Beaver Dams as a Significant Factor in Shaping the Hydromorphological and Hydrological Conditions of Small Lowland Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rivers Location
2.2. Location of the Study Objects
2.2.1. The Kończak River
2.2.2. The Mogilnica River
2.2.3. The Cybina River
2.3. The Characteristics of Hydrometeorological Conditions
2.4. The Methodology for Studying Beaver Dams
- Inventory and geodetic work for the structures, as well as tests on the material from which the dams were constructed;
- Measurement of the water surface level in the vicinity of the beaver dams;
- Measurements of the distribution of water flow velocity in cross-sections at the upper and lower sites of the beaver dams;
- Determination of the granulometric composition of the sediment based on samples taken from the riverbed both downstream and upstream of the structure.
3. Results
3.1. Inventory of Structures
3.1.1. The Beaver Dam at Kończak, km 4+075
3.1.2. The Beaver Dam at Mogilnica, km 24+935
3.1.3. The Beaver Dam at Cybina, km 4+835
3.2. Characteristics of Hydrological Conditions
3.3. Water Table Riverbed Configuration
3.3.1. The Riverbed near Beaver Dam Kończak, km 4+075
3.3.2. The Riverbed near Beaver Dam Mogilnica, km 24+935
3.3.3. The Riverbed near Beaver Dam Cybina, km 4+835
3.4. Construction Material of Beaver Dams
3.4.1. Material of the Beaver Dam Kończak, km 4+075
3.4.2. Material of the Beaver Dam Mogilnica, km 24+935
3.4.3. Material of the Beaver Dam Cybina, km 4+835
3.5. Granulometric Composition of the Riverbed Sediment
3.6. Determining the Volume of Beaver Ponds
3.7. Determination of the Extent of Beaver Dams
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kałuża, T.; Pietruczuk, K.; Szoszkiewicz, K.; Tymiński, T. Assessment and Classification of the Ecological Status of Rivers in Poland According to the Requirements of the Water Framework Directive. Wasserwirtschaft 2014, 104, 24–29. [Google Scholar]
- Szałkiewicz, E.; Kałuża, T.; Grygoruk, M. Detailed Analysis of Habitat Suitability Curves for Macroinvertebrates and Functional Feeding Groups. Sci. Rep. 2022, 12, 10757. [Google Scholar] [CrossRef]
- Scamardo, J.E.; Marshall, S.; Wohl, E. Estimating Widespread Beaver Dam Loss: Habitat Decline and Surface Storage Loss at a Regional Scale. Ecosphere 2022, 13, e3962. [Google Scholar] [CrossRef]
- Butler, D.R. Characteristics of Beaver Ponds on Deltas in a Mountain Environment. Earth Surf. Processes Landf. 2012, 37, 876–882. [Google Scholar] [CrossRef]
- Feiner, K.; Lowry, C.S. Simulating the Effects of a Beaver Dam on Regional Groundwater Flow through a Wetland. J. Hydrol. Reg. Stud. 2015, 4, 675–685. [Google Scholar] [CrossRef]
- Boczon, A.; Wróbel, M.; Syniaiev, V. The Impact of Beaver Ponds on Water Resources in the Catchment Area in the Browsk Forest District-a Case Study. Lesn. Pr. Badaw. 2009, 70, 363. [Google Scholar]
- Tape, K.D.; Jones, B.M.; Arp, C.D.; Nitze, I.; Grosse, G. Tundra Be Dammed: Beaver Colonization of the Arctic. Glob. Chang. Biol. 2018, 24, 4478–4488. [Google Scholar] [CrossRef]
- Somorowska, U. Amplified Signals of Soil Moisture and Evaporative Stresses across Poland in the Twenty-First Century. Sci. Total Environ. 2022, 812, 151465. [Google Scholar] [CrossRef]
