Multi-Scale Temporal Integration for Enhanced Greenhouse Gas Forecasting: Advancing Climate Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processing
2.3. Methods
2.3.1. Input Attention Mechanism
2.3.2. Autoformer Encoder
2.3.3. Concating Phase
2.3.4. Temporal Attention Mechanism
2.4. Metric
2.5. Experiment Conditions
3. Results
3.1. Overall Performances
3.2. Multi-Step Forecasting
3.3. Ablation Experiment
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Model | Test_MSE | Test_MAE | Test_R2 | Test_MAPE |
---|---|---|---|---|
MST-GHF | 0.0002878 | 0.0116377 | 0.9627339 | 0.0147310 |
DARNN | 0.0003716 | 0.0131211 | 0.9518857 | 0.0167605 |
Autoformer | 0.0004013 | 0.0136400 | 0.9480379 | 0.0174719 |
TCN | 0.0004571 | 0.0146228 | 0.9408147 | 0.0187982 |
BiTransfomer_LSTM | 0.0005962 | 0.0184426 | 0.9227868 | 0.0231243 |
Informer | 0.0006874 | 0.0182407 | 0.9109833 | 0.0236269 |
LSTM | 0.0008636 | 0.0243913 | 0.8881612 | 0.0295327 |
Bi_GRU | 0.0012059 | 0.0257306 | 0.8438375 | 0.0333236 |
Bi_LSTM | 0.0012679 | 0.0260454 | 0.8358032 | 0.0338971 |
GRU | 0.0012723 | 0.0292467 | 0.8352157 | 0.0367302 |
RNN | 0.0013303 | 0.0306885 | 0.8276975 | 0.0373433 |
CNN1D | 0.0018290 | 0.0351233 | 0.7631485 | 0.0422021 |
Bi_RNN | 0.0025301 | 0.0413129 | 0.6723005 | 0.0485256 |
CNN1D_LSTM | 0.0028931 | 0.0447957 | 0.6253179 | 0.0527006 |
ANN | 0.0043728 | 0.0612601 | 0.4336226 | 0.0744804 |
Model | STEP1 | STEP2 | STEP3 | STEP4 | STEP5 | STEP6 | STEP7 | STEP8 | STEP9 | STEP10 |
---|---|---|---|---|---|---|---|---|---|---|
MST-GHF | 0.97878 | 0.97443 | 0.97074 | 0.96684 | 0.96564 | 0.96125 | 0.95805 | 0.95458 | 0.95005 | 0.94698 |
DARNN | 0.97102 | 0.96757 | 0.96023 | 0.95383 | 0.95822 | 0.94851 | 0.94829 | 0.94355 | 0.93422 | 0.93341 |
Autoformer | 0.96930 | 0.96559 | 0.95608 | 0.94813 | 0.95578 | 0.94324 | 0.94548 | 0.93990 | 0.92843 | 0.92844 |
TCN | 0.96514 | 0.96146 | 0.94898 | 0.93800 | 0.95049 | 0.93385 | 0.93957 | 0.93361 | 0.91780 | 0.91926 |
BiTransfomer _LSTM | 0.94296 | 0.92876 | 0.93205 | 0.92333 | 0.91395 | 0.94672 | 0.90693 | 0.91436 | 0.91156 | 0.90723 |
Informer | 0.94596 | 0.94410 | 0.92072 | 0.89425 | 0.92664 | 0.89500 | 0.91480 | 0.90963 | 0.87846 | 0.88027 |
LSTM | 0.91190 | 0.90502 | 0.90029 | 0.88391 | 0.89488 | 0.90956 | 0.88113 | 0.85724 | 0.86588 | 0.87179 |
Bi_GRU | 0.88297 | 0.83717 | 0.90740 | 0.88788 | 0.84569 | 0.76714 | 0.91339 | 0.78506 | 0.74577 | 0.86590 |
Bi_LSTM | 0.85418 | 0.92533 | 0.88067 | 0.78546 | 0.82317 | 0.80695 | 0.76901 | 0.85771 | 0.80601 | 0.84954 |
GRU | 0.85939 | 0.84737 | 0.86361 | 0.88095 | 0.79092 | 0.82703 | 0.83580 | 0.79108 | 0.85289 | 0.80312 |
RNN | 0.85730 | 0.84250 | 0.84315 | 0.82455 | 0.82357 | 0.82105 | 0.80826 | 0.81793 | 0.82042 | 0.81823 |
