Evaluation of Bioinseticide in the Control of Plutella xylostella (Linnaeus, 1758): A Laboratory Study for Large-Scale Implementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Aqueous Extract of Simarouba sp.
2.3. Effect of Aqueous Extract on the Food Preference of P. xylostella in a Free-Choice Test
2.4. Effect of Aqueous Extract on the Oviposition of P. xylostella in a Free-Choice Test
2.5. Effects of Aqueous Extract on the Embryonic Phase of P. xylostella
2.6. Statistical Analysis
2.6.1. Free-Choice Food Preference Experiment
2.6.2. Free-Choice Oviposition Experiment
2.6.3. Effects of Aqueous Extract on the Embryonic Phase of P. xylostella
2.7. Chemical Composition
2.7.1. Assessing the Content of Phenolic Compounds by the Folin–Ciocalteu Method
2.7.2. Flavonoid Content Analysis by the Aluminum Chloride Method
2.7.3. Tannin Content Analysis by the Folin–Denis Method
2.7.4. DPPH Radical Scavenging Activity
3. Results
3.1. Effect of Aqueous Extract on the Feeding Preference of P. xylostella
3.2. Effect of Aqueous Extract on P. xylostella Oviposition
3.3. Effects of Aqueous Extract on the Embryonic Phase of P. xylostella
4. Discussion
4.1. Feeding
4.2. Oviposition
4.3. Embryonic Development
4.4. Chemical Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pavela, R. History, presence and perspective of using plant extracts as comercial botanical insecticides and farm products for protection Against insects—A review. Plant Prot. Sci. 2016, 52, 229–241. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrentes, and repellents in modern agriculture and increasingly regulated world. Anu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Hock, S.; Hung, S. Screening of Chinese medicinal herbs for bioactivity Against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbs). J. Stored Prod. Res. 2006, 43, 290–296. [Google Scholar] [CrossRef]
- Ribeiro, L.P.; Vendramim, J.D.; Baldin, E.L.L. (Eds.) Conceitos, histórico e estado da arte das pesquisas com inseticidas botânicos no Brasil. In Inseticidas Botânicos No Brasil: Aplicações, Potencialidades e Perspectivas, 1st ed.; Fealq: Piracicaba, Brazil, 2023. [Google Scholar]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural Products in Crop Protection. Bioorganic Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef] [PubMed]
- Köhler, H.R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef]
- Baidoo, P.K.; Mochiah, M.B. Comparing the effectiveness of garlic (Allium sativum L.) and hot pepper (Capsicum frutescens L.) in the management of the major pests of cabbage Brassica oleracea (L.). In Sustainable Agriculture Research; Canadian Center of Science and Education: Richmond Hill, ON, Canada, 2016; pp. 83–91. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Bullock, J.M.; Shore, R.F.; Heard, M.S.; Pereira, M.G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P.; et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees Science. Science 2017, 356, 1393–1395. [Google Scholar] [CrossRef] [PubMed]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdis. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mkenda, P.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.; Mtei, K.; Belmain, S.R. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 2015, 10, e0143530. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.L.; Barros, R.; Oliveira, J.D. Efeito de extratos aquosos de plantas do desenvolvimento de Plutella xylostella (L.) (Lepidoptera: Plutellidae). Neotrop. Entomol. 2001, 30, 151–156. [Google Scholar] [CrossRef]
- Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.; Jenkins, A.; Ferrier, R.; Li, H.; Luo, W.; et al. Impacts of Soil and Water Pollution on Food Safety and Health Risks in China. Environ. Int. 2015, 55, 5–15. [Google Scholar] [CrossRef]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback Moth Ecology and Management: Problems, Progress, and Prospects. Ann. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef]
- Capinera, J.L. Encyclopedia of Entomology, 2nd ed.; Capinera, J.L., Ed.; Springer: Gainesville, FL, USA, 2008. [Google Scholar]
- APRD. Arthropod Pesticide Resistance Database. Plutella xylostella. 2019. Available online: https://www.pesticideresistance.org/display.php?page=species&arId=571 (accessed on 11 February 2025).
