Re-Estimating China’s Cotton Green Production Efficiency with Climate Factors: An Empirical Analysis Using County-Level Panel Data from Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Undesirable Output Super-Efficiency Slack-Based Measure Model
2.2.2. Malmquist Index
2.2.3. Moran’s I
- (1)
- Global Moran’s I
- (2)
- Local Moran’s I
2.3. Indices and Data
2.3.1. Study Period
2.3.2. Input Indices
2.3.3. Output Indices
3. Results
3.1. Analysis of Temporal Changes in Cotton Green Production Efficiency
3.1.1. Characteristics of the Temporal Variation in the Green Production Efficiency of Cotton
- (1)
- Despite an Upward Trend in Cotton Production Efficiency, Green Production Efficiency Exhibited a Downward Trajectory.
- (2)
- Decreasing Disparities in Green Production Efficiency Among Counties (Cities).
3.1.2. Dynamic Analysis of Green Efficiency Changes in Cotton Production in Xinjiang
- (1)
- Instability in the Change in the Green Production Efficiency of Cotton.
- (2)
- Divergence in the Green Production Efficiency of Cotton Across Various Counties (Cities).
3.2. Analysis of the Spatial Pattern of Cotton Green Production Efficiency
3.2.1. Overall Spatial Characteristics of Cotton Green Production Efficiency
- (1)
- The distribution characteristics of high-value counties (cities) and low-value counties (cities) are apparent.
- (2)
- The green production efficiency is gradually transitioning from a pattern of “high in the south and low in the north” to “high in the north and low in the south”.
3.2.2. Spatial Correlation of Cotton Green Production Efficiency
- (1)
- Global Spatial Autocorrelation Analysis
- (2)
- Local Spatial Autocorrelation Analysis
4. Discussion
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Suggestions
- (1)
- Promoting Ecological Protection for Green and High-Quality Development.
- (2)
- Promoting Advanced Agricultural Technologies and Optimizing Planting Structure and Scale.
- (3)
- Implementing Differentiated Strategies for Precise Governance.
- (4)
- Leveraging Spatial Agglomeration Effects to Promote Regional Coordinated Development.
- (5)
- Strengthening Theoretical and Technological Research to Build a Sustainable Development Support System.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. County-Level Green Production Efficiency of Cotton from 2002 to 2020
2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | 2018 | 2020 | |
Shanshan County | 0.134 | 0.260 | 0.255 | 0.270 | 0.197 | 0.194 | 0.204 | 0.025 | 0.124 | 0.105 |
Toksun County | 0.242 | 1.019 | 1.005 | 1.076 | 1.020 | 0.329 | 0.433 | 0.133 | 0.209 | 0.226 |
Balikun Kazak Autonomous County | 0.126 | 0.071 | 0.058 | 0.112 | 0.123 | 0.121 | 0.109 | 0.006 | 0.134 | 0.132 |
Yiwu County | 0.107 | 0.112 | 0.085 | 0.076 | 0.062 | 0.088 | 0.068 | 0.002 | 0.097 | 0.133 |
Changji City | 0.233 | 0.348 | 0.401 | 0.402 | 0.368 | 0.495 | 0.401 | 0.141 | 0.420 | 0.408 |
Fukang City | 0.129 | 0.152 | 0.189 | 0.079 | 0.081 | 1.089 | 1.126 | 0.007 | 0.271 | 0.379 |
Hutubi County | 0.398 | 0.633 | 0.537 | 0.609 | 0.417 | 0.478 | 0.538 | 0.206 | 0.684 | 1.006 |
Manas County | 1.098 | 1.061 | 1.009 | 1.047 | 1.018 | 0.773 | 1.003 | 0.403 | 1.002 | 0.794 |
Jimusar County | 0.093 | 0.127 | 0.126 | 0.069 | 0.001 | 0.081 | 0.058 | 0.011 | 0.134 | 0.111 |
Chabuchar Xibo Autonomous County | 0.135 | 0.155 | 0.211 | 0.341 | 0.200 | 0.188 | 0.108 | 0.004 | 0.101 | 0.107 |
Huocheng County | 0.131 | 0.142 | 0.149 | 0.116 | 0.083 | 0.109 | 0.104 | 0.008 | 0.087 | 0.109 |
Wusu City | 1.047 | 1.045 | 1.130 | 1.207 | 1.039 | 1.020 | 1.419 | 1.353 | 1.863 | 1.253 |
Shawan City | 0.713 | 0.654 | 0.717 | 0.662 | 1.006 | 1.051 | 1.025 | 1.068 | 1.020 | 1.015 |
Toli County | 0.032 | 0.096 | 0.102 | 0.093 | 0.115 | 0.110 | 0.119 | 0.010 | 0.129 | 0.137 |
Hoboksar Mongol Autonomous County | 0.196 | 0.308 | 0.367 | 0.416 | 0.471 | 0.532 | 0.216 | 0.096 | 0.362 | 0.395 |
Bole City | 0.588 | 1.001 | 0.628 | 0.565 | 0.492 | 0.653 | 0.445 | 0.455 | 0.477 | 0.505 |
Jinghe County | 1.201 | 1.095 | 1.081 | 1.326 | 1.012 | 1.159 | 1.097 | 1.125 | 1.049 | 1.003 |
Korla City | 0.554 | 1.013 | 1.041 | 0.696 | 1.005 | 0.838 | 1.077 | 1.436 | 0.750 | 0.600 |
Luntai County | 0.525 | 0.595 | 0.522 | 0.655 | 1.019 | 1.064 | 1.047 | 1.001 | 1.175 | 1.008 |
Yuli County | 1.896 | 1.554 | 1.343 | 1.477 | 1.384 | 1.449 | 1.289 | 1.260 | 1.291 | 1.477 |
Ruoqiang County | 1.023 | 1.039 | 1.023 | 0.413 | 0.357 | 0.271 | 0.211 | 0.029 | 0.156 | 0.205 |
Qiemo County | 0.759 | 1.120 | 1.089 | 1.651 | 1.312 | 1.084 | 0.487 | 0.228 | 0.443 | 0.331 |
Yanqi Hui Autonomous County | 0.069 | 0.084 | 0.109 | 0.096 | 0.091 | 0.142 | 0.117 | 0.001 | 0.090 | 0.095 |
Hejing County | 0.114 | 0.170 | 0.254 | 0.228 | 0.302 | 0.280 | 0.158 | 0.000 | 0.099 | 0.224 |
Heshuo County | 0.274 | 0.443 | 1.013 | 0.627 | 0.451 | 0.468 | 0.403 | 0.047 | 0.248 | 0.139 |
Bohu County | 0.103 | 0.168 | 0.326 | 0.326 | 0.248 | 0.239 | 0.185 | 0.035 | 0.192 | 0.224 |
Aksu City | 1.028 | 1.016 | 0.718 | 0.815 | 1.117 | 1.038 | 0.706 | 1.471 | 0.631 | 0.702 |
Wensu County | 0.785 | 0.601 | 0.644 | 0.655 | 0.735 | 0.690 | 0.499 | 1.166 | 0.415 | 0.374 |
Kuche City | 0.593 | 0.662 | 0.585 | 0.496 | 0.516 | 0.593 | 0.902 | 1.192 | 1.233 | 0.757 |
Shaya County | 1.030 | 0.818 | 1.001 | 0.752 | 0.777 | 0.789 | 1.057 | 1.635 | 1.158 | 1.457 |
Xinhe County | 1.176 | 1.034 | 0.940 | 1.050 | 1.379 | 0.580 | 1.017 | 1.112 | 0.671 | 0.598 |
Wushi County | 0.177 | 0.143 | 0.193 | 0.279 | 0.190 | 0.173 | 0.092 | 0.002 | 0.089 | 0.140 |
Awati County | 1.009 | 1.005 | 0.836 | 0.709 | 1.013 | 1.365 | 1.386 | 0.441 | 0.781 | 1.045 |
Keping County | 0.213 | 0.408 | 0.507 | 0.481 | 0.410 | 0.445 | 0.559 | 0.312 | 0.441 | 1.010 |
Atushi City | 0.147 | 0.162 | 0.186 | 0.162 | 0.152 | 0.145 | 0.213 | 0.172 | 0.195 | 0.242 |
Aketao County | 0.282 | 0.308 | 0.278 | 0.239 | 0.180 | 0.188 | 0.210 | 0.057 | 0.163 | 0.169 |