- Nyssen, J.; Pontzeele, J.; Billi, P. Effect of Beaver Dams on the Hydrology of Small Mountain Streams: Example from the Chevral in the Ourthe Orientale Basin, Ardennes, Belgium. J. Hydrol. 2011, 402, 92–102. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Jadczyszyn, J.; Gnatowski, T.; Brandyk, A. Variation of Moisture and Soil Water Retention in a Lowland Area of Central Poland—Solec Site Case Study. Atmosphere 2022, 13, 1372. [Google Scholar] [CrossRef]
- Macfarlane, W.W.; Wheaton, J.M.; Bouwes, N.; Jensen, M.L.; Gilbert, J.T.; Hough-Snee, N.; Shivik, J.A. Modeling the Capacity of Riverscapes to Support Beaver Dams. Geomorphology 2017, 277, 72–99. [Google Scholar] [CrossRef]
- Dittbrenner, B.J.; Pollock, M.M.; Schilling, J.W.; Olden, J.D.; Lawler, J.J.; Torgersen, C.E. Modeling Intrinsic Potential for Beaver (Castor canadensis) Habitat to Inform Restoration and Climate Change Adaptation. PLoS ONE 2018, 13, e0192538. [Google Scholar] [CrossRef]
- Kałuża, T.; Sojka, M.; Wróżyński, R.; Jaskuła, J.; Zaborowski, S.; Hämmerling, M. Modeling of River Channel Shading as a Factor for Changes in Hydromorphological Conditions of Small Lowland Rivers. Water 2020, 12, 527. [Google Scholar] [CrossRef]
- Bajkowski, S.; Oleszczuk, R.; Urbański, J.; Jadczyszyn, J.; Kiraga, M. The Impact of Beaver Dams on the Dynamic of Groundwater Levels at Łąki Soleckie. Sustainability 2024, 16, 4135. [Google Scholar] [CrossRef]
- Correll, D.L.; Jordan, T.E.; Weller, D.E. Beaver Pond Biogeochemical Effects in the Maryland Coastal Plain. Biogeochemistry 2000, 49, 217–239. [Google Scholar] [CrossRef]
- Collen, P.; Gibson, R.J. The General Ecology of Beavers (Castor spp.), as Related to Their Influence on Stream Ecosystems and Riparian Habitats, and the Subsequent Effects on Fish. Rev. Fish. Biol. Fish. 2000, 10, 439–461. [Google Scholar] [CrossRef]
- Ulloa, E.; Anderson, C.B.; Ardon, M.; Morcia, S.; Valenzuela, A.E.J. Organic Matter Characterization and Decomposition Dynamics in Sub Antarctic Streams Impacted by Invasive Beavers. Lat. Am. J. Aquat. Res. 2012, 40, 881–892. [Google Scholar] [CrossRef]
- Brazier, R.E.; Puttock, A.; Graham, H.A.; Auster, R.E.; Davies, K.H.; Brown, C.M.L. Beaver: Nature’s Ecosystem Engineers. WIREs Water 2021, 8, e1494. [Google Scholar] [CrossRef]
- Gibson, P.P.; Olden, J.D. Ecology, Management, and Conservation Implications of North American Beaver (Castor canadensis) in Dryland Streams. Aquat. Conserv. 2014, 24, 391–409. [Google Scholar] [CrossRef]
- Westbrook, C.J.; Cooper, D.J.; Baker, B.W. Beaver Dams and Overbank Floods Influence Groundwater–Surface Water Interactions of a Rocky Mountain Riparian Area. Water Resour. Res. 2006, 42, 2005WR004560. [Google Scholar] [CrossRef]
- Połeć, K.; Grzywna, A. Influence of Natural Barriers on Small Rivers for Changes in Water Quality Parameters. Water 2023, 15, 2065. [Google Scholar] [CrossRef]
- Naiman, R.J.; Johnston, C.A.; Kelley, J.C. Alteration of North American Streams by Beaver. BioScience 1988, 38, 753–762. [Google Scholar] [CrossRef]
- Karran, D.J.; Westbrook, C.J.; Wheaton, J.M.; Johnston, C.A.; Bedard-Haughn, A. Rapid Surface-Water Volume Estimations in Beaver Ponds. Hydrol. Earth Syst. Sci. 2017, 21, 1039–1050. [Google Scholar] [CrossRef]
- Johnston, C.A. Fate of 150 Year Old Beaver Ponds in the Laurentian Great Lakes Region. Wetlands 2015, 35, 1013–1019. [Google Scholar] [CrossRef]