- Wang, Y.; Huang, Y.; Xu, X.; Liu, Z.; Li, J.; Zhan, X.; Yang, G.; You, M.; You, S. CRISPR/Cas9-based functional analysis of yellow gene in the diamondback moth, Plutella xylostella. Insect Sci. 2021, 18, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.P.; Vendramim, J.D.; Baldin, E.L.L. Inseticidas Botânicos No Brasil: Aplicações, Potencialidades e Perspectivas; Fundação de Estudos Agrários Luiz de Queiroz: Sao Paulo, Brazil, 2023; 652p. [Google Scholar]
- Gaikwad, R.S.; Kakde, R.B.; Kulkarni, A.U.; Gaikwad, D.R.; Pancha, V.H. In vitro antimicrobial activity of crude extracts of Jatropha species. Curr. Bot. 2012, 3, 9–15. [Google Scholar]
- Joseph, B.; Sujatha, S. Insight of botanical based biopesticides against economically important pest. Int. J. Pharm. Life Sci. 2012, 11, 2138–2148. [Google Scholar]
- Dubey, N.K.; Shukla, R.; Kumar, A.; Singh, P.; Prakash, B. Prospects of botanical pesticides in sustainable agriculture. Curr. Sci. 2010, 98, 479–480. [Google Scholar]
- De Souza, S.A.; Padial, I.M.P.M.; Domingues, A.; Mauad, J.R.C.; Formagio, A.S.N.; Campos, J.F.; Malaquias, J.B.; Mussury, R.M. An Interesting Relationship between the Insecticidal Potential of Simarouba sp. in the Biology of Diamondback Moth. Sustainability 2023, 15, 7759. [Google Scholar] [CrossRef]
- Penteado, S.R. Defensivos Agrícolas Naturais, 3rd ed.; Grafimagem: Campinas, Brazil, 1999; p. 95. [Google Scholar]
- Saraiva, R.C.G.; Pinto, A.C.; Nunomura, S.M.; Pohlit, M.A. Triterpenos e alcalóide tipo cantinona dos galhos de Simaba polyphylla (Cavalcante) WW Thomas (Simaroubaceae). Quim. Nova 2006, 29, 264–268. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; Arriaga, A.M.C.; Santos, A.K.L.; Lemos, T.L.G.; Braz-Filho, R.; Vieira, I.J.C. Ocorrência e atividade biológica de quassinoides da última década. Quim. Nova 2007, 30, 935–951. [Google Scholar] [CrossRef]
- Barbosa, L.F.; Braz-Filho, R.; Vieira, I.J. Chemical constituents of plants from the genus Simaba (Simaroubaceae). Chem. Biodivers. 2011, 8, 2163–2178. [Google Scholar] [CrossRef] [PubMed]
- Vikas, B.; Akhil, B.S.; Suja, S.R.; Sujathan, K. An Exploration of Phytochemicals from Simaroubaceae. Asian Pac. J. Cancer Prev. 2017, 18, 1765–1767. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Fukamiya, N.; Lee, K.H. Bioactive quassinoids. Stud. Nat. Prod. Chem. 2000, 23, 285–333. [Google Scholar] [CrossRef]
- Braga, F.C.; Castilho, R.O. Potencialidade do cerrado como fonte de substâncias bioativas e de espécies medicinais para o desenvolvimento de fitoterápicos. In Farmacognosia: Coletânea Científica; Souza, G.H.B., Mello, J.C.P., Lopes, N.P., Eds.; UFOP: Ouro Preto, MG, Brazil, 2012; pp. 295–318. [Google Scholar]
- Pandey, A.; Misra, P.; Chandrashekar, K.; Trivedi, P.K. Development of AtMYB12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep. 2012, 31, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Peres, L.L.S.; Sobreiro, A.I.; Couto, I.F.S.; Silva, R.M.; Pereira, F.F.; Heredia-Vieira, S.C.; Cardoso, C.A.L.; Mauad, M.; Scalon, S.P.Q.; Verza, S.S.; et al. Chemical compounds and bioactivity of aqueous extracts of Alibertia spp. in the control of Plutella xylostella L. (Lepidoptera: Plutellidae). Insects 2017, 8, 125. [Google Scholar] [CrossRef]
