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, Y.; Wei, C.; Cao, Y.; Sun, W.; Liu, P.; Cheng, H.; Xing, Y.; Gui, X. New flotation flowsheet for recovering combustible matter from fine waste coking coal. J. Clean. Prod. 2019, 225, 209–219. [Google Scholar] [CrossRef]
- Galos, K.; Szlugaj, J. Management of hard coal mining and processing wastes in Poland. Miner. Resour. Manag. 2014, 30, 51–64. [Google Scholar] [CrossRef]
- Sobiecka, E. Thermal and physicochemical technologies used in hospital incineration fly ash utilization before landfill in Poland. J. Chem. Technol. Biotechnol. 2016, 91, 2457–2461. [Google Scholar] [CrossRef]
- Jahandari, S.; Tao, Z.; Chen, Z.; Osborne, D.; Rahme, M. 4—Coal wastes: Handling, pollution, impacts, and utilization. In The Coal Handbook (Second Edition) Towards Cleaner Coal Utilization; Volume 2 in Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2023; pp. 97–163. [Google Scholar] [CrossRef]
Waste Type Less Than 10 mm | Literature Highlights |
---|---|
Landfill mining | Content of major and minor elements and rare earth elements. Research into their extraction is worthwhile. |
The resulting installations of mechanical–biological processing | Precipitates other waste fractions landfilled.Stabilizer difficult to manage—landfilled. |
Ashes from the combustion of coal and wood in domestic hearths | The main components of ash are oxides of silicon, aluminum, iron, calcium, and magnesium. Ashes also contain other substances such as chlorides, sulphates, and phosphates. Coal combustion ash is alkaline in nature. They are deposited in landfills. |
Power plant fly ash | Used for mural mortar due to its pozzulanic properties. Extensive use under road embankments. |
Construction waste | Building and demolition processing and recycling facilities accept demolition waste materials, then grind them up and add them to new materials. During grinding, particles below PM10 enter the environment. |
Street-sweeping waste | Due to the high seasonal homogeneity of the chloride content, the waste is deposited in landfills. New research directions suggest a new management method by incorporating the waste into lightweight aggregates. |
Wastes from coal preparation | Despite modern flotation methods, this waste still contains large amounts of coal (up to 50%), stored in mining dumps. Sometimes used for road construction. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gronba-Chyła, A.; Generowicz, A.; Kwaśnicki, P.; Kochanek, A. Recovery and Recycling of Selected Waste Fractions with a Grain Size Below 10 mm. Sustainability 2025, 17, 1612. https://doi.org/10.3390/su17041612
Gronba-Chyła A, Generowicz A, Kwaśnicki P, Kochanek A. Recovery and Recycling of Selected Waste Fractions with a Grain Size Below 10 mm. Sustainability. 2025; 17(4):1612. https://doi.org/10.3390/su17041612
Chicago/Turabian StyleGronba-Chyła, Anna, Agnieszka Generowicz, Paweł Kwaśnicki, and Anna Kochanek. 2025. "Recovery and Recycling of Selected Waste Fractions with a Grain Size Below 10 mm" Sustainability 17, no. 4: 1612. https://doi.org/10.3390/su17041612
APA StyleGronba-Chyła, A., Generowicz, A., Kwaśnicki, P., & Kochanek, A. (2025). Recovery and Recycling of Selected Waste Fractions with a Grain Size Below 10 mm. Sustainability, 17(4), 1612. https://doi.org/10.3390/su17041612