- Hood, G.A.; Bayley, S.E. Beaver (Castor canadensis) Mitigate the Effects of Climate on the Area of Open Water in Boreal Wetlands in Western Canada. Biol. Conserv. 2008, 141, 556–567. [Google Scholar] [CrossRef]
- Orazi, V.; Hagge, J.; Gossner, M.M.; Müller, J.; Heurich, M. A Biodiversity Boost From the Eurasian Beaver (Castor fiber) in Germany’s Oldest National Park. Front. Ecol. Evol. 2022, 10, 873307. [Google Scholar] [CrossRef]
- Jones, B.M.; Tape, K.D.; Clark, J.A.; Nitze, I.; Grosse, G.; Disbrow, J. Increase in Beaver Dams Controls Surface Water and Thermokarst Dynamics in an Arctic Tundra Region, Baldwin Peninsula, Northwestern Alaska. Environ. Res. Lett. 2020, 15, 075005. [Google Scholar] [CrossRef]
- Wright, J.P.; Jones, C.G.; Flecker, A.S. An Ecosystem Engineer, the Beaver, Increases Species Richness at the Landscape Scale. Oecologia 2002, 132, 96–101. [Google Scholar] [CrossRef]
- Lokteff, R.L.; Roper, B.B.; Wheaton, J.M. Do Beaver Dams Impede the Movement of Trout? Trans. Am. Fish. Soc. 2013, 142, 1114–1125. [Google Scholar] [CrossRef]
- Gamborg, C.; Sandøe, P. Beavers and Biodiversity: The Ethics of Ecological Restoration. In Cambridge Studies in Philosophy and Biology; Oksanen, M., Pietarinen, J., Eds.; Philosophy and Biodiversity; Cambridge University Press: Cambridge, UK, 2004; pp. 217–236. [Google Scholar] [CrossRef]
- Nica, A.; Petrea, M.-S.; Simionov, I.-A.; Antache, A.; Cristea, V. Ecological Impact of European Beaver, Castor fiber. Sci. Papers. Ser. D. Anim. Sci. 2022, 65, 1. [Google Scholar]
- Rosell, F.; Bozsér, O.; Collen, P.; Parker, H. Ecological Impact of Beavers Castor fiber and Castor canadensis and Their Ability to Modify Ecosystems. Mammal. Rev. 2005, 35, 248–276. [Google Scholar] [CrossRef]
- Bashinskiy, I.V. The Effect of Beaver (Castor fiber Linnaeus, 1758) Activity on Amphibian Reproduction. Inland Water Biol. 2008, 1, 326–331. [Google Scholar] [CrossRef]
- Ciechanowski, M.; Kubic, W.; Rynkiewicz, A.; Zwolicki, A. Reintroduction of Beavers Castor fiber May Improve Habitat Quality for Vespertilionid Bats Foraging in Small River Valleys. Eur. J. Wildl. Res. 2011, 57, 737–747. [Google Scholar] [CrossRef]
- Dalbeck, L.; Lüscher, B.; Ohlhoff, D. Beaver Ponds as Habitat of Amphibian Communities in a Central European Highland. Amphib. Reptil. 2007, 28, 493–501. [Google Scholar] [CrossRef]
- Połeć, K.; Grzywna, A.; Tarkowska-Kukuryk, M.; Bronowicka-Mielniczuk, U. Changes in the Ecological Status of Rivers Caused by the Functioning of Natural Barriers. Water 2022, 14, 1522. [Google Scholar] [CrossRef]
- Nummi, P.; Hahtola, A. The Beaver as an Ecosystem Engineer Facilitates Teal Breeding. Ecography 2008, 31, 519–524. [Google Scholar] [CrossRef]
- Wróbel, M. Population of Eurasian Beaver (Castor fiber) in Europe. Glob. Ecol. Conserv. 2020, 23, e01046. [Google Scholar] [CrossRef]
- Crawford, J.C.; Liu, Z.; Nelson, T.A.; Nielsen, C.K.; Bloomquist, C.K. Microsatellite Analysis of Mating and Kinship in Beavers (Castor canadensis). J. Mammal. 2008, 89, 575–581. [Google Scholar] [CrossRef]
- Burchsted, D.; Daniels, M.; Thorson, R.; Vokoun, J. The River Discontinuum: Applying Beaver Modifications to Baseline Conditions for Restoration of Forested Headwaters. BioScience 2010, 60, 908–922. [Google Scholar] [CrossRef]