- Gazzoni, D.L.; Hulsmeyer, A.; Hoffman-Campo, C.B. Efeito de diferentes doses de rutina e de quercetina na biologia de Anticarsia gemmatalis. Pesqui. Agropec. Bras. 1997, 32, 673–681. [Google Scholar]
- Barros, R.; Thuler, R.T.; Pereira, F.F. Técnica de criação de Plutella xylostella (L., 1758) (Lepidoptera: Yponomeutidae). In Técnicas de Criação de Pragas de Importância Agrícola, em Dietas Naturais, 1st ed.; Pratissoli, D., Ed.; Edufes: Victoria, Brazil, 2012; Volume 1, pp. 65–84. [Google Scholar]
- Kogan, M.; Goeden, R.D. The host-plant range of Lema trilineata daturaphila (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 1970, 63, 175–1180. [Google Scholar] [CrossRef]
- Souza, S.A.; Couto, I.; Mussury, R.M. Bioprospecção de espécies vegetais do cerrado com finalidade inseticida. In Temas Atuais em Ecologia Comportamental e Interações. Anais do II BecInt—Behavioral Ecology and Interactions Symposium, 1st ed.; Calixto, E.S., Toreza-Silingardi, H.M., Eds.; Composer: Belo Horizonte, Brazil, 2017; pp. 116–125. [Google Scholar]
- Torres, A.L.; Boica Junior, A.L.; Medeiros, C.A.M.; Barros, R. Efeito de extratos aquosos de Azadirachta indica, Melia azedarach e Aspidosperma pyrifolium no desenvolvimento e oviposição de Plutella xylostella. Bragantia 2006, 65, 447–457. [Google Scholar] [CrossRef]
- Moral, R.A.; Hinde, J.; Demétrio, C.G.B. Half-normal plots and overdispersed models in R: The hnp package. J. Stat. Softw. 2017, 81, 10. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Pansera, M.R.; Santos, A.C.A.; Paese, K.; Wasum, R.; Rossato, M.; Rota, L.D.; Pauletti, G.F.; Serafini, L.A. Análise de taninos totais em plantas aromáticas e medicinais cultivadas no Nordeste do Rio Grande do Sul. Rev. Bras. Farmacogn. 2003, 13, 17–22. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, R.J. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Field, L.M.; Pickett, J.A.; Wadhams, L.J. Molecular studies in insect olfaction. Insect Mol. Biol. 2000, 9, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gracia, A.; Vieira, F.G.; Rozas, J. Molecular evolution of the major chemosensory gene families in insects. Heredity 2009, 103, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M. Plant Resistance to Arthropods: Molecular and Conventional Approaches; Springer: Berlin/Heidelberg, Germany, 2005; p. 426. [Google Scholar]
- Talukder, F.A. Plant products as potential stored-product insect management agents-A mini review. Emir. J. Food Agric. 2006, 18, 17–32. [Google Scholar] [CrossRef]
- Rajashekar, Y.; Bakthavatsalam, N.; Shivanandappa, T. Botanicals as grain protectants. J. Entomol. Res. 2012, 2012, 646740. [Google Scholar] [CrossRef]
- Mau, R.F.L.; Kessing, J.L.M. Plutella xylostella (Linnaeus). 2007. Available online: http://www.extento.hawaii.edu/kbase/crop/Type/plutella.htm (accessed on 4 November 2024).
- Panizzi, A.R.; Parra, J.R.P. (Eds.) Introdução a bioecologia e nutrição de insetos como base para o manejo integrado de pragas. In Bioecologia e Nutrição de Insetos: Base Para o Manejo Integrado de Pragas, 2nd ed.; Embrapa Informação Tecnológica: Brasília, Brazil, 2009. [Google Scholar]
- Liu, X.L.; Zhang, J.; Yan, Q.; Miao, C.L.; Han, W.K.; Hou, W.; Yang, K.; Hansson, B.S.; Peng, Y.C.; Guo, J.M.; et al. The Molecular Basis of Host Selection in a Crucifer-Specialized Moth. Curr. Biol. 2020, 30, 4476–4482. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Brady, R.; Cravchik, A.; Morovov, P.; Rzhetsky, A.; Zuker, C.; Axel, R. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 2001, 104, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Kaupp, U.B. Olfactory signalling in vertebrates and insects: Differences and commonalities. Nat. Rev. Neurosci. 2010, 11, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Robertson, H.M. Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. Annu. Rev. Entomol. 2019, 64, 227–242. [Google Scholar] [CrossRef]
- Vendramim, J.D.; Nishikawa, M.A.N. Melhoramento para resistência a insetos. In Recursos Genéticos e Melhoramento: Plantas, 1st ed.; Nass, L.L., Valois, A.C.C., Melo, I.S., Valadares-Inglis, M.C., Eds.; Fundação Mato Grosso: Rondonópolis, Brazil, 2001; pp. 737–781. [Google Scholar]
- Renwick, J.A.A.; Chew, F.S. Oviposition Behavior in Lepidoptera. Ann. Rev. Entomol. 1994, 39, 377–400. [Google Scholar] [CrossRef]
- Panda, N.; Khush, G.S. Host Plant Resistance to Insects; CAB International: Ann Arbor, MI, USA, 1995; p. 431. [Google Scholar]
- Justus, K.A.; Mitchell, B.K. Oviposition site selection by the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). J. Insect Behav. 1996, 9, 887–898. [Google Scholar] [CrossRef]
- Ang, G.C.K.; Zalucki, M.P.; Furlong, M. Temporal changes in olfactory and oviposition responses of the diamondback moth to herbivore-induced host plants. Entomol. Exp. Appl. 2016, 160, 28–39. [Google Scholar] [CrossRef]
- Feng, B.; Qian, K.; Du, Y.J. Floral Volatiles from Vigna unguiculata Are Olfactory and Gustatory Stimulants for Oviposition by the Bean Pod Borer Moth Maruca vitrata. Insects 2017, 8, 60. [Google Scholar] [CrossRef]
- Jacquin-Joly, E.; Merlin, C. Insect olfactory receptors: Contributions of molecular biology to chemical ecology. J. Chem. Ecol. 2004, 30, 2359–2397. [Google Scholar] [CrossRef]
- Engostia, P.; Sangket, U.; Chotigeat, W.; Satasook, C. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: Implications for their adaptation and speciation. J. Mol. Evol. 2014, 79, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Maroneze, D.M.; Gallegos, D.M.N. Efeito de extrato aquoso de Melia azedarach no desenvolvimento das fases imatura e reprodutiva de Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae). Sem. Cienc. Agrar. 2009, 30, 537–550. [Google Scholar] [CrossRef]
- Hardy, J.E. Plutella maculipennis Curt. its natural and biological control in England. Bull. Entomol. Res. 1938, 29, 343–372. [Google Scholar] [CrossRef]
- Tomizawa, M.; Casida, J.E. Neonicotinoid inseticide toxicology: Mechanism of selective action. Ann. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Nenaah, G.E. Toxicity and growth inhibitory activities of methanol extract and the β-carboline alkaloids of Peganum harmala L. against two coleopteran stored-grain pests. J. Stored Prod. Res. 2001, 47, 255–261. [Google Scholar] [CrossRef]
- Musayimana, T.; Saxena, R.C.; Kairu, E.W.; Ogol, C.P.K.O.; Khan, Z.R. Effects of neem seed derivatives on behavioral and physiological responses of the Cosmopolites sordidus (Coleoptera: Curculionidae). J. Econ. Entomol. 2001, 94, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.S.J. Importance of flavonoids in insect–plant interactions: Feeding and oviposition. Phytochemistry 2001, 56, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Torres, K.; Martínez Herrera, J.; Figueroa Brito, R.; Wink, M.; Legal, L. Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda. BioControl 2009, 54, 459–466. [Google Scholar] [CrossRef]
- Bouayad, N.; Rharrabe, K.; Lamhamdi, M.; Nourouti, N.G.; Sayah, F. Dietary effects of harmine, a β-carboline alkaloid, on development, energy reserves and α-amylase activity of Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Saudi J. Biol. Sci. 2012, 19, 73–80. [Google Scholar] [CrossRef]
- Salunke, B.K.; Kotkar, H.M.; Mendki, O.S.; Upasani, S.M.; Maheshwari, V.L. Efficacy of flavonoids in controlling Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), a post-harvest pest of grain legumes. Crop Prot. 2005, 24, 888–893. [Google Scholar] [CrossRef]
- Couto, I.F.S.; Silva, S.V.; Valente, F.I.; Araújo, B.S.; Souza, S.A.; Mauad, M.; Scalon, S.P.Q.; Mussury, R.M. Botanical extracts of the Brazilian savannah affect feeding and oviposition of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). J. Agric. Sci. 2019, 11, 322–333. [Google Scholar] [CrossRef]
- Agnihotri, A.R.; Roy, A.A.; Joshi, R.S. Gustatory receptors in Lepidoptera: Chemosensation and beyond. Insect Mol. Biol. 2016, 25, 519–529. [Google Scholar] [CrossRef]
- Ferreira, E.A.; Faca, E.C.; de Souza, S.A.; Fioratti, C.A.G.; Mauad, J.R.C.; Cardoso, C.A.L.; Mauad, M.; Mussury, R.M. Antifeeding and Oviposition Deterrent Effect of Ludwigia spp. (Onagraceae) Against Plutella xylostella (Lepidoptera: Plutellidae). Plants 2022, 11, 2656. [Google Scholar] [CrossRef] [PubMed]
- Padial, I.M.P.M.; de Souza, S.A.; Malaquias, J.B.; Cardoso, C.A.L.; Pachú, J.K.S.; Fioratti, C.A.G.; Mussury, R.M. Leaf Extracts of Miconia albicans (Sw.) Triana (Melastomataceae) Prevent the Feeding and Oviposition of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Agronomy 2023, 13, 890. [Google Scholar] [CrossRef]
- Xu, W. How do moth and butterfly taste?—Molecular basis of gustatory receptors in Lepidoptera. Insect Sci. 2020, 27, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Pentzold, S.; Burse, A.; Boland, W. Contact chemosensation of phytochemicals by insect herbivores. Nat. Prod. Rep. 2017, 34, 478–483. [Google Scholar] [CrossRef]
- Govindachari, T.R.; Krishna, K.G.N.; Gopalakrishnan, G.; Suresh, G.; Wesley, S.D.; Seelatha, T. Insect antifeedant and growth regulating activities of quassinoids from Samadera indica. Fitoterapia 2001, 72, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Latif, Z.L.; Craven, L.; Hartley, T.G.; Kemp, B.R.; Potter, J.; Rice, M.J.; Waigh, R.D.; Waterman, P.G. An insecticidal quassinoid from the new Australian species Quassia sp. aff. bidwillii. Biochem. Syst. Ecol. 2000, 28, 183–184. [Google Scholar] [CrossRef]
- Coelho, A.A.M.; Paula, J.E.; Espíndola, L.S. Insecticidal activity of cerrado plant extracts on Rhodnius milesi (Carcavallo, Rocha, Galvão & Jurberg) (Hemiptera: Reduviidae), under laboratory conditions. Neotrop. Entomol. 2006, 35, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Odjo, A.; Piart, J.; Polonsky, J.; Roth, M. Etude de l’effet insecticide de deux quassainoides sur des larves de Locusta migratória magratoroides R et F (Orthoptera, Acrididae). C. R. Sci. Paris 1981, 293, 241–244. [Google Scholar]
- Klocke, J.A.; Arisawa, M.; Handa, S.S.; Kinghorn, A.D.; Cordell, G.A.; Farnsworth, N.R. Growth inhibitory, insecticidal and antifeedant effects of some antileukemic and cytotoxic quassinoids on two species of agricultural pests. Experientia 1985, 41, 379–382. [Google Scholar] [CrossRef]
- Daido, M.; Fukamiya, N.; Okano, M. Picrasinol D, a new quassinoid from the stem wood of Picrasma ailanthoides. J. Nat. Prod. 1995, 58, 605–608. [Google Scholar] [CrossRef]
- Polonsky, J. Quassinoid bitter principles. II. Fortschr. Chem. Org. Naturst. 1985, 47, 221–264. [Google Scholar] [CrossRef] [PubMed]
Concentration (%) | Consumed Leaf Area (cm2) | Preference Index 1 | Classification 1 | |
---|---|---|---|---|
Extract | Control | |||
10 | 0.00 ± 0.00 b n = 30 | 0.44 ± 0.03 a n = 30 | 0.00 | Phagodeterrent |
5 | 0.00 ± 0.00 b n = 30 | 0.45 ± 0.03 a n = 30 | 0.00 | Phagodeterrent |
1 | 0.01 ± 0.00 b n = 30 | 0.32 ± 0.03 a n = 30 | 0.01 | Phagodeterrent |
0.10 | 0.08 ± 0.002 b n = 30 | 0.36 ± 0.029 a n = 30 | 0.11 | Phagodeterrent |
Concentration (%) | Average Number of Eggs | F | p | Preference Index 1 | Classification 1 | |
---|---|---|---|---|---|---|
Extract | Control | |||||
10 | 28.30 ± 6.08 b n = 10 | 60.40 ± 8.57 a n = 10 | =7.7002 | =0.0051 | 0.60 | Ovideterrent |
5 | 55.50 ± 1.27 b n = 10 | 146.00 ± 7.74 a n = 10 | =196.53 | <0.0001 | 0.55 | Ovideterrent |
1 | 47.40 ± 9.53 b n = 10 | 119.80 ± 13.27 a n = 10 | =19.127 | <0.0001 | 0.52 | Ovideterrent |
0.10 | 57.00 ± 5.92 b n = 10 | 133.50 ± 9.37 a n = 10 | =49.458 | <0.0001 | 0.60 | Ovideterrent |
Concentrations of Simarouba sp. Aqueous Extract | |||||
---|---|---|---|---|---|
AE-S 10% | AE-S 5% | AE-S 1% | AE-S 0.1% | Control | |
Number of Hatched Larvae | 7.63 ± 0.74 b n = 10 | 7.92 ± 0.51 b n = 10 | 7.15 ± 0.41 b n = 10 | 8.67 ± 0.33 ab n = 10 | 9.99 ± 0.00 a n = 10 |
F and p value | F = 8.94; p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, S.A.d.; Padial, I.M.P.M.; Souza, T.S.d.; Domingues, A.; Ferreira, E.A.; Mauad, M.; Cardoso, C.A.L.; Malaquias, J.B.; Oliveira, L.V.d.Q.; Formagio, A.S.N.; et al. Evaluation of Bioinseticide in the Control of Plutella xylostella (Linnaeus, 1758): A Laboratory Study for Large-Scale Implementation. Sustainability 2025, 17, 1626. https://doi.org/10.3390/su17041626
Souza SAd, Padial IMPM, Souza TSd, Domingues A, Ferreira EA, Mauad M, Cardoso CAL, Malaquias JB, Oliveira LVdQ, Formagio ASN, et al. Evaluation of Bioinseticide in the Control of Plutella xylostella (Linnaeus, 1758): A Laboratory Study for Large-Scale Implementation. Sustainability. 2025; 17(4):1626. https://doi.org/10.3390/su17041626
Chicago/Turabian StyleSouza, Silvana Aparecida de, Isabella Maria Pompeu Monteiro Padial, Thais Silva de Souza, Alberto Domingues, Eliana Aparecida Ferreira, Munir Mauad, Claudia Andrea Lima Cardoso, José Bruno Malaquias, Luana Vitória de Queiroz Oliveira, Anelise Samara Nazari Formagio, and et al. 2025. "Evaluation of Bioinseticide in the Control of Plutella xylostella (Linnaeus, 1758): A Laboratory Study for Large-Scale Implementation" Sustainability 17, no. 4: 1626. https://doi.org/10.3390/su17041626
APA StyleSouza, S. A. d., Padial, I. M. P. M., Souza, T. S. d., Domingues, A., Ferreira, E. A., Mauad, M., Cardoso, C. A. L., Malaquias, J. B., Oliveira, L. V. d. Q., Formagio, A. S. N., Mauad, J. R. C., & Mussury, R. M. (2025). Evaluation of Bioinseticide in the Control of Plutella xylostella (Linnaeus, 1758): A Laboratory Study for Large-Scale Implementation. Sustainability, 17(4), 1626. https://doi.org/10.3390/su17041626