Shufu County | 0.289 | 0.243 | 0.254 | 0.230 | 0.157 | 0.160 | 0.273 | 0.015 | 0.138 | 0.163 |
Shule County | 1.018 | 1.006 | 0.552 | 0.395 | 0.317 | 0.422 | 1.308 | 1.235 | 0.410 | 0.475 |
Yingjisha County | 0.204 | 0.316 | 0.334 | 0.298 | 0.271 | 0.195 | 0.331 | 0.183 | 0.229 | 0.279 |
Zepu County | 1.015 | 0.620 | 0.538 | 0.446 | 0.200 | 0.202 | 0.293 | 0.067 | 0.161 | 0.177 |
Shache County | 1.029 | 0.686 | 1.285 | 1.357 | 0.527 | 0.462 | 0.798 | 0.366 | 0.293 | 0.333 |
Yecheng County | 1.045 | 0.358 | 0.360 | 0.389 | 0.224 | 0.233 | 0.414 | 0.202 | 0.254 | 0.290 |
Makit County | 0.847 | 0.768 | 1.107 | 1.022 | 1.241 | 0.689 | 0.857 | 1.277 | 0.529 | 0.448 |
Yuepuhu County | 0.550 | 0.355 | 0.497 | 0.326 | 0.339 | 0.335 | 0.711 | 0.546 | 0.547 | 0.566 |
Jiashi County | 1.025 | 0.456 | 0.665 | 0.564 | 0.331 | 0.346 | 1.038 | 0.414 | 0.565 | 0.502 |
Bachu County | 1.095 | 1.267 | 1.080 | 1.102 | 1.003 | 0.662 | 1.042 | 0.362 | 0.555 | 0.474 |
Hotan County | 0.156 | 0.236 | 0.234 | 0.207 | 0.191 | 0.188 | 0.254 | 0.089 | 0.214 | 0.069 |
Moyu County | 0.148 | 0.249 | 0.232 | 0.216 | 0.199 | 0.179 | 0.211 | 0.081 | 0.115 | 0.093 |
Pishan County | 0.209 | 0.306 | 0.297 | 0.269 | 0.258 | 0.206 | 0.246 | 0.104 | 0.115 | 0.131 |
Luopu County | 0.260 | 0.298 | 0.284 | 0.263 | 0.213 | 0.165 | 0.174 | 0.009 | 0.079 | 0.046 |
Cele County | 0.146 | 0.236 | 0.300 | 0.291 | 0.263 | 0.209 | 0.226 | 0.036 | 0.113 | 0.138 |
Yutian County | 0.194 | 0.215 | 0.251 | 0.339 | 0.285 | 0.208 | 0.264 | 0.057 | 0.129 | 0.160 |
The average green production efficiency | 0.531 | 0.543 | 0.556 | 0.538 | 0.507 | 0.484 | 0.549 | 0.417 | 0.439 | 0.442 |
The average production efficiency | 0.249 | 0.287 | 0.331 | 0.331 | 0.257 | 0.282 | 0.383 | 0.334 | 0.295 | 0.298 |
Appendix B. Malmquist Indices and Their Decompositions for Cotton in Each County (City) of Xinjiang
MI | TC | EC | PEC | SEC | |
Shanshan County | 0.945 | 0.905 | 0.951 | 1.136 | 1.086 |
Toksun County | 1.011 | 1.109 | 1.065 | 1.019 | 0.868 |
Balikun Kazak Autonomous County | 1.127 | 1.022 | 0.971 | 1.000 | 0.995 |
Yiwu County | 1.070 | 0.941 | 0.994 | 0.858 | 0.929 |
Changji City | 1.090 | 1.054 | 1.086 | 1.041 | 1.014 |
Fukang City | 1.153 | 0.937 | 0.981 | 1.102 | 0.932 |
Hutubi County | 1.127 | 1.039 | 1.120 | 1.049 | 1.039 |
Manas County | 1.054 | 1.072 | 1.033 | 1.013 | 0.998 |
Jimusar County | 0.948 | 0.864 | 0.939 | 1.046 | 0.813 |
Chabuchar Xibo Autonomous County | 0.977 | 0.828 | 0.969 | 1.003 | 0.973 |
Huocheng County | 0.993 | 0.950 | 0.949 | 1.056 | 1.026 |
Wusu City | 1.092 | 1.036 | 1.073 | 1.050 | 1.014 |
Shawan City | 1.082 | 1.090 | 1.021 | 1.012 | 1.003 |
Toli County | 1.123 | 0.989 | 0.923 | 0.951 | 0.878 |
Hoboksar Mongol Autonomous County | 1.139 | 1.071 | 0.994 | 1.006 | 0.988 |
Bole City | 1.035 | 1.036 | 1.010 | 0.985 | 1.019 |
Jinghe County | 1.044 | 1.134 | 0.948 | 1.001 | 0.947 |
Korla City | 1.055 | 1.039 | 1.051 | 1.062 | 1.020 |
Luntai County | 1.076 | 1.025 | 1.058 | 1.038 | 1.023 |
Yuli County | 1.008 | 1.042 | 0.995 | 1.012 | 1.001 |
Ruoqiang County | 0.966 | 0.988 | 0.890 | 1.007 | 1.018 |
Qiemo County | 0.990 | 1.038 | 0.982 | 1.093 | 1.028 |
Yanqi Hui Autonomous County | 1.032 | 0.935 | 0.892 | 1.238 | 1.116 |
Hejing County | 0.991 | 0.942 | 1.000 | 1.072 | 0.999 |
Heshuo County | 1.038 | 1.002 | 0.964 | 1.020 | 1.057 |
Bohu County | 1.158 | 1.017 | 1.015 | 1.092 | 1.031 |
Aksu City | 1.047 | 1.034 | 1.012 | 1.021 | 0.989 |
Wensu County | 1.012 | 1.011 | 0.995 | 1.004 | 0.992 |
Kuche City | 1.090 | 0.988 | 1.040 | 1.041 | 1.001 |
Shaya County | 1.057 | 1.023 | 1.033 | 0.965 | 1.077 |
Xinhe County | 1.065 | 1.018 | 1.042 | 0.998 | 1.026 |
Wushi County | 0.854 | 0.753 | 0.851 | 1.122 | 0.848 |
Awati County | 1.067 | 1.045 | 1.069 | 1.050 | 1.021 |
Keping County | 1.067 | 0.990 | 1.112 | 1.047 | 1.226 |
Atushi City | 1.098 | 1.065 | 1.032 | 1.014 | 1.024 |
Aketao County | 0.941 | 1.010 | 1.047 | 1.045 | 1.027 |
Shufu County | 0.847 | 1.030 | 0.941 | 1.032 | 0.931 |
Shule County | 1.001 | 1.048 | 0.967 | 1.044 | 1.053 |
Yingjisha County | 0.941 | 1.071 | 0.995 | 1.057 | 1.032 |
Zepu County | 0.931 | 1.017 | 1.009 | 0.993 | 1.030 |
Shache County | 0.968 | 1.066 | 0.961 | 1.086 | 0.986 |
Yecheng County | 0.896 | 1.056 | 0.983 | 1.047 | 1.023 |
Makit County | 0.862 | 0.966 | 0.896 | 0.966 | 0.912 |
Yuepuhu County | 0.955 | 1.048 | 1.046 | 1.038 | 1.023 |
Jiashi County | 0.862 | 1.033 | 0.905 | 0.987 | 1.014 |
Bachu County | 1.010 | 1.035 | 1.046 | 1.032 | 0.997 |
Hotan County | 0.995 | 0.998 | 0.993 | 1.056 | 0.950 |
Moyu County | 0.931 | 0.980 | 1.002 | 1.049 | 0.955 |
Pishan County | 0.978 | 0.999 | 1.004 | 1.084 | 1.062 |
Luopu County | 0.743 | 0.757 | 0.870 | 1.124 | 0.911 |
Cele County | 0.971 | 0.884 | 0.956 | 1.198 | 1.122 |
Yutian County | 1.029 | 1.054 | 0.954 | 1.167 | 1.073 |
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of the Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2021. [Google Scholar]
- Golcher, S.C.; Visseren-Hamakers, J.I. Framing and integration in the global forest, agriculture and climate change nexus. Environ. Plan. C Politics Space 2018, 36, 1415–1436. [Google Scholar] [CrossRef]
- Li, R.; Geng, S. Impacts of Climate Change on Agriculture and Adaptive Strategies in China. J. Integr. Agric. 2013, 12, 1402–1408. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Hokazono, S.; Suzuki, N.; Kaiser, H.M. Measuring the Effects of a Sliding Scale Duty System on China’s Cotton Market: A Spatial Equilibrium Approach. Agribusiness 2014, 30, 345–365. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Sun, L.; Luo, Q.Y.; Chen, H.Y.; Yang, Y.D. Spatial optimization of cotton cultivation in Xinjiang: A climate change perspective. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103523. [Google Scholar] [CrossRef]
- Zhang, S.; Pu, Z.; Li, J.; Li, X.; Ji, C.; Wa, M.; Li, Y. Changes in cotton planting zoning in southern Xinjiang under the background of climate warming. China Agric. Meteorol. 2015, 36, 594–601. [Google Scholar]
- Tan, X.; Zhang, X.; You, L. The impact of natural factors and policy interventions on the transformation of cotton production layout in China. Agric. Technol. Econ. 2020, 300, 79–93. [Google Scholar]
- Sun, P. Climate Change and Cotton Planting Promotion in the Yellow River Basin during the Yuan Dynasty. J. Henan Univ. Soc. Sci. Ed. 2024, 64, 38–40+153. [Google Scholar]
- Huang, J.; Ji, F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int. J. Biometeorol. 2015, 59, 877–888. [Google Scholar] [CrossRef]
- Wang, H.; Gan, Y.; Wang, R.; Niu, J.Y.; Zhao, H.; Yang, Q.G.; Li, G.C. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric. For. Meteorol. 2008, 148, 1242–1251. [Google Scholar] [CrossRef]
- Luo, Q.; Bange, M.; Clancy, L. Cotton crop phenology in a new temperature regime. Ecol. Model. 2014, 285, 22–29. [Google Scholar] [CrossRef]
- Han, W.; Liu, S.; Lei, Y.; Zhang, Y.; Han, Y.; Wang, G.; Feng, L.; Li, X.; Li, Y.; Wang, Z. Climate warming accelerates cotton growth while cultivar shifts extend the growth period. Field Crops Res. 2023, 293, 108850. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Han, S.; Macadam, I.; Liu, D.L. Prediction of cotton yield and water demand under climate change and future adaptation measures. Agric. Water Manag. 2014, 144, 42–53. [Google Scholar] [CrossRef]
- Gérardeaux, E.; Sultan, B.; Palaï, O.; Guiziou, C.; Oettli, P.; Naudin, K. Positive effect of climate change on cotton in 2050 by CO2 enrichment and conservation agriculture in Cameroon. Agron. Sustain. Dev. 2013, 33, 485–495. [Google Scholar] [CrossRef]
- Naveed, M.; Hongshi, H.E.; Zong, S.; Du, H.; Satti, Z.; Tan, X.; Qazi, M.Y. Spatial Pattern of Cotton Yield Variability and Its Response to Climate Change in Cotton Belt of Pakistan. Chin. Geogr. Sci. 2023, 33, 351–362. [Google Scholar]
- Li, N.; Li, Y.; Yang, Q.; Biswas, A.; Dong, H. Simulating climate change impacts on cotton using AquaCrop model in China. Agric. Syst. 2024, 216, 103897. [Google Scholar] [CrossRef]
- Abuduwaili, J. The climatic and hydrological changes and environmental responses recorded in lake sediments of Xinjiang, China. J. Arid Land 2011, 3, 1–8. [Google Scholar]
- Wang, Q.; Zhai, P.-M.; Qin, D.-H. New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Clim. Change Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Cao, K.; Gao, J. Assessment of climatic conditions for tourism in Xinjiang, China. Open Geosci. 2022, 14, 382–392. [Google Scholar] [CrossRef]
- Tang, X.; Lv, X.; He, Y. Features of climate change and their effects on glacier snow melting in Xinjiang, China. Comptes Rendus Geosci. 2013, 345, 93–100. [Google Scholar] [CrossRef]
- China National Bureau of Statistics. China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2023.
- China National Bureau of Statistics. China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2024.
- Xue, L.; Qu, A.; Guo, X.; Hao, C. Research on Environmental Performance Measurement and Influencing Factors of Key Cities in China Based on Super-Efficiency SBM-Tobit Model. Sustainability 2024, 16, 4792. [Google Scholar] [CrossRef]
- Yang, T.; Chen, W.; Zhou, K.; Ren, M. Regional energy efficiency evaluation in China: A super efficiency slack-based measure model with undesirable outputs. J. Clean. Prod. 2018, 198, 859–866. [Google Scholar] [CrossRef]
- Wentsao, P.; Zhuang, M.; Zhou, Y.; Yang, J. Research on sustainable development and efficiency of China’s E-Agriculture based on a data envelopment analysis-Malmquist model. Technol. Forecast. Soc. Change 2021, 1621, 20298. [Google Scholar]
- Asmild, M.; Baležentis, T.; Hougaard, L.J. Multi-directional productivity change: MEA-Malmquist. J. Product. Anal. 2016, 46, 109–119. [Google Scholar] [CrossRef]
- Myeki, L.W.; Matthews, N.; Bahta, Y.T. Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index. Sustainability 2023, 15, 1645. [Google Scholar] [CrossRef]
- Perry, M.E.; Dezzani, J.R.; Seavert, F.C.; Pierce, F.J. Spatial variation in tree characteristics and yield in a pear orchard. Precis. Agric. 2010, 11, 42–60. [Google Scholar] [CrossRef]
- Pang, J.; Li, H.; Lu, C.; Lu, C.; Chen, X. Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China. Int. J. Environ. Res. Public Health 2020, 17, 7541. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Yu, Y. Current Situation and Optimization Countermeasures of Cotton Subsidy in China Based on WTO Rules. Agriculture 2022, 12, 1245. [Google Scholar] [CrossRef]
- Gao, M. Re-estimation of Agricultural Productivity under Climate Change. China Soft Sci. 2018, 9, 26–39. [Google Scholar]
- Chen, S.; Xu, J.; Zhang, H. The Impact of Climate Change on China’s Grain Production: An Empirical Analysis Based on County level Panel Data. China Rural Econ. 2016, 5, 2–15. [Google Scholar]
- Aytop, Y. Determination of Energy Consumption and Technical Efficiency of Cotton Farms in Türkiye. Sustainability 2023, 15, 11194. [Google Scholar] [CrossRef]
- Arif, M.W.; Amin, M. Measuring efficiency of cotton cultivation in Pakistan: A restricted production frontier study. J. Sci. Food Agric. 2014, 94, 3038–3045. [Google Scholar]
- Candemir, S. Efficiency and Functional analysis of cotton production in Turkey: Case of Kahramanmaras Province. Custos Agronegocio Online 2021, 17, 100–122. [Google Scholar]
- Örük, G. Measurement of Input Usage Efficiency in Cotton Production in Diyarbakir Province, Turkey. Custos Agronegocio 2020, 16, 55–71. [Google Scholar]
- Cobanoglu, F. Measuring the technical efficiency of cotton farms in Turkey using stochastic frontier and data envelopment analysis. Outlook Agric. 2013, 42, 125–131. [Google Scholar] [CrossRef]
- Oruk, G.; Baran, M.F. Measurement of technical efficiency in cotton production in Batman Province, Turkey: A comparison of DEA and SFA. Custos Agronegocio Online 2022, 18, 271–284. [Google Scholar]
- Theriault, V.; Serra, R. Institutional Environment and Technical Efficiency: A Stochastic Frontier Analysis of Cotton Producers in West Africa. J. Agric. Econ. 2014, 65, 383–405. [Google Scholar] [CrossRef]
- Shafiq, M.; Rehman, T. The extent of resource use inefficiencies in cotton production in Pakistan’s Punjab: An application of Data Envelopment Analysis. Agric. Econ. 2000, 22, 321–330. [Google Scholar] [CrossRef]
- Theodoridis, A.; Hasanov, S.; Abruev, A. Efficiency and Productivity Change Analysis of Cotton Production in Uzbekistan. Outlook Agric. 2014, 43, 259–263. [Google Scholar] [CrossRef]
- Yue, H.; Yu, F.W. Research on Green Total Factor Productivity of Cotton in China—Based on Malmquist Luenberger Index Analysis. Price Theory Pract. 2019, 10, 43–47+166. [Google Scholar]
- Qianna, L.; Juan, Y.; Hongsong, T.; Changjiang, X. Low carbon productivity, regional differences, and dynamic evolution of cotton in Xinjiang. Resour. Environ. Arid Reg. 2022, 36, 1–8. [Google Scholar]
- Yang, Y.; Chang, W. Analysis of Spatial and Temporal Distribution and Changes in Extreme Climate Events in Northwest China from 1960 to 2021: A Case Study of Xinjiang. Sustainability 2024, 16, 4960. [Google Scholar] [CrossRef]
Categories | Indicators | Indicators Declaration | Unit |
---|---|---|---|
Climatic Inputs | Temperature input | Annual average temperature | 0.1 °C |
Precipitation input | Annual precipitation | 0.1 mm | |
General Inputs | Land input | Annual total sown area | km2 |
Labor input | Annual number of workers engaged | persons | |
Machinery input | Annual mechanical power input | kW | |
Electricity input | Annual total electricity consumption | 10 MW·h | |
Fertilizer input | Annual total fertilizer application | t | |
Desirable Output | Cotton yield | Annual total cotton production | t |
Undesirable Outputs | Agricultural chemical use | Annual total fertilizer application | 104 t |
Farmland management activities | Irrigation area | 104 t |
Year | MI | TC | EC | PEC | SEC |
---|---|---|---|---|---|
2003 | 1.085 | 1.075 | 1.010 | 0.990 | 1.020 |
2004 | 1.168 | 1.115 | 1.047 | 0.996 | 1.051 |
2005 | 0.939 | 0.991 | 0.947 | 1.016 | 0.932 |
2006 | 1.177 | 1.111 | 1.060 | 0.979 | 1.082 |
2007 | 1.065 | 1.107 | 0.962 | 1.197 | 0.803 |
2008 | 0.917 | 0.952 | 0.964 | 0.808 | 1.193 |
2009 | 0.825 | 0.835 | 0.988 | 1.083 | 0.912 |
2010 | 0.900 | 0.950 | 0.948 | 0.951 | 0.997 |
2011 | 1.066 | 1.084 | 0.984 | 1.075 | 0.915 |
2012 | 0.986 | 1.022 | 0.964 | 1.005 | 0.960 |
2013 | 0.889 | 0.915 | 0.972 | 0.944 | 1.031 |
2014 | 1.360 | 1.221 | 1.113 | 1.163 | 0.957 |
2015 | 0.680 | 0.771 | 0.882 | 0.950 | 0.928 |
2016 | 0.733 | 1.479 | 0.495 | 0.915 | 0.541 |
2017 | 0.708 | 0.572 | 1.238 | 1.077 | 1.150 |
2018 | 0.779 | 0.862 | 0.905 | 0.990 | 0.914 |
2019 | 0.870 | 0.855 | 1.017 | 0.967 | 1.052 |
2020 | 0.925 | 0.978 | 0.946 | 0.940 | 1.007 |
Average | 0.948 | 0.994 | 0.969 | 1.003 | 0.969 |
2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | ||
---|---|---|---|---|---|---|---|---|---|---|
Moran’s I index | 0.162 | 0.181 | 0.149 | 0.217 | 0.294 | 0.239 | 0.251 | 0.224 | 0.284 | |
Z-value | 1.970 | 1.846 | 1.815 | 2.215 | 2.878 | 2.395 | 2.519 | 2.277 | 2.794 | |
p-value | 0.049 | 0.065 | 0.070 | 0.027 | 0.004 | 0.017 | 0.012 | 0.023 | 0.005 | |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
Moran’s I index | 0.249 | 0.140 | 0.172 | 0.095 | 0.125 | 0.238 | 0.229 | 0.282 | 0.197 | 0.190 |
Z-value | 2.508 | 1.475 | 1.776 | 1.055 | 1.320 | 2.372 | 2.302 | 2.846 | 2.004 | 1.948 |
p-value | 0.012 | 0.140 | 0.076 | 0.292 | 0.187 | 0.018 | 0.021 | 0.004 | 0.045 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chang, W.; Jules, K.K. Re-Estimating China’s Cotton Green Production Efficiency with Climate Factors: An Empirical Analysis Using County-Level Panel Data from Xinjiang. Sustainability 2025, 17, 3379. https://doi.org/10.3390/su17083379
Yang Y, Chang W, Jules KK. Re-Estimating China’s Cotton Green Production Efficiency with Climate Factors: An Empirical Analysis Using County-Level Panel Data from Xinjiang. Sustainability. 2025; 17(8):3379. https://doi.org/10.3390/su17083379
Chicago/Turabian StyleYang, Yang, Wei Chang, and Kouadio Konan Jules. 2025. "Re-Estimating China’s Cotton Green Production Efficiency with Climate Factors: An Empirical Analysis Using County-Level Panel Data from Xinjiang" Sustainability 17, no. 8: 3379. https://doi.org/10.3390/su17083379
APA StyleYang, Y., Chang, W., & Jules, K. K. (2025). Re-Estimating China’s Cotton Green Production Efficiency with Climate Factors: An Empirical Analysis Using County-Level Panel Data from Xinjiang. Sustainability, 17(8), 3379. https://doi.org/10.3390/su17083379