- Pietrek, A.G.; Escobar, J.M.; Fasola, L.; Roesler, I.; Schiavini, A. Why Invasive Patagonian Beavers Thrive in Unlikely Habitats: A Demographic Perspective. J. Mammal. 2016, 98, 283–292. [Google Scholar] [CrossRef]
- Butler, D.R. The Failure of Beaver Dams and Resulting Outburst Flooding: A Geomorphic Hazard of the Southeastern Piedmont. Geogr. Bull. 1989, 31, 29–38. [Google Scholar]
- Butler, D.R.; Malanson, G.P. The Geomorphic Influences of Beaver Dams and Failures of Beaver Dams. Geomorphology 2005, 71, 48–60. [Google Scholar] [CrossRef]
- Case, B.; Egyir, P.; Geertsema, M. Catastrophic Failure of a Beaver Dam at Chudnuslida Lake, East Central British Columbia. In Proceedings of the Geohazards 2003, Third Canadian Conference on Geotechnique and Natural Hazards, Edmonton, AB, Canada, 9–10 June 2003; Canadian Geotechnical Society Edmonton: Edmonton, AB, Canada, 2003; pp. 9–10. [Google Scholar] [CrossRef]
- Neumayer, M.; Teschemacher, S.; Schloemer, S.; Zahner, V.; Rieger, W. Hydraulic Modeling of Beaver Dams and Evaluation of Their Impacts on Flood Events. Water 2020, 12, 300. [Google Scholar] [CrossRef]
- Polish General Office of Geodesy and Cartography. Available online: www.gugik.gov.pl (accessed on 10 January 2025).
- Polish National Water Management Board. Available online: https://kzgw.gov.pl (accessed on 10 January 2025).
- Polish National Geological Institute. Available online: http://dm.pgi.gov.pl/ (accessed on 10 January 2025).
- Polish Data Portal. Map of the Hydrographic Division of Poland at Scale 1:10 000 (MPHP10k). Available online: https://dane.gov.pl/pl/dataset/2167,mapa-podzialu-hydrograficznego-polski-w-skali-110 (accessed on 10 January 2025).
- Polish Institute of Meteorology and Water Management. Available online: https://danepubliczne.imgw.pl/data/ (accessed on 19 December 2024).
- Szyga-Pluta, K. Ground Temperature Variability in Poznań (2011–2020). Quaest. Geogr. 2022, 41, 63–77. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A.; Graczyk, D. Vulnerability to Extreme Weather Events: Mapping Future Hazards in Wielkopolska Region, Poland. Reg. Environ. Chang. 2024, 24, 139. [Google Scholar] [CrossRef]
- Szyga-Pluta, K. Changes in Snow Cover Occurrence and the Atmospheric Circulation Impact in Poznań (Poland). Theor. Appl. Climatol. 2022, 147, 925–940. [Google Scholar] [CrossRef]
- Hämmerling, M.; Kałuża, T.; Zawadzki, P.; Zaborowski, S.; Sojka, M.; Liberacki, D.; Ptak, M. Application of Multi-Criteria Analytic Methods in the Assessment of the Technical Conditions of Small Hydraulic Structures. Buildings 2022, 12, 115. [Google Scholar] [CrossRef]
- Brandimarte, L.; Di Baldassarre, G. Uncertainty in Design Flood Profiles Derived by Hydraulic Modelling. Hydrol. Res. 2012, 43, 753–761. [Google Scholar] [CrossRef]
- Gibson, S.; Comport, B.; Corum, Z. Calibrating a Sediment Transport Model through a Gravel-Sand Transition: Avoiding Equifinality Errors in HEC-RAS Models of the Puyallup and White Rivers. In Proceedings of the World Environmental and Water Resources Congress, Sacramento, CA, USA, 18 May 2017; American Society of Civil Engineers: Sacramento, CA, USA, 2017; pp. 179–191. [Google Scholar]
- USACE. HEC-RAS River Analysis System User’s Manual Version 6.0; Report No. CPD-68; US Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2020.