CNN1D | 0.79477 | 0.79974 | 0.86495 | 0.76666 | 0.71630 | 0.78686 | 0.73372 | 0.79676 | 0.71642 | 0.65530 |
Bi_RNN | 0.72101 | 0.70851 | 0.72330 | 0.66788 | 0.61899 | 0.65601 | 0.62097 | 0.69373 | 0.66151 | 0.65108 |
CNN1D_LSTM | 0.70959 | 0.63854 | 0.65612 | 0.62404 | 0.70758 | 0.59694 | 0.67335 | 0.53487 | 0.60110 | 0.51105 |
ANN | 0.51734 | 0.44780 | 0.37191 | 0.43568 | 0.46613 | 0.43010 | 0.44904 | 0.45915 | 0.47785 | 0.28123 |
Model | STEP1 | STEP2 | STEP3 | STEP4 | STEP5 | STEP6 | STEP7 | STEP8 | STEP9 | STEP10 |
---|---|---|---|---|---|---|---|---|---|---|
MST-GHF | 0.000163 | 0.000197 | 0.000226 | 0.000256 | 0.000265 | 0.000299 | 0.000324 | 0.000351 | 0.000386 | 0.000410 |
DARNN | 0.000223 | 0.000250 | 0.000307 | 0.000356 | 0.000322 | 0.000398 | 0.000400 | 0.000436 | 0.000509 | 0.000515 |
Autoformer | 0.000236 | 0.000265 | 0.000339 | 0.000400 | 0.000341 | 0.000438 | 0.000421 | 0.000465 | 0.000553 | 0.000554 |
TCN | 0.000268 | 0.000297 | 0.000393 | 0.000478 | 0.000382 | 0.000511 | 0.000467 | 0.000513 | 0.000636 | 0.000625 |
BiTransfomer _LSTM | 0.000439 | 0.000549 | 0.000524 | 0.000591 | 0.000664 | 0.000411 | 0.000719 | 0.000662 | 0.000684 | 0.000718 |
Informer | 0.000416 | 0.000431 | 0.000611 | 0.000816 | 0.000566 | 0.000811 | 0.000658 | 0.000699 | 0.000940 | 0.000926 |
LSTM | 0.000678 | 0.000732 | 0.000769 | 0.000896 | 0.000811 | 0.000698 | 0.000919 | 0.001104 | 0.001037 | 0.000992 |
Bi_GRU | 0.000901 | 0.001255 | 0.000714 | 0.000865 | 0.001191 | 0.001798 | 0.000669 | 0.001662 | 0.001966 | 0.001037 |
Bi_LSTM | 0.001123 | 0.000575 | 0.000920 | 0.001655 | 0.001365 | 0.001491 | 0.001785 | 0.001100 | 0.001500 | 0.001164 |
GRU | 0.001083 | 0.001176 | 0.001052 | 0.000918 | 0.001614 | 0.001336 | 0.001269 | 0.001615 | 0.001138 | 0.001523 |
RNN | 0.001099 | 0.001214 | 0.001209 | 0.001354 | 0.001362 | 0.001382 | 0.001482 | 0.001407 | 0.001389 | 0.001406 |
CNN1D | 0.001581 | 0.001543 | 0.001041 | 0.001800 | 0.002190 | 0.001646 | 0.002058 | 0.001571 | 0.002193 | 0.002667 |
Bi_RNN | 0.002149 | 0.002246 | 0.002133 | 0.002562 | 0.002941 | 0.002657 | 0.002929 | 0.002368 | 0.002618 | 0.002699 |
CNN1D_LSTM | 0.002237 | 0.002785 | 0.002651 | 0.002900 | 0.002257 | 0.003113 | 0.002524 | 0.003596 | 0.003085 | 0.003783 |
ANN | 0.003717 | 0.004255 | 0.004843 | 0.004354 | 0.004121 | 0.004401 | 0.004257 | 0.004181 | 0.004038 | 0.005561 |
Model | STEP1 | STEP2 | STEP3 | STEP4 | STEP5 | STEP6 | STEP7 | STEP8 | STEP9 | STEP10 |
---|---|---|---|---|---|---|---|---|---|---|
MST-GHF | 0.008435 | 0.009374 | 0.010210 | 0.010994 | 0.011186 | 0.012021 | 0.012577 | 0.013206 | 0.013918 | 0.014457 |
DARNN | 0.010061 | 0.010630 | 0.011907 | 0.012869 | 0.012302 | 0.013680 | 0.013829 | 0.014469 | 0.015657 | 0.015807 |
Autoformer | 0.010274 | 0.010891 | 0.012558 | 0.013691 | 0.012639 | 0.014409 | 0.014199 | 0.014928 | 0.016397 | 0.016415 |
TCN | 0.010958 | 0.011553 | 0.013643 | 0.015087 | 0.013372 | 0.015661 | 0.014940 | 0.015786 | 0.017707 | 0.017521 |
Informer | 0.013944 | 0.014224 | 0.017385 | 0.020133 | 0.016555 | 0.020105 | 0.018042 | 0.018612 | 0.021806 | 0.021601 |
BiTransfomer _LSTM | 0.016098 | 0.018339 | 0.017876 | 0.018638 | 0.020110 | 0.013880 | 0.020849 | 0.019472 | 0.019489 | 0.019675 |
LSTM | 0.021328 | 0.022347 | 0.022861 | 0.024917 | 0.023618 | 0.021431 | 0.025366 | 0.028250 | 0.027284 | 0.026510 |
Bi_GRU | 0.022423 | 0.026983 | 0.021235 | 0.022717 | 0.026333 | 0.032263 | 0.019261 | 0.030710 | 0.032259 | 0.023122 |
Bi_LSTM | 0.024449 | 0.017924 | 0.022438 | 0.029404 | 0.027164 | 0.028833 | 0.031595 | 0.024125 | 0.027837 | 0.026685 |
GRU | 0.027698 | 0.027475 | 0.026573 | 0.025132 | 0.033664 | 0.030206 | 0.029865 | 0.032262 | 0.028023 | 0.031569 |
RNN | 0.027605 | 0.029178 | 0.029061 | 0.030809 | 0.031127 | 0.031362 | 0.032624 | 0.031747 | 0.031580 | 0.031791 |
CNN1D | 0.032972 | 0.032569 | 0.026367 | 0.035236 | 0.038554 | 0.033392 | 0.037443 | 0.033172 | 0.038725 | 0.042803 |
Bi_RNN | 0.037570 | 0.038244 | 0.037586 | 0.041467 | 0.044881 | 0.042510 | 0.044928 | 0.040119 | 0.042524 | 0.043299 |
CNN1D_LSTM | 0.038234 | 0.043631 | 0.042643 | 0.044788 | 0.038907 | 0.046889 | 0.041832 | 0.051089 | 0.047142 | 0.052802 |
ANN | 0.057103 | 0.060965 | 0.065537 | 0.061544 | 0.059535 | 0.061573 | 0.060271 | 0.059627 | 0.057873 | 0.068573 |
Model | STEP1 | STEP2 | STEP3 | STEP4 | STEP5 | STEP6 | STEP7 | STEP8 | STEP9 | STEP10 |
---|---|---|---|---|---|---|---|---|---|---|
MST-GHF | 0.010664 | 0.011856 | 0.012908 | 0.013898 | 0.014153 | 0.015210 | 0.015928 | 0.016728 | 0.017639 | 0.018326 |
DARNN | 0.012742 | 0.013492 | 0.015195 | 0.016444 | 0.015651 | 0.017497 | 0.017647 | 0.018523 | 0.020128 | 0.020286 |
Autoformer | 0.013061 | 0.013875 | 0.016077 | 0.017557 | 0.016118 | 0.018489 | 0.018148 | 0.019151 | 0.021127 | 0.021117 |
TCN | 0.013990 | 0.014770 | 0.017531 | 0.019441 | 0.017128 | 0.020177 | 0.019164 | 0.020293 | 0.022875 | 0.022614 |
BiTransfomer _LSTM | 0.019778 | 0.022580 | 0.022051 | 0.023331 | 0.025092 | 0.017770 | 0.026130 | 0.024649 | 0.024767 | 0.025097 |
Informer | 0.017983 | 0.018345 | 0.022511 | 0.026143 | 0.021399 | 0.026094 | 0.023321 | 0.024085 | 0.028329 | 0.028060 |
LSTM | 0.025587 | 0.026832 | 0.027559 | 0.030017 | 0.028598 | 0.026056 | 0.030931 | 0.034351 | 0.033116 | 0.032278 |
Bi_GRU | 0.028922 | 0.034812 | 0.027270 | 0.028817 | 0.033980 | 0.042075 | 0.024814 | 0.040054 | 0.042387 | 0.030106 |
Bi_LSTM | 0.032075 | 0.022765 | 0.029086 | 0.038758 | 0.035504 | 0.037625 | 0.041396 | 0.031411 | 0.036513 | 0.033838 |
GRU | 0.034505 | 0.034609 | 0.033364 | 0.031164 | 0.042297 | 0.037924 | 0.037472 | 0.041016 | 0.035105 | 0.039846 |
RNN | 0.033020 | 0.035437 | 0.035304 | 0.037536 | 0.037904 | 0.038326 | 0.039871 | 0.038640 | 0.038453 | 0.038941 |
CNN1D | 0.039474 | 0.038810 | 0.032060 | 0.042228 | 0.046183 | 0.040666 | 0.045155 | 0.039777 | 0.046488 | 0.051180 |
Bi_RNN | 0.043991 | 0.044804 | 0.044306 | 0.048538 | 0.052553 | 0.049851 | 0.052712 | 0.047334 | 0.050156 | 0.051010 |
CNN1D_LSTM | 0.044628 | 0.051063 | 0.050001 | 0.052544 | 0.045748 | 0.055173 | 0.049362 | 0.060271 | 0.055763 | 0.062453 |
ANN | 0.069636 | 0.074062 | 0.079720 | 0.074864 | 0.072489 | 0.074870 | 0.073280 | 0.072609 | 0.070289 | 0.082984 |
Model | Test_MSE | Test_MAE | Test_R2 | Test_MAPE |
---|---|---|---|---|
MST-GHF | 0.000288 | 0.011638 | 0.962734 | 0.014731 |
Without Input-Attn | 0.000645 | 0.019629 | 0.916457 | 0.024515 |
Without Autoformer Encoder | 0.000401 | 0.013640 | 0.948038 | 0.017472 |
Without Temporal-Attn | 0.000713 | 0.020487 | 0.907653 | 0.025760 |
Model | STEP1 | STEP2 | STEP3 | STEP4 | STEP5 | STEP6 | STEP7 | STEP8 | STEP9 | STEP10 |
---|---|---|---|---|---|---|---|---|---|---|
MST-GHF | 0.9788 | 0.9744 | 0.9707 | 0.9668 | 0.9656 | 0.9613 | 0.9581 | 0.9546 | 0.9501 | 0.9470 |
Without Input-Attn | 0.9396 | 0.9351 | 0.9270 | 0.9194 | 0.9242 | 0.9217 | 0.9027 | 0.8935 | 0.9017 | 0.8997 |
Without Autoformer Encoder | 0.9533 | 0.9528 | 0.9592 | 0.9564 | 0.9267 | 0.9332 | 0.9383 | 0.9351 | 0.9394 | 0.9092 |
Without Temporal-Attn | 0.9405 | 0.9226 | 0.9168 | 0.9143 | 0.9159 | 0.9088 | 0.8903 | 0.8877 | 0.8913 | 0.8883 |
Model | STEP1 | STEP2 | STEP3 | STEP4 | STEP5 | STEP6 | STEP7 | STEP8 | STEP9 | STEP10 |
---|---|---|---|---|---|---|---|---|---|---|
MST-GHF | 0.000163 | 0.000197 | 0.000226 | 0.000256 | 0.000265 | 0.000299 | 0.000324 | 0.000351 | 0.000386 | 0.000410 |
Without Input-Attn | 0.000465 | 0.000500 | 0.000563 | 0.000622 | 0.000585 | 0.000605 | 0.000752 | 0.000824 | 0.000760 | 0.000776 |
Without Autoformer Encoder | 0.000360 | 0.000363 | 0.000314 | 0.000336 | 0.000566 | 0.000516 | 0.000477 | 0.000501 | 0.000468 | 0.000702 |
Without Temporal-Attn | 0.000458 | 0.000597 | 0.000641 | 0.000662 | 0.000649 | 0.000704 | 0.000847 | 0.000868 | 0.000841 | 0.000864 |
Model | STEP1 | STEP2 | STEP3 | STEP4 | STEP5 | STEP6 | STEP7 | STEP8 | STEP9 | STEP10 |
---|---|---|---|---|---|---|---|---|---|---|
MST-GHF | 0.008435 | 0.009374 | 0.010210 | 0.010994 | 0.011186 | 0.012021 | 0.012577 | 0.013206 | 0.013918 | 0.014457 |
Without Input-Attn | 0.014397 | 0.014028 | 0.012550 | 0.012403 | 0.017957 | 0.017335 | 0.015426 | 0.015473 | 0.014923 | 0.019603 |
Without Autoformer Encoder | 0.016912 | 0.017078 | 0.018338 | 0.019633 | 0.018462 | 0.018914 | 0.021147 | 0.022735 | 0.021612 | 0.021463 |
Without Temporal-Attn | 0.016471 | 0.018758 | 0.019669 | 0.020032 | 0.019470 | 0.020607 | 0.022347 | 0.022622 | 0.022380 | 0.022511 |
Model | STEP1 | STEP2 | STEP3 | STEP4 | STEP5 | STEP6 | STEP7 | STEP8 | STEP9 | STEP10 |
---|---|---|---|---|---|---|---|---|---|---|
MST-GHF | 0.010664 | 0.011856 | 0.012908 | 0.013898 | 0.014153 | 0.015210 | 0.015928 | 0.016728 | 0.017639 | 0.018326 |
Without Input-Attn | 0.020704 | 0.021273 | 0.022807 | 0.024334 | 0.023051 | 0.023641 | 0.026623 | 0.028500 | 0.027168 | 0.027045 |
Without Autoformer Encoder | 0.017960 | 0.017658 | 0.015864 | 0.015856 | 0.022439 | 0.021565 | 0.019613 | 0.019965 | 0.019018 | 0.024743 |
Without Temporal-Attn | 0.020429 | 0.023467 | 0.024578 | 0.025037 | 0.024404 | 0.025819 | 0.028282 | 0.028697 | 0.028360 | 0.028526 |
References
- Barnett, J. Security and Climate Change. Glob. Environ. Change 2003, 13, 7–17. [Google Scholar] [CrossRef]
- Adedeji, O.; Reuben, O.; Olatoye, O. Global Climate Change. J. Geosci. Environ. Prot. 2014, 2, 114–122. [Google Scholar] [CrossRef]
- Jeffry, L.; Ong, M.Y.; Nomanbhay, S.; Mofijur, M.; Mubashir, M.; Show, P.L. Greenhouse Gases Utilization: A Review. Fuel 2021, 301, 121017. [Google Scholar] [CrossRef]
- EI Kenawy, A.M.; Al-Awadhi, T.; Abdullah, M.; Jawarneh, R.; Abulibdeh, A. A Preliminary Assessment of Global CO2: Spatial Patterns, Temporal Trends, and Policy Implications. Glob. Chall. 2023, 7, 2300184. [Google Scholar] [CrossRef]
- Le, P.V.V.; Randerson, J.T.; Willett, R.; Wright, S.; Smyth, P.; Guilloteau, C.; Mamalakis, A.; Foufoula-Georgiou, E. Climate-Driven Changes in the Predictability of Seasonal Precipitation. Nat. Commun. 2023, 14, 3822. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Forest Fire Emissions: A Contribution to Global Climate Change. Front. For. Glob. Change 2022, 5, 925840. [Google Scholar] [CrossRef]
- Ledley, T.S.; Sundquist, E.T.; Schwartz, S.E.; Hall, D.K.; Fellows, J.D.; Killeen, T.L. Climate Change and Greenhouse Gases. Eos Trans. Am. Geophys. Union 1999, 80, 453–458. [Google Scholar] [CrossRef]
- Li, X.; Jiang, S.; Wang, X.; Wang, T.; Zhang, S.; Guo, J.; Jiao, D. XCO2 Super-Resolution Reconstruction Based on Spatial Extreme Random Trees. Atmosphere 2024, 15, 440. [Google Scholar] [CrossRef]
- Marvin, D.C.; Sleeter, B.M.; Cameron, D.R.; Nelson, E.; Plantinga, A.J. Natural Climate Solutions Provide Robust Carbon Mitigation Capacity under Future Climate Change Scenarios. Sci. Rep. 2023, 13, 19008. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wu, J.; Li, X.; Li, H.; Cheng, Y. Wellhead Stability During Development Process of Hydrate Reservoir in the Northern South China Sea: Evolution and Mechanism. Processes 2025, 13, 40. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Cao, H.; Wu, J.; Wang, F.; Wang, Y. The Crack Propagation Behaviour of CO2 Fracturing Fluid in Unconventional Low Permeability Reservoirs: Factor Analysis and Mechanism Revelation. Processes 2025, 13, 159. [Google Scholar] [CrossRef]
- Selin, H.; VanDeveer, S.D. Political Science and Prediction: What’s Next for U.S. Climate Change Policy? Rev. Policy Re-Search 2007, 24, 1–27. [Google Scholar] [CrossRef]
- Patnaik, S. A Cross-Country Study of Collective Political Strategy: Greenhouse Gas Regulations in the European Union. J. Int. Bus. Stud. 2019, 50, 1130–1155. [Google Scholar] [CrossRef]
- Wang, M.; Hu, Z.; Wang, X.; Li, X.; Wang, Y.; Liu, H.; Han, C.; Cai, J.; Zhao, W. Spatio-Temporal Variation of Carbon Sources and Sinks in the Loess Plateau under Different Climatic Conditions and Land Use Types. Forests 2023, 14, 1640. [Google Scholar] [CrossRef]
- Wen, H.; Li, Y.; Li, Z.; Cai, X.; Wang, F. Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective. Sustainability 2022, 14, 12962. [Google Scholar] [CrossRef]
- Maberly, S.C.; Stott, A.W.; Gontero, B. The Differential Ability of Two Species of Seagrass to Use Carbon Dioxide and Bicarbonate and Their Modelled Response to Rising Concentrations of Inorganic Carbon. Front. Plant Sci. 2022, 13, 936716. [Google Scholar] [CrossRef]
- Mauclet, E.; Villani, M.; Monhonval, A.; Hirst, C.; Schuur, E.A.G.; Opfergelt, S. Quantifying Exchangeable Base Cations in Permafrost: A Reserve of Nutrients about to Thaw. Earth Syst. Sci. Data 2023, 15, 3891–3904. [Google Scholar] [CrossRef]
- van den Bergh, J.; van Beers, C.; King, L.C. Prioritize Carbon Pricing over Fossil-Fuel Subsidy Reform. iScience 2024, 27, 108584. [Google Scholar] [CrossRef]
- Wei, X.; Xu, Y. Research on Carbon Emission Prediction and Economic Policy Based on TCN-LSTM Combined with Attention Mechanism. Front. Ecol. Evol. 2023, 11, 1270248. [Google Scholar] [CrossRef]
- Nagarajan, G.; Babu, L.D.D. Predictive Analytics On Big Data—An Overview. Informatica 2019, 43, 4. [Google Scholar] [CrossRef]
- Smith, D.M.; Cusack, S.; Colman, A.W.; Folland, C.K.; Harris, G.R.; Murphy, J.M. Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model. Science 2007, 317, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Gualdi, S.; Navarra, A.; Guilyardi, E.; Delecluse, P. Assessment of the Tropical Indo-Pacific Climate in the SINTEX CGCM. Ann. Geophys. 2003, 46, 1–26. [Google Scholar] [CrossRef]
- