The Impact of Climate Risk on Insurers’ Sustainable Operational Efficiency: Empirical Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Factors Affecting the Operational Efficiency of Insurance Companies
2.2. Impact of Climate Risk
3. Theoretical Analysis and Research Hypotheses
3.1. Theoretical Analysis of Climate Risk on Insurers’ Efficiency
3.2. Mechanisms of Climate Risk Transmission to Insurers’ Efficiency
3.3. The Role of Stock of Disaster-Resistant Infrastructure and Insurance Technology
4. Research Design
4.1. Sample Selection and Data Sources
4.2. Definition of Variables
4.2.1. Explanatory Variables
- 1.
- Climate physical risk
- 2.
- Climate transition risks
4.2.2. Explained Variables
4.2.3. Mediating Variables
4.2.4. Moderating Variables
4.2.5. Control Variables
- (1)
- GDP growth rate (GDPG): Economic growth drives the expansion of the insurance market and raises the demand for insurers’ business. This paper measures the macroeconomic environment using GDP growth rate data from the China Statistical Yearbook.
- (2)
- Consumer price index (lnCPI): Inflation affects insurers’ underwriting costs and investment returns. This paper uses the CPI’s logarithmic form to minimize the impact of volatility.
- (3)
- Return on investment (ROI): Insurance companies rely on investment income to maintain profitability, and higher investment returns enhance corporate risk resistance. This paper calculates the ratio of ROI to total assets as a measurement indicator.
- (4)
- Firm size (ES): Larger insurers will likely enjoy cost advantages and be more competitive. This paper uses the logarithm of total assets to measure firm size.
- (5)
- Claims ratio (CR): The claims ratio reflects an insurer’s level of underwriting risk, and higher claims ratios may erode profitability. This paper uses the ratio of claims expense to premium income as a measurement indicator.
- (6)
- Human structure (HUM): The level of human capital affects insurance companies’ risk management and product innovation abilities. This paper measures the human capital structure by selecting the ratio of employees with bachelor’s degrees or above to the total number of employees.
- (7)
- Risk-taking capacity (RTC): Underwriting capacity affects insurance companies’ stability in the face of market volatility, and more substantial risk-taking capacity helps improve operational efficiency. This paper adopts the ratio of insurance revenue to total assets as a measure.
4.3. Model
4.3.1. Fixed Effects Model
4.3.2. GMM Models
4.3.3. Models of Mediating Effects
4.3.4. Moderating Effects Model
5. Empirical Analysis
5.1. Descriptive Statistics
5.2. Baseline Regression and Analysis
5.3. Endogeneity Test
5.4. Robustness Tests
5.4.1. Adjustment of Sample Period
5.4.2. Replacement of Explanatory Variables
5.4.3. Alternative Empirical Model
5.5. Heterogeneity Test
5.5.1. Heterogeneity of Company Type
5.5.2. Heterogeneity of Location
5.6. Mechanism Analysis
5.7. Moderating Effects
6. Research Findings and Policy Recommendations
6.1. Conclusions of the Study
6.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sensharma, S.; Sinha, M.; Sharma, D. Do Indian firms engage in greenwashing? Evidence from Indian firms. Australas. Account. Bus. Financ. J. 2022, 16, 67–88. [Google Scholar] [CrossRef]
- Mercer. 2024 Global Risk Report: Workforce and Careers. Available online: https://www.mercer.com.cn/insights/workforce-and-careers/2024-global-risk-report/?utm_source=Merchandise-promotion&utm_medium=web (accessed on 1 March 2025).
- Eckstein, D.; Künzel, V.; Schäfer, L. The Global Climate Risk Index 2021; Germanwatch: Bonn, Germany, 2021. [Google Scholar]
- He, W.; Liu, Y.; Sun, H.; Taghizadeh-Hesary, F. How does climate change affect rice yield in China? Agriculture 2020, 10, 441. [Google Scholar] [CrossRef]
- Iqbal, B.; Alabbosh, K.F.; Jalal, A.; Suboktagin, S.; Elboughdiri, N. Sustainable food systems transformation in the face of climate change: Strategies, challenges, and policy implications. Food Sci. Biotechnol. 2024, 34, 871–883. [Google Scholar] [CrossRef]
- Carney, M. Breaking the Tragedy of the Horizon-Climate Change and Financial Stability. Speech given at Lloyd’s of London. 2015, Volume 29, pp. 220–230. Available online: https://www.bis.org/review/r151009a.pdf (accessed on 1 March 2025).
- Batten, S.; Sowerbutts, R.; Tanaka, M. Let’s Talk About the Weather: The Impact of Climate Change on Central Banks; Bank of England: London, UK, 2016. [Google Scholar]
- Livsey, A. Lex in Depth: The $900 bn Cost of Stranded Energy Assets. Financial Times. 2020, p. 4. Available online: https://www.ft.com/content/95efca74-4299-11ea-a43a-c4b328d9061c (accessed on 10 March 2025).
- Berkeley Earth. Berkeley Earth: Surface Temperature Data. Available online: https://berkeleyearth.org/ (accessed on 1 March 2025).
- Wulandari, S.; Cabanda, E. Determinants of cost efficiency and productivity growth of the Indonesian insurance industry. Int. J. Knowl. Based Organ. 2016, 6, 70–82. [Google Scholar]
- Fernández, E.; Iglesias-Antelo, S.; López-López, V.; Rodríguez-Rey, M.; Fernandez-Jardon, C.M. Firm and industry effects on small, medium-sized and large firms’ performance. BRQ Bus. Res. Q. 2019, 22, 25–35. [Google Scholar] [CrossRef]
- Yao, S.; Feng, G.; Han, Z. An empirical analysis of the efficiency of China’s insurance industry. Econ. Res. 2005, 7, 56–65. [Google Scholar]
- Cummins, J.D.; Tennyson, S.; Weiss, M.A. Consolidation and efficiency in the US life insurance industry. J. Bank. Financ. 1999, 23, 325–357. [Google Scholar] [CrossRef]
- Cummins, J.D.; Weiss, M.A.; Xie, X.; Zi, H. Economies of scope in financial services: A DEA efficiency analysis of the US insurance industry. J. Bank. Financ. 2010, 34, 1525–1539. [Google Scholar] [CrossRef]
- Wang, J.L.; Jeng, V.; Peng, J.L. The impact of corporate governance structure on the efficiency performance of insurance companies in Taiwan. Geneva Pap. Risk Insur. Issues Pract. 2007, 32, 264–282. [Google Scholar] [CrossRef]
- Huang, L.Y.; Lai, G.C.; McNamara, M.; Wang, J. Corporate governance and efficiency: Evidence from US property-liability insurance industry. J. Risk Insur. 2011, 78, 519–550. [Google Scholar] [CrossRef]
- Eling, M.; Schaper, P. Under pressure: How the business environment affects productivity and efficiency of European life insurance companies. Eur. J. Oper. Res. 2017, 258, 1082–1094. [Google Scholar] [CrossRef]
- Li, S.L.; Li, X.; Liu, Q.N. A study on the dynamic association between insurance cycle and economic cycle in China. Insur. Res. 2020, 4, 16–37. [Google Scholar] [CrossRef]
- Nourani, M.; Kweh, Q.L.; Devadason, E.S.; Chandran, V.G.R. A decomposition analysis of managerial efficiency for the insurance companies: A data envelopment analysis approach. Manag. Decis. Econ. 2020, 41, 885–901. [Google Scholar] [CrossRef]
- Olasehinde-Williams, G.; Balcilar, M. Examining the effect of globalization on insurance activities in large emerging market economies. Res. Int. Bus. Financ. 2020, 53, 101228. [Google Scholar] [CrossRef]
- Cummins, J.D.; Rubio-Misas, M. Deregulation, consolidation, and efficiency: Evidence from the Spanish insurance industry. J. Money Credit. Bank. 2006, 38, 323–355. [Google Scholar] [CrossRef]
- Weiss, M.A.; Choi, B.P. State regulation and the structure, conduct, efficiency and performance of US auto insurers. J. Bank. Financ. 2008, 32, 134–156. [Google Scholar] [CrossRef]
- Network for Greening the Financial System (NGFS). Overview of Environmental Risk Analysis by Financial Institutions; Network for Greening the Financial System: Paris, France, 2020. [Google Scholar]
- Lasisi, L.; Omoke, P.C.; Salisu, A.A. Climate policy uncertainty and stock market volatility. Asian Econ. Lett. 2022, 4. early view. [Google Scholar] [CrossRef]
- Guo, Y. Impact of Climate Risk on Stock Market. Highlights Bus. Econ. Manag. 2024, 40, 198–206. [Google Scholar] [CrossRef]
- Bolton, P.; Kacperczyk, M. Do investors care about carbon risk? J. Financ. Econ. 2021, 142, 517–549. [Google Scholar] [CrossRef]
- Wu, N.; Xiao, W.; Liu, W.; Zhang, Z. Corporate climate risk and stock market reaction to performance briefings in China. Environ. Sci. Pollut. Res. 2022, 29, 53801–53820. [Google Scholar] [CrossRef]
- Xu, X.; An, H.; Lucey, B.M.; Huang, S. Nonlinear interaction of climate risk and stock market. J. Clim. Financ. 2025, 10, 100055. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Huang, N.; Zou, X. The impacts of climate change risks on financial performance of mining industry: Evidence from listed companies in China. Resour. Policy 2020, 69, 101828. [Google Scholar] [CrossRef]
- Joshi, G.; Dash, R. A bibliometric analysis of climate investing. Int. J. Energy Econ. Policy 2023, 13, 396–407. [Google Scholar] [CrossRef]
- Krueger, P.; Sautner, Z.; Starks, L.T. The importance of climate risks for institutional investors. Rev. Financ. Stud. 2020, 33, 1067–1111. [Google Scholar] [CrossRef]
- Allman, E. Pricing climate change risk in corporate bonds. J. Asset Manag. 2022, 23, 596–618. [Google Scholar] [CrossRef]
- Engle, R.F.; Giglio, S.; Kelly, B.; Lee, H.; Stroebel, J. Hedging climate change news. Rev. Financ. Stud. 2020, 33, 1184–1216. [Google Scholar] [CrossRef]
- Brahmana, R.; Puah, C.; Chai, M. Natural disaster and local bank non-performing loans: Case of Nias tsunami 2004. Econ. Bull. 2016, 36, 2413–2421. [Google Scholar]
- Brei, M.; Mohan, P.; Strobl, E. The impact of natural disasters on the banking sector: Evidence from hurricane strikes in the Caribbean. Q. Rev. Econ. Financ. 2019, 72, 232–239. [Google Scholar] [CrossRef]
- Li, S.; Pan, Z. Climate transition risk and bank performance: Evidence from China. J. Environ. Manag. 2022, 323, 116275. [Google Scholar] [CrossRef]
- Campiglio, E.; Dafermos, Y.; Monnin, P.; Ryan-Collins, J.; Schotten, G.; Tanaka, M. Climate change challenges for central banks and financial regulators. Nat. Clim. Change 2018, 8, 462–468. [Google Scholar] [CrossRef]
- Scholtens, B. Why finance should care about ecology. Trends Ecol. Evol. 2017, 32, 500–505. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Lu, S. The impact of climate risk on credit supply to private and public sectors: An empirical analysis of 174 countries. Environ. Dev. Sustain. 2024, 26, 2443–2465. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, V. Managing Financial Climate Risk in Banking Services: A Review of Current Practices and the Challenges Ahead. arXiv 2024, arXiv:2405.17682. [Google Scholar]
- Tucker, M. Climate change and the insurance industry: The cost of increased risk and the impetus for action. Ecol. Econ. 1997, 22, 85–96. [Google Scholar] [CrossRef]
- Gray, I. Hazardous simulations: Pricing climate risk in US coastal insurance markets. Econ. Soc. 2021, 50, 196–223. [Google Scholar] [CrossRef]
- Collier, S.J.; Cox, S. Governing urban resilience: Insurance and the problematization of climate change. Econ. Soc. 2021, 50, 275–296. [Google Scholar] [CrossRef]
- Sawada, Y.; Takasaki, Y. Natural disaster, poverty, and development: An introduction. World Dev. 2017, 94, 2–15. [Google Scholar] [CrossRef]
- Liu, B.; Yin, W.; Chen, G.; Yao, J. The threshold effect of climate risk and the non-linear role of climate policy uncertainty on insurance demand: Evidence from OECD countries. Financ. Res. Lett. 2023, 55, 103820. [Google Scholar] [CrossRef]
- Yang, S.; Li, S.W. A Study on the Impact of Climate Risk on Insurance Demand in China. Financ. Rev. 2023, 2, 91–117+126. [Google Scholar]
- Islam, D.I.; Rahman, A.; Sarker, M.S.R.; Luo, J.; Liang, H. Factors affecting farmers’ willingness to adopt crop insurance to manage disaster risk: Evidence from Bangladesh. Int. Food Agribus. Manag. Rev. 2021, 24, 463–480. [Google Scholar] [CrossRef]
- Robinson, P.J.; Botzen, W.W.; Duijndam, S.; Molenaar, A. Risk communication nudges and flood insurance demand. Clim. Risk Manag. 2021, 34, 100366. [Google Scholar] [CrossRef]
- Akhter, W.; Pappas, V.; Khan, S.U. A comparison of Islamic and conventional insurance demand: Worldwide evidence during the Global Financial Crisis. Res. Int. Bus. Financ. 2017, 42, 1401–1412. [Google Scholar] [CrossRef]
- Gong, W.Z. The Impact of Climate Change on Risk Taking of Insurance Companies. Master’s Thesis, Southwest University of Finance and Economics, Chengdu, China, 2024. [Google Scholar]
- Chen, J.; Lin, R. The impact of climate risks on insurers’ profitability: Evidence from China. J. Clim. Financ. 2024, 9, 100053. [Google Scholar] [CrossRef]
- Kim, S. Long-term Impacts of Climate Change Risks on Commercial Banks and Property Casualty Insurance. Standby 2024, 34, 107–121. [Google Scholar]
- Gatzert, N.; Reichel, P. Awareness of climate risks and opportunities: Empirical evidence on determinants and value from the US and European insurance industry. Geneva Pap. Risk Insur. Issues Pract. 2022, 47, 5–26. [Google Scholar] [CrossRef]
- Li, Z.; Li, H. 2011 A new species of the genus Pseudococcus (Hymenoptera, Braconidae). The risk shock effect of climate change on the insurance industry: A theoretical analysis and empirical test. Insur. Res. 2024, 7, 18–35. [Google Scholar]
- Tian, G.; Xu, J.; Zhang, T.; Zhang, H.; Liu, J.; Shi, Q.; Deng, F.; Chen, F.; He, J.; Wu, Q.; et al. Rural residents’ willingness to participate in basic medical insurance and influential factors: A survey of three provinces in China. Public Health 2022, 10, 1037763. [Google Scholar] [CrossRef]
- Tesselaar, M.; Botzen, W.W.; Haer, T.; Hudson, P.; Tiggeloven, T.; Aerts, J.C. Regional inequalities in flood insurance affordability and uptake under climate change. Sustainability 2020, 12, 8734. [Google Scholar] [CrossRef]
- Roder, G.; Hudson, P.; Tarolli, P. Flood risk perceptions and the willingness to pay for flood insurance in the Veneto region of Italy. Int. J. Disaster Risk Reduct. 2019, 37, 101172. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, H.; Liu, R. Farmers’ demand for informal risk management strategy and weather index insurance: Evidence from China. Disaster Risk Sci. 2021, 12, 281–297. [Google Scholar] [CrossRef]
- Duncan, J.; Myers, R.J. Crop insurance under catastrophic risk. Am. J. Agric. Econ. 2000, 82, 842–855. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Pan, L. A study of impact of climate change on the US stock market as exemplified by the NASDAQ 100 index constituents. Sci. Rep. 2024, 14, 15468. [Google Scholar]
- Painter, M. An inconvenient cost: The effects of climate change on municipal bonds. J. Financ. Econ. 2020, 135, 468–482. [Google Scholar] [CrossRef]
- Hue, B.; Jinks, A.; Spain, J.; Bora, M.; Siew, S. Investment risk for long-term investors: Risk measurement approaches: Considerations for pension funds and insurers. Br. Actuar. J. 2019, 24, e16. [Google Scholar] [CrossRef]
- Barabanova, V.V. Insurance industry in the scope of sustainable development. Dig. Financ. 2023, 28, 162–178. [Google Scholar] [CrossRef]
- Jung, H.; Engle, R.; Ge, S.; Zeng, X. Physical Climate Risk Factors and an Application to Measuring Insurers’ Climate Risk Exposure. In FRB of New York Staff Report; No. 1066; Federal Reserve Bank of New York: New York, NY, USA, 2024; Available online: https://www.bancaditalia.it/pubblicazioni/altri-atti-convegni/2024-embedding-sustainability/papers/4.1-Jung.pdf (accessed on 10 March 2025).
- Stricker, L.; Pugnetti, C.; Wagner, J.; Zeier Röschmann, A. Green insurance: A roadmap for executive management. J. Risk Financ. Manag. 2022, 15, 221. [Google Scholar] [CrossRef]
- Aleknevičienė, V.; Bendoraitytė, A. Role of Green Finance in Greening the Economy: Conceptual Approach. Cent. Eur. Bus. Rev. 2023, 12, 105–130. [Google Scholar] [CrossRef]
- Pfeifer, D.; Langen, V. Insurance business and sustainable development. arXiv 2021, arXiv:2102.02612. [Google Scholar]
- Bressan, S. Effects from ESG scores on P&C insurance companies. Sustainability 2023, 15, 12644. [Google Scholar] [CrossRef]
- Wei, J.; Khan, S. Climate risk, natural resources, and climate change mitigation options in BRICS: Implications for green recovery. Pollut. Res. 2023, 30, 29015–29028. [Google Scholar] [CrossRef]
- Wang, L.; Shu, Z.; Wang, G.; Peng, T.; Lin, Q.X.; Zhou, J. Spatial and temporal evolution of multi-scale meteorological drought in Hanjiang River Basin from 1961 to 2018. Resour. Environ. Yangtze Basin 2021, 30, 1649–1658. [Google Scholar]
- Pastor-Paz, J.; Noy, I.; Sin, I.; Fleming, D.; Sood, A. Projecting the Effect of Climate Change-Induced Increases in Extreme Rainfall on Residential Property Damages: A Case Study from New Zealand. Motu Economic and Public Policy Research, Motu Working Paper 20-02. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3547769 (accessed on 1 March 2025).
- Gatzert, N.; Özdil, O. The impact of dependencies between climate risks on the asset and liability side of non-life insurers. Eur. Actuar. J. 2024, 14, 1–19. [Google Scholar] [CrossRef]
- Dang, H. A competing risks dynamic hazard approach to investigate the insolvency outcomes of property-casualty insurers. Geneva Pap. Risk Insur. Issues Pract. 2014, 39, 42–76. [Google Scholar] [CrossRef]
- El-Hermisy, H. The economic effects of environmental and climatic changes on the economic sector. Int. J. Mod. Agric. Environ. 2021, 1, 51–78. [Google Scholar] [CrossRef]
- Mills, E. Climate change, insurance and the buildings sector: Technological synergisms between adaptation and mitigation. Build. Res. Inf. 2003, 31, 257–277. [Google Scholar] [CrossRef]
- Neale, F.R.; Drake, P.P.; Jin, L.; Lai, G. Technology investment and insurer efficiency. Geneva Pap. Risk Insur. Issues Pract. 2024, 50, 8–33. [Google Scholar] [CrossRef]
- Upadhyay, M.P. Impact of Relationship Marketing on Customers Loyalty. Nepal. J. Manag. Res. 2024, 4, 7–10. [Google Scholar] [CrossRef]
- Liu, H.; Meng, J.; Li, W.; Liu, S. Extreme Weather Risk Assessment and Insurance Decision Making Based on ARIMA Model and Visual Analysis. Highlights Sci. Eng. Technol. 2024, 101, 305–313. [Google Scholar] [CrossRef]
- Vyas, S.; Dalhaus, T.; Kropff, M.; Aggarwal, P.; Meuwissen, M.P. Mapping global research on agricultural insurance. Environ. Res. Lett. 2021, 16, 103003. [Google Scholar] [CrossRef]
- You, X.; Wu, J.; Li, Z. Research on the impact of green insurance on regional environmental quality: Evidence from China. Front. Environ. Sci. 2024, 12, 1364288. [Google Scholar] [CrossRef]
- Lee, W.Y.; Fung, D.W.H. Current deficiencies and reinforcement of institutional pillars for reform in the green insurance market: A systematic review. Eur. J. Eur. J. Sustain. Dev. Res. 2023, 7, em0235. [Google Scholar] [CrossRef] [PubMed]
- Klapkiv, L.; Ülgen, F. Green products in the insurance market. Wiadomości Ubezpieczeniowe 2023, 2, 67–81. [Google Scholar] [CrossRef]
- Zona, R.; Roll, K.; Law, Z. Sustainable/green insurance products. In Casualty Actuarial Society E-Forum; Casualty Actuarial Society: Arlington, VA, USA, 2014. [Google Scholar]
- Wanyan, R.; Locking, Y. A study on the impact of insurtech on the insurance industry. Insur. Res. 2019, 10, 35–46. [Google Scholar]
- Eling, M.; Lehmann, M. The impact of digitalization on the insurance value chain and the insurability of risks. Geneva Pap. Risk Insur. Issues Pract. 2018, 43, 359–396. [Google Scholar] [CrossRef]
- Zhang, F.M. A Study on the Impact of Insurtech on Insurers’ Trust. Master’s Thesis, Southwestern University of Finance and Economics, Chengdu, China, 2023. [Google Scholar]
- Deschênes, O.; Greenstone, M. The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. Am. Econ. Rev. 2007, 97, 354–385. [Google Scholar] [CrossRef]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature shocks and economic growth: Evidence from the last half century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef]
- Kousky, C. Informing climate adaptation: A review of the economic costs of natural disasters. Energy Econ. 2014, 46, 576–592. [Google Scholar] [CrossRef]
- Hong, H.; Li, F.W.; Xu, J. Climate risks and market efficiency. J. Econom. 2019, 208, 265–281. [Google Scholar] [CrossRef]
- Choi, D.; Gao, Z.; Jiang, W. Attention to global warming. Rev. Financ. Stud. 2020, 33, 1112–1145. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Zhang, L.; Li, Y. Impacts of climate change on net crop revenue in North and South China. China Agric. Econ. Rev. 2014, 6, 358–378. [Google Scholar] [CrossRef]
- Yang, S.; Li, S.; Rui, X.; Zhao, T. The impact of climate risk on the asset side and liability side of the insurance industry: Evidence from China. Econ. Change Restruct. 2024, 57, 117. [Google Scholar] [CrossRef]
- Gavriilidis, K. Measuring Climate Policy Uncertainty. SSRN. 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3847388 (accessed on 1 March 2025).
- Gambhir, A.; George, M.; McJeon, H.; Arnell, N.W.; Bernie, D.; Mittal, S.; Köberle, A.C.; Lowe, J.; Rogelj, J.; Monteith, S. Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nat. Clim. Change 2022, 12, 88–96. [Google Scholar] [CrossRef]
- Guo, K.; Li, Y.; Zhang, Y.; Ji, Q.; Zhao, W. How are climate risk shocks connected to agricultural markets? J. Commod. Mark. 2023, 32, 100367. [Google Scholar] [CrossRef]
- Bingler, J.; Colesanti Senni, C.; Monnin, P. Climate Transition Risk Metrics: Understanding Convergence and Divergence across Firms and Providers. SSRN. 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3923330 (accessed on 1 March 2025).
- Ren, X.; Li, W.; Duan, K.; Zhang, X. Does climate policy uncertainty really affect corporate financialization? Environ. Dev. Sustain. 2024, 26, 4705–4723. [Google Scholar] [CrossRef]
- Ma, Y.R.; Liu, Z.; Ma, D.; Zhai, P.; Guo, K.; Zhang, D.; Ji, Q. A news-based climate policy uncertainty index for China. Sci. Data 2023, 10, 881. [Google Scholar] [CrossRef]
- Vazifehdoust, H.; Taleghani, M.; Esmaeilpour, F.; Nazari, K. Purchasing green to become greener: Factors influence consumers’ green purchasing behavior. Manag. Sci. Lett. 2013, 3, 2489–2500. [Google Scholar] [CrossRef]
- Ardia, D.; Bluteau, K.; Boudt, K.; Inghelbrecht, K. Climate change concerns and the performance of green versus brown stocks. national Bank of Belgium. Manag. Sci. 2020, 69, 7151–7882. [Google Scholar]
- Zhang, X.; Nasir, M.H.M.; Nor, S.N.H.J.N. The Green Chain: A Carbon Neutral Path from Climate Risk to Environmental, Social and Governance Performance. paperASIA 2024, 40, 113–123. [Google Scholar] [CrossRef]
- Fried, H.O.; Schmidt, S.S.; Lovell, C.K. (Eds.) The Measurement of Productive Efficiency: Techniques and Applications; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Sabet, R.; Fadavi, A. Performance measurement of insurance firms using a two-stage DEA method. Manag. Sci. Lett. 2013, 3, 303–308. [Google Scholar] [CrossRef]
- Amiri, M.; Rostamy-Malkhalifeh, M.; Lotfi, F.H.; Mozaffari, M. Measuring returns to scale based on the triangular fuzzy DEA approach with different views of experts: Case study of Iranian insurance companies. Decis. Mak. Appl. Manag. Eng. 2023, 6, 787–807. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Zhao, T.; Pei, R.; Pan, J. The evolution and determinants of Chinese property insurance companies’ profitability: A DEA-based perspective. J. Manag. Sci. Eng. 2021, 6, 449–466. [Google Scholar] [CrossRef]
- Tone, K.; Kweh, Q.L.; Lu, W.M.; Ting, I.W.K. Modeling investments in the dynamic network performance of insurance companies. Omega 2019, 88, 237–247. [Google Scholar] [CrossRef]
- Biener, C.; Eling, M.; Jia, R. The structure of the global reinsurance market: An analysis of efficiency, scale, and scope. J. Bank. Financ. 2017, 77, 213–229. [Google Scholar] [CrossRef]
- Kweh, Q.L.; Lu, W.M.; Wang, W.K. Dynamic efficiency: Intellectual capital in the Chinese non-life insurance firms. J. Knowl. Manag. 2014, 18, 937–951. [Google Scholar] [CrossRef]
- Yang, Z. A two-stage DEA model to evaluate the overall performance of Canadian life and health insurance companies. Math. Comput. Model. 2006, 43, 910–919. [Google Scholar] [CrossRef]
- Zhao, Q.; Mu, W. Mechanisms and Suggestions for Green Insurance to Assist Industrial Transformation and Upgrading. China Insur. 2023, 6, 35–38. [Google Scholar]
- Zhang, D.Y.; Chen, Y.T.; Ji, Q. Climate risk and foreign direct investment: An empirical study at the city level. Financ. Trade Stud. 2023, 12, 1–13. [Google Scholar]
- Guo, F.; Wang, J.I.; Wang, F.; Kong, T.; Zhang, X.; Cheng, C.Y. Measuring the development of digital inclusive finance in China: Indexing and spatial characterization. Economics 2020, 4, 1401–1418. [Google Scholar]
- Xu, P. Research on the Impact of Insurance Technology on the Operation Efficiency of Life Insurance Companies in China. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2022. [Google Scholar] [CrossRef]
- Eckert, C.; Osterrieder, K. How digitalization affects insurance companies: Overview and use cases of digital technologies. Z. Für Die Gesamte Versicherungswissenschaft 2020, 109, 333–360. [Google Scholar] [CrossRef]
- Zinyoro, T.; Aziakpono, M.J. Performance determinants of life insurers: A systematic review of the literature. Cogent Econ. Financ. 2023, 11, 2266915. [Google Scholar] [CrossRef]
- Gonga, M.A.; Sasaka, P.S. Determinants of financial performance of insurance firms: A survey of selected insurance firms in Nairobi County. Strateg. J. Bus. Change Manag. 2017, 4, 123–145. [Google Scholar] [CrossRef]
- Wani, A.A.; Ahmad, S. Relationship between financial risk and financial performance: An insight of Indian insurance industry. Int. J. Sci. Res. 2015, 4, 1424–1433. [Google Scholar]
- Shahzad, S.; Luqman, M.; Khan, M.A.; Asim, M. Corporate Governance and Profitability of Insurance Companies: Empirical Insights from Pakistan. Pak. J. Humanit. Soc. Sci. 2023, 11, 4502–4510. [Google Scholar] [CrossRef]
- Ahmeti, Y.; Iseni, E. Factors affecting profitability of insurance companies. Evidence from Kosovo. Acad. Int. Sci. J. 2022, 13, 122–142. [Google Scholar] [CrossRef]
- Xia, Y.-G.; Zhang, Y.-M.; Liu, L.-P. A new species of the genus Pseudourostyla (Hymenoptera, Braconidae) from China. Climate extremes and commercial bank risk-taking: An empirical study based on 152 regional commercial banks in China. Insur. Res. 2023, 6, 15–31. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Lin, W.-P.; Feng, B.-Y. Curve effects and statistical tests in the field of management. Nankai Manag. Rev. 2022, 1, 155–166. [Google Scholar]
- Nunn, N.; Qian, N. US food aid and civil conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
Primary Indicator | Secondary Indicator | Indicator Description | Data Sources |
---|---|---|---|
CTR | Climate policy change | Climate policy uncertainty index | the Global Climate Risk Integration Database |
Changes in market preferences | Baidu index for climate keywords | Baidu Index | |
Changes in technological innovation | Share of clean energy | China Energy Statistics Yearbook |
Variable Type | Variable Name | Variable Description | Data Sources |
---|---|---|---|
Input variables | Number of employees | Number of employees of insurance companies (in persons) | China Insurance Yearbook |
Paid-up capital | Paid-up capital of the company (in millions) | ||
Business expense | Fee and commission expenses + operating and administrative expenses (in millions) | ||
Output variables | Premium income | Income from insurance operations (in millions) | |
Investment income | Investment income (in millions) | ||
Claims expenditure | Claims expenditure (in millions) |
Year | Mean Value | Upper Quartile | Standard Deviation | Minimum Value | Maximum Values |
---|---|---|---|---|---|
2011 | 0.448 | 0.372 | 0.302 | 0.026 | 1.000 |
2012 | 0.448 | 0.370 | 0.282 | 0.017 | 1.000 |
2013 | 0.396 | 0.301 | 0.299 | 0.019 | 1.000 |
2014 | 0.333 | 0.160 | 0.360 | 0.012 | 1.000 |
2015 | 0.250 | 0.080 | 0.322 | 0.004 | 1.000 |
2016 | 0.372 | 0.281 | 0.294 | 0.009 | 1.000 |
2017 | 0.414 | 0.300 | 0.308 | 0.029 | 1.000 |
2018 | 0.390 | 0.279 | 0.310 | 0.001 | 1.000 |
2019 | 0.398 | 0.278 | 0.319 | 0.016 | 1.000 |
2020 | 0.376 | 0.258 | 0.316 | 0.007 | 1.000 |
2021 | 0.329 | 0.232 | 0.294 | 0.020 | 1.000 |
Property insurance | 0.287 | 0.211 | 0.267 | 0.001 | 1.000 |
Life insurance | 0.384 | 0.279 | 0.307 | 0.006 | 1.000 |
Total | 0.376 | 0.279 | 0.314 | 0.001 | 1.000 |
Variable Type | Variable Name | Variable Symbol | Variable Interpretation | Source of Variables |
---|---|---|---|---|
Independent Variable | Climate physical risk | CPR | Absolute temperature deviation values are used to measure the intensity of risk due to natural hazards and extreme weather events. | NOAA |
Climate transition risks | CTR | Calculated based on entropy power method, synthesizing policy, social preference, and technological innovation changes. | GCRID, China Energy Statistics Yearbook | |
Dependent Variable | Operational efficiency of insurance companies | Efficiency | efficiency values measured by the DEA-BCC model. | Measured by DEAP2.1 software |
Control Variable | GDP growth rate | GDPG | Representing the level of growth of the national economy | China Statistical Yearbook |
Consumer price index CPI | lnCPI | Consumer price index in logarithmic form, reflecting inflation | ||
Investment income | ROI | Ratio of investment income to total assets | China Insurance Yearbook | |
Enterprise size | ES | Logarithm of total assets | ||
Compensation rate | CR | Ratio of claims expense to premium income | ||
Manpower structure | HUM | Ratio of employees with bachelor’s degree or above to total employees | ||
Risk-bearing capacity | RTC | Ratio of insurance income to total assets | ||
Intermediary Variable | Exposure to natural disaster losses | DLE | Percentage of company claims expenditure multiplied by the number of people affected in the province | China Climate Hazards Yearbook, etc. |
Green insurance | GI | Environmental pollution liability insurance income/total premium income | Eps database, etc. | |
Moderator Variable | Stock of disaster-resistant infrastructure | DRI | Per capita stock of materials such as vehicles and agricultural machinery, plumbing and lighting, buildings, etc. | (China) National Bureau of Statistics (NBS) |
Insurance technology | IT | The company’s share of premium income multiplied by the insurance services sub-index of the BYU Digital Inclusion Index for that year | Digital Finance Research Center, Peking University |
Variable | Sample Size | Mean Value | Standard Deviation | Minimum Value | Maximum Values |
---|---|---|---|---|---|
Efficiency | 1801 | 0.376 | 0.314 | 0.001 | 1 |
CPR | 1801 | 0.067 | 0.110 | 0 | 1 |
CTR | 1801 | 0.462 | 0.111 | 0.110 | 0.907 |
GDPG | 1801 | 0.091 | 0.038 | −0.053 | 0.282 |
lnCPI | 1801 | 4.628 | 0.010 | 4.606 | 4.664 |
ROI | 1800 | 0.042 | 0.174 | 0 | 5.433 |
ES | 1801 | 9.445 | 2.098 | 5.422 | 16.130 |
CR | 1796 | 0.342 | 0.314 | 0.002 | 1.988 |
HUM | 1775 | 0.548 | 0.298 | 0.018 | 2.192 |
RTC | 1801 | 0.361 | 0.250 | 0.006 | 1.196 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Efficiency | Efficiency | Efficiency | Efficiency | |
CPR | −0.4210 *** | −0.3419 *** | ||
(−11.3240) | (−9.7571) | |||
CTR | −0.5660 ** | −0.8802 *** | ||
(−2.0957) | (−3.3791) | |||
CTR_sq | 0.8307 *** | 0.7153 *** | ||
(2.8470) | (2.6270) | |||
GDPG | 0.1630 | 0.3715 *** | ||
(1.5134) | (3.3811) | |||
lnCPI | 3.5862 *** | 3.0297 *** | ||
(8.1414) | (6.2623) | |||
ROI | 0.1604 *** | 0.1624 *** | ||
(7.1897) | (7.0910) | |||
ES | 0.0733 *** | 0.0978 *** | ||
(11.5439) | (13.0922) | |||
CR | 0.0656 *** | 0.0813 *** | ||
(3.8523) | (4.5693) | |||
HUM | 0.0365 | 0.0512 * | ||
(1.3858) | (1.8940) | |||
RTC | 0.2828 *** | 0.3143 *** | ||
(10.3728) | (11.1323) | |||
_cons | 0.4037 *** | −17.0603 *** | 0.4495 *** | −14.5366 *** |
(86.1601) | (−8.2578) | (7.2508) | (−6.4081) | |
N | 1801 | 1769 | 1801 | 1769 |
R2 | 0.0745 | 0.2238 | 0.0119 | 0.1849 |
Phase I | Phase II | ||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
CPR | CTR | CTR_sq | Efficiency | Efficiency | |
Terrain | 0.0771 *** | ||||
(6.3517) | |||||
CEADs | 0.2027 *** | 0.3281 *** | |||
(3.6764) | (6.2615) | ||||
CEADs_sq | 0.0496 *** | 0.0390 *** | |||
(4.8778) | (4.0414) | ||||
CPR | −0.7499 *** | ||||
(−3.2722) | |||||
CTR | −3.6401 ** | ||||
(−2.3519) | |||||
CTR_sq | 2.8565 ** | ||||
(2.1324) | |||||
GDPG | −0.4655 *** | 0.1685 *** | 0.1603 *** | −0.0482 | 0.4908 *** |
(−6.1009) | (4.4102) | (4.4148) | (−0.2972) | (3.3095) | |
lnCPI | 0.4760 | −2.2549 *** | −1.8826 *** | 3.4727 *** | 0.7916 |
(1.4153) | (−14.3534) | (−12.6088) | (7.5101) | (0.5580) | |
ROI | 0.0066 | 0.0150 * | 0.0120 | 0.1638 *** | 0.1785 *** |
(0.4143) | (1.8927) | (1.5900) | (7.0350) | (6.9137) | |
ES | −0.0395 *** | 0.0522 *** | 0.0469 *** | 0.0590 *** | 0.1417 *** |
(−8.7736) | (23.3869) | (22.1181) | (5.7067) | (4.8808) | |
CR | −0.0269 ** | 0.0442 *** | 0.0432 *** | 0.0563 *** | 0.1113 *** |
(−2.2111) | (7.2640) | (7.4576) | (3.0543) | (3.7916) | |
HUM | −0.0256 | 0.0121 | 0.0070 | 0.0254 | 0.0689 ** |
(1.3612) | (1.2849) | (0.7860) | (0.9044) | (2.2875) | |
RTC | −0.0572 *** | 0.0573 *** | 0.0509 *** | 0.2625 *** | 0.3652 *** |
(−2.9358) | (5.9030) | (5.5189) | (8.5998) | (8.3513) | |
F-statistic | 40.34 | 22.29 | 32.93 | ||
Anderson canon. corr. LM stat. | 39.526 [0.0000] | 29.056 [0.0000] | |||
Cragg-Donald Wald F-statistic | 40.344 [16.38] | 14.718 [7.03] | |||
N | 1767 | 1767 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Efficiency | Efficiency | Efficiency1 | Efficiency1 | |
CPR | −0.3546 *** | −0.0902 ** | ||
(−9.6080) | (−2.5105) | |||
CTR | −0.8384 *** | −0.7702 *** | ||
(−3.0567) | (−2.9590) | |||
CTR_sq | 0.6399 ** | 0.6342 ** | ||
(2.1999) | (2.3311) | |||
GDPG | 0.0797 | 0.5045 *** | 0.3491 *** | 0.4218 *** |
(0.5530) | (3.5425) | (3.1601) | (3.8419) | |
lnCPI | 3.7025 *** | 2.8966 *** | 3.0593 *** | 2.5303 *** |
(7.8790) | (5.6024) | (6.7704) | (5.2345) | |
ROI | 0.1530 *** | 0.1554 *** | 0.1996 *** | 0.2029 *** |
(6.7241) | (6.6407) | (8.7195) | (8.8683) | |
ES | 0.0727 *** | 0.0966 *** | 0.1001 *** | 0.1137 *** |
(10.7757) | (11.8825) | (15.3610) | (15.2420) | |
CR | 0.0768 *** | 0.0938 *** | 0.0366 ** | 0.0452 ** |
(4.1938) | (4.8794) | (2.0961) | (2.5438) | |
HUM | 0.0369 | 0.0527 * | 0.0472 * | 0.0543 ** |
(1.3071) | (1.8162) | (1.7456) | (2.0094) | |
RTC | 0.2953 *** | 0.3320 *** | 0.2950 *** | 0.3117 *** |
(10.3820) | (11.2298) | (10.5472) | (11.0480) | |
_cons | −17.5889 *** | −13.9359 *** | −14.9592 *** | −12.4525 *** |
(−7.9796) | (−5.7516) | (−7.0585) | (−5.4939) | |
N | 1592 | 1592 | 1769 | 1769 |
R2 | 0.2343 | 0.1924 | 0.2155 | 0.2185 |
(1) | (2) | |
---|---|---|
Efficiency | Efficiency | |
L. Efficiency | 0.2945 *** | 0.5251 *** |
(3.9202) | (2.6615) | |
CPR | −0.3890 *** | |
(−6.3711) | ||
CTR | −1.4488 ** | |
(−2.1259) | ||
CTR_sq | 1.7052 ** | |
(2.4663) | ||
GDPG | 0.2175 * | −0.5018 |
(1.8181) | (−1.6255) | |
lnCPI | 4.5825 *** | 5.4997 ** |
(6.4942) | (2.4602) | |
ROI | 0.1574 *** | 0.1639 *** |
(4.3808) | (4.9131) | |
ES | 0.0603 *** | 0.0475 ** |
(7.0419) | (2.4942) | |
CR | 0.0998 ** | 0.0639 |
(2.2306) | (1.2186) | |
HUM | 0.1281 *** | 0.1040 ** |
(3.0867) | (2.5327) | |
RTC | 0.0832 * | 0.0830 ** |
(1.7916) | (2.2574) | |
_cons | −11.0926 *** | −25.5065 ** |
(−5.2270) | (−2.4494) | |
Observations | 1555 | 1555 |
AR (1) | 0.000 | 0.020 |
AR (2) | 0.374 | 0.677 |
Hansen test | 0.221 | 0.548 |
Property Insurance | Life Insurance | ||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Efficiency | Efficiency | Efficiency | Efficiency | Efficiency | |
CPR | −0.2910 *** | −0.4031 *** | |||
(−5.4201) | (−7.5139) | ||||
CTR | −0.6027 | −0.2337 ** | −0.8044 * | ||
(−1.5440) | (−2.0565) | (−1.8728) | |||
CTR_sq | 0.3841 | 0.8248 * | |||
(0.9880) | (1.8079) | ||||
GDPG | 0.1350 | 0.3311 ** | 0.3369 ** | 0.3098 * | 0.4624 *** |
(0.8651) | (2.0747) | (2.1127) | (1.9027) | (2.7380) | |
lnCPI | 2.8613 *** | 2.5625 *** | 2.6559 *** | 3.2337 *** | 3.1091 *** |
(4.0260) | (3.3449) | (3.4935) | (5.0530) | (4.3672) | |
ROI | 0.1393 *** | 0.1362 *** | 0.1342 *** | 0.2700 *** | 0.2700 *** |
(4.7401) | (4.5259) | (4.4715) | (7.1457) | (6.8636) | |
ES | 0.0221 | 0.0603 *** | 0.0596 *** | 0.0774 *** | 0.0936 *** |
(1.4938) | (3.4302) | (3.3935) | (9.4951) | (9.6451) | |
CR | 0.0739 ** | 0.0744 ** | 0.0772 ** | 0.0777 *** | 0.0880 *** |
(2.2840) | (2.2213) | (2.3135) | (3.0860) | (3.3164) | |
HUM | 0.1183 ** | 0.1296 *** | 0.1245 ** | −0.0027 | −0.0001 |
(2.4349) | (2.5959) | (2.5072) | (−0.0842) | (−0.0032) | |
RTC | 0.3516 *** | 0.3714 *** | 0.3693 *** | 0.2514 *** | 0.2736 *** |
(9.3542) | (9.5638) | (9.5241) | (4.8033) | (4.9899) | |
_cons | −13.4207 *** | −12.2229 *** | −12.7299 *** | −15.4631 *** | −14.9137 *** |
(−4.0119) | (−3.3977) | (−3.5752) | (−5.1509) | (−4.4628) | |
N | 639 | 639 | 639 | 741 | 741 |
R2 | 0.2327 | 0.1997 | 0.1983 | 0.2777 | 0.2192 |
Coastland | Interior | ||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Efficiency | Efficiency | Efficiency | Efficiency | Efficiency | |
CPR | −0.3261 *** | −0.3664 *** | |||
(−7.3011) | (−6.5743) | ||||
CTR | −1.1846 *** | −0.5176 | −0.2584 ** | ||
(−3.3606) | (−1.2470) | (−2.2771) | |||
CTR_sq | 1.1197 *** | 0.2728 | |||
(2.9606) | (0.6492) | ||||
GDPG | 0.1517 | 0.3271 ** | 0.1877 | 0.3946 ** | 0.3969 ** |
(0.9903) | (2.0748) | (1.2187) | (2.5160) | (2.5329) | |
lnCPI | 2.5036 *** | 1.8089 *** | 5.2679 *** | 4.8603 *** | 4.9305 *** |
(4.3655) | (2.8722) | (7.5695) | (6.3113) | (6.4693) | |
ROI | 0.1472 *** | 0.1516 *** | 1.0543 *** | 0.9747 *** | 0.9665 *** |
(6.7849) | (6.8057) | (3.2701) | (2.9380) | (2.9168) | |
ES | 0.0584 *** | 0.0821*** | 0.0987 *** | 0.1242 *** | 0.1252 *** |
(7.6940) | (8.7429) | (8.8472) | (9.9538) | (10.1220) | |
CR | 0.0850 *** | 0.0900 *** | 0.0491 * | 0.0779 *** | 0.0792 *** |
(3.6762) | (3.7444) | (1.9369) | (2.9225) | (2.9782) | |
HUM | 0.0223 | 0.0379 | 0.0559 | 0.0624 | 0.0602 |
(0.6412) | (1.0594) | (1.3879) | (1.5010) | (1.4533) | |
RTC | 0.2587 *** | 0.2858 *** | 0.3084 *** | 0.3441 *** | 0.3438 *** |
(7.9644) | (8.4885) | (6.3766) | (6.8728) | (6.8711) | |
_cons | −11.9172 *** | −8.6813 *** | −25.1241 *** | −23.3775 *** | −23.7703 *** |
(−4.4391) | (−2.9451) | (−7.6691) | (−6.4395) | (−6.6436) | |
N | 1027 | 1027 | 742 | 742 | 742 |
R2 | 0.2199 | 0.1848 | 0.2544 | 0.2115 | 0.2110 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
DLE | Efficiency | GI | Efficiency | |
CPR | 1.2271 *** | −0.3349 *** | ||
(3.1572) | (−9.5368) | |||
DLE | −0.0062 *** | |||
(−2.7062) | ||||
CTR | 0.0509 *** | −0.1059 | ||
(21.8885) | (−1.2262) | |||
GI | −36.0807 *** | |||
(−3.4378) | ||||
GI_sq | 215.0427 *** | |||
(3.3961) | ||||
GDPG | 13.1362 *** | 0.2500 ** | −0.0193 *** | 0.2729 ** |
(11.0081) | (2.2406) | (−5.4530) | (2.3821) | |
lnCPI | −4.6970 | 3.5682 *** | −0.1061 *** | 2.7385 *** |
(−0.9628) | (8.1186) | (−6.8389) | (5.4806) | |
ROI | −2.0238 *** | 0.1478 *** | 0.0002 | 0.1623 *** |
(−8.1899) | (6.5023) | (0.2828) | (7.0982) | |
ES | −1.3937 *** | 0.0649 *** | 0.0029 *** | 0.0980 *** |
(−19.8080) | (9.1529) | (11.9837) | (12.5713) | |
CR | −3.1727 *** | 0.0483 *** | 0.0016 *** | 0.0841 *** |
(−16.7854) | (2.6100) | (2.8167) | (4.7230) | |
HUM | 0.4112 | 0.0391 | 0.0012 | 0.0524 * |
(1.4081) | (1.4870) | (1.4073) | (1.9385) | |
RTC | −1.8369 *** | 0.2724 *** | 0.0008 | 0.3128 *** |
(−6.0796) | (9.8931) | (0.9248) | (11.0915) | |
_cons | 29.3160 | −16.9339 *** | 0.5209 *** | −11.8834 *** |
(1.2812) | (−8.2128) | (7.1781) | (−4.8215) | |
N | 1767 | 1767 | 1769 | 1769 |
R2 | 0.4403 | 0.2283 | 0.6119 | 0.1876 |
(1) | (2) | |
---|---|---|
Efficiency | Efficiency | |
CPR | −1.7507 ** | |
(−2.5520) | ||
DRI | −0.0825 ** | |
(−2.4299) | ||
CPR× DRI | 0.1039 ** | |
(2.0313) | ||
CTR | −1.4141 *** | |
(−4.7764) | ||
CTR_sq | 1.1779 *** | |
(3.7917) | ||
IT | −0.1932 ** | |
(−2.0968) | ||
CTR× IT | 1.0496 *** | |
(2.6559) | ||
CTR_sq× IT | −0.9370 ** | |
(−2.0840) | ||
control variable | YES | YES |
_cons | −15.6429 *** | −15.1317 *** |
(−7.1719) | (−6.6357) | |
N | 1769 | 1769 |
R2 | 0.2279 | 0.2056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Fang, H.; Wang, W. The Impact of Climate Risk on Insurers’ Sustainable Operational Efficiency: Empirical Evidence from China. Sustainability 2025, 17, 3423. https://doi.org/10.3390/su17083423
Xu Z, Fang H, Wang W. The Impact of Climate Risk on Insurers’ Sustainable Operational Efficiency: Empirical Evidence from China. Sustainability. 2025; 17(8):3423. https://doi.org/10.3390/su17083423
Chicago/Turabian StyleXu, Ziheng, Houqing Fang, and Weidong Wang. 2025. "The Impact of Climate Risk on Insurers’ Sustainable Operational Efficiency: Empirical Evidence from China" Sustainability 17, no. 8: 3423. https://doi.org/10.3390/su17083423
APA StyleXu, Z., Fang, H., & Wang, W. (2025). The Impact of Climate Risk on Insurers’ Sustainable Operational Efficiency: Empirical Evidence from China. Sustainability, 17(8), 3423. https://doi.org/10.3390/su17083423