- Peker, İ.B.; Gülbaz, S.; Demir, V.; Orhan, O.; Beden, N. Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping. Sustainability 2024, 16, 1226. [Google Scholar] [CrossRef]
- Dysarz, T.; Kałuża, T.; Mickevičius, K.; Veigneris, J.; Zawadzki, P.; Kujawiak, S.; Zaborowski, S.; Wicher-Dysarz, J.; Walczak, N.; Nieć, J.; et al. Application of Physical and Numerical Modeling for Determination of Waterway Safety under the Bridge in Kaunas City, Lithuania. Water 2023, 15, 731. [Google Scholar] [CrossRef]
- Polish Standard PN-EN 933-1:2012; Oznaczanie Składu Ziarnowego. Metoda Przesiewania. [Determination of Grain Composition. Sieving Method]. PKN: Warszawa, Poland, 2012.
- Dąbkowski, S.L. Kryterium Shieldsa po pięćdziesięciu latach [Shields criterion after fifty years]. Gospodarka Wodna. 1992, 1, 19–21. (In Polish) [Google Scholar]
- Little, W.C.; Meyer, P.G. Stability of Channel Beds by Armoring. J. Hydraul. Div. 1976, 102, 1647–1661. [Google Scholar]
- Dittrich, A. Wechselwirkung Morphologie/Strömung Naturnaher Fließgewässer. Mitt. Inst. Wasserwirtsch. Und Kult. 1998, 198, 208. [Google Scholar]
- Byczkowski, T. Hydrologia; SGGW: Warszawa, Poland, 1999. [Google Scholar]
- Cupak, A. Regionalization Methods for Low Flow Estimation in Ungauged Catchments—A Review. Acta Sci. Pol. Formatio Circumiectus 2020, 19, 21–35. [Google Scholar] [CrossRef]
- Jokiel, P.; Marszelewski, W.; Pociask-Karteczka, J. Hydrologia Polski. Wydawnictwo Naukowe PWN: Warszawa, Poland, 2022. [Google Scholar]
- Mamak, W. Regulacja Rzek i Potoków; Arkady: Warszawa, Poland, 1958. [Google Scholar]
- Woo, M.-K.; Waddington, J.M. Effects of Beaver Dams on Subarctic Wetland Hydrology. Arctic 1990, 43, 223–230. [Google Scholar]
- Puttock, A.; Graham, H.A.; Cunliffe, A.M.; Elliott, M.; Brazier, R.E. Eurasian Beaver Activity Increases Water Storage, Attenuates Flow and Mitigates Diffuse Pollution from Intensively-Managed Grasslands. Sci. Total Environ. 2017, 576, 430–443. [Google Scholar] [CrossRef]
- Stringer, A.P.; Gaywood, M.J. The Impacts of Beavers Castor spp. on Biodiversity and the Ecological Basis for Their Reintroduction to Scotland, UK. Mammal. Rev. 2016, 46, 270–283. [Google Scholar] [CrossRef]
- De Visscher, M.; Nyssen, J.; Pontzeele, J.; Billi, P.; Frankl, A. Spatio-temporal Sedimentation Patterns in Beaver Ponds along the Chevral River, Ardennes, Belgium. Hydrol. Process. 2014, 28, 1602–1615. [Google Scholar] [CrossRef]
- Harvey, G.L.; Henshaw, A.J.; Brasington, J.; England, J. Burrowing Invasive Species: An Unquantified Erosion Risk at the Aquatic-Terrestrial Interface. Rev. Geophys. 2019, 57, 1018–1036. [Google Scholar] [CrossRef]
- Ronnquist, A.L.; Westbrook, C.J. Beaver Dams: How Structure, Flow State, and Landscape Setting Regulate Water Storage and Release. Sci. Total Environ. 2021, 785, 147333. [Google Scholar] [CrossRef]
- Gorczyca, E.; Krzemień, K.; Sobucki, M.; Jarzyna, K. Can Beaver Impact Promote River Renaturalization? The Example of the Raba River, Southern Poland. Sci. Total Environ. 2018, 615, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Fal, B.; Bogdanowicz, E. Zasoby Wód Powierzchniowych Polski. Wiadomości Instututu Meteorol. I Gospod. Wodnej 2002, 25, 3–38. [Google Scholar]
- Jordan, C.E.; Fairfax, E. Beaver: The North American Freshwater Climate Action Plan. WIREs Water 2022, 9, e1592. [Google Scholar] [CrossRef]
- Fairfax, E.; Whittle, A. Smokey the Beaver: Beaver-dammed Riparian Corridors Stay Green during Wildfire throughout the Western United States. Ecol. Appl. 2020, 30, e02225. [Google Scholar] [CrossRef]
- Westbrook, C.J.; Ronnquist, A.; Bedard-Haughn, A. Hydrological Functioning of a Beaver Dam Sequence and Regional Dam Persistence during an Extreme Rainstorm. Hydrol. Process. 2020, 34, 3726–3737. [Google Scholar] [CrossRef]
- Hartman, G.; Törnlöv, S. Influence of Watercourse Depth and Width on Dam-building Behaviour by Eurasian Beaver (Castor fiber). J. Zool. 2006, 268, 127–131. [Google Scholar] [CrossRef]
- Swinnen, K.R.R.; Rutten, A.; Nyssen, J.; Leirs, H. Environmental Factors Influencing Beaver Dam Locations. J. Wildl. Manag. 2019, 83, 356–364. [Google Scholar] [CrossRef]
No. | Materials | Scale | System | Year | Source |
---|---|---|---|---|---|
1 | National Register of Boundaries | - | 92 | 2018 | [46] |
2 | Raster Hydrographical Map of Poland | 1:50,000 | 92 | 2010 | [47] |
3 | Administrative Map of Poland | 1:10,000 | 92 | 2017 | [46] |
4 | General Geographic Map of Poland | 1:50,000 | 92 | 2017 | [46] |
5 | Map of Physico-Geographical Regions | 1:50,000 | 92 | 2017 | [48] |
6 | Digital Terrain Model (DTM) | - | 92 | 2016–2023 | [46] |
7 | Database of General Geographical Objects (BDOO) | - | 92 | 2018 | [46] |
Meteorological Station | Precipitation Height | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[-] | [mm] | Total | |||||||||||
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
Szamotuły-Baborówko | 36 | 29 | 32 | 27 | 44 | 41 | 76 | 62 | 34 | 45 | 36 | 36 | 497 |
Paproć | 49 | 37 | 35 | 27 | 36 | 57 | 87 | 69 | 37 | 52 | 38 | 44 | 567 |
Poznań-Ławica | 40 | 37 | 39 | 31 | 50 | 55 | 63 | 72 | 39 | 42 | 33 | 40 | 541 |
No. | Type of Flow | Flow Designation | Kończak River, km 4+675 | Mogilnica River, km 24+935 | Cybina River, km 4+835 |
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
1 | Average annual | SQ [m3∙s−1] | 0.756 | 0.990 | 0.656 |
2 | Average low | SNQ = Qn [m3∙s−1] | 0.378 | 0.495 | 0.394 |
3 | Absolute low | NNQ [m3∙s−1] | 0.189 | 0.248 | 0.197 |
4 | Runoff coefficient | Cm [dm3∙s−1∙km −2] | 0.210 | 0.196 | 0.226 |
5 | factor | y [-] | 1.25 | 1.25 | 1.5 |
Parameter | Kończak River | Mogilnica River | Cybina River | |||
---|---|---|---|---|---|---|
Upstream | Downstream | Upstream | Downstream | Upstream | Downstream | |
D50 [mm] | 0.18 | 8.15 | 0.19 | 7.0600 | 0.19 | 8.83 |
D84 [mm] | 0.45 | 9.30 | 0.50 | 9.2500 | 0.40 | 9.70 |
D16 [mm] | 0.08 | 0.33 | 0.11 | 0.9000 | 0.13 | 8.10 |
D10 [mm] | 0.07 | 0.18 | 0.08 | 0.0690 | 0.09 | 8.00 |
D60 [mm] | 0.20 | 8.60 | 0.22 | 8.3000 | 0.22 | 9.10 |
D90 [mm] | 0.73 | 9.68 | 0.88 | 9.6200 | 0.50 | 9.87 |
u | 2.90 | 47.78 | 2.65 | 120.28 | 2.44 | 1.14 |
well sorted | badly sorted | well sorted | badly sorted | well sorted | well sorted | |
σg | 2.37 | 5.31 | 2.131 | 3.21 | 1.751 | 1.091 |
heterogeneous material | heterogeneous material | heterogeneous material | heterogeneous material | heterogeneous material | homogeneous material | |
σs | 4.06 | 1.19 | 4.63 | 1.36 | 2.63 | 1.12 |
material of various grains | non-differentiated material | material of various grains | non-differentiated material | material of various grains | non-differentiated material |
River Name | Water Level Elevation | Cross-Sectional Area in the Studied Section Without the Beaver Dam for SNQ | Change in the Cross-Sectional Area in the Studied Section | Length of the Estimated Backwater | Volume of Water over Length L | Increase in Retention Volume | Percentage Increase in Retention Compared to SNQ |
---|---|---|---|---|---|---|---|
m a.s.l. | m2 | m2 | km | m3 | m3 | % | |
Kończak km 4+075 | 54.16 | 0.44 | 1.30 | 0.48 | 500 | 300 | 60 |
54.21 | 1.74 | 0.52 | 650 | 450 | 69 | ||
54.40 | 3.57 | 0.68 | 1500 | 1,200 | 80 | ||
Mogielnica km 24+935 | 76.07 | 0.23 | 3.70 | 0.51 | 6450 | 6,200 | 96 |
76.15 | 4.22 | 0.95 | 10,400 | 10,050 | 97 | ||
76.32 | 5.34 | 1.60 | 26,750 | 26,350 | 99 | ||
Cybina km 4+835 | 60.45 | 0.31 | 2.55 | 0.07 | 110 | 90 | 82 |
60.52 | 3.11 | 0.08 | 150 | 120 | 80 | ||
60.69 | 4.65 | 0.29 | 760 | 670 | 88 |
River Name | Water Level Elevation | Change in the Cross-Sectional Area in the Studied Section | Length of the Estimated Backwater |
---|---|---|---|
m a.s.l. | m2 | kmhec | |
Kończak km 4+075 | 54.16 | 1.30 | 0.415 |
54.21 | 1.74 | 0.435 | |
54.40 | 3.57 | 0.445 | |
Mogielnica km 24+935 | 76.07 | 3.70 | 0.960 |
76.15 | 4.22 | 1.080 | |
76.32 | 5.34 | 1.505 | |
Cybina km 4+835 | 60.45 | 2.55 | 0.103 |
60.52 | 3.11 | 0.105 | |
60.69 | 4.65 | 0.138 |
Class | Materials | Preservation Stage |
---|---|---|
1 | stones, new branches, fresh mud | active |
2 | no stones, new branches, fresh mud | active |
3 | stones, old branches, mud and debris | old |
4 | no stones, old branches, mud and debris | old |
5 | no stones, old branches, some mud and debris remain | old |
6 | only large branches remain | old |
7 | only small branches remain | relic |
8 | most branches gone, only half of original structure remains | relic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kałuża, T.; Hämmerling, M.; Zaborowski, S.; Pawlak, M. Beaver Dams as a Significant Factor in Shaping the Hydromorphological and Hydrological Conditions of Small Lowland Streams. Sustainability 2025, 17, 3317. https://doi.org/10.3390/su17083317
Kałuża T, Hämmerling M, Zaborowski S, Pawlak M. Beaver Dams as a Significant Factor in Shaping the Hydromorphological and Hydrological Conditions of Small Lowland Streams. Sustainability. 2025; 17(8):3317. https://doi.org/10.3390/su17083317
Chicago/Turabian StyleKałuża, Tomasz, Mateusz Hämmerling, Stanisław Zaborowski, and Maciej Pawlak. 2025. "Beaver Dams as a Significant Factor in Shaping the Hydromorphological and Hydrological Conditions of Small Lowland Streams" Sustainability 17, no. 8: 3317. https://doi.org/10.3390/su17083317
APA StyleKałuża, T., Hämmerling, M., Zaborowski, S., & Pawlak, M. (2025). Beaver Dams as a Significant Factor in Shaping the Hydromorphological and Hydrological Conditions of Small Lowland Streams. Sustainability, 17(8), 3317. https://doi.org/10.3390/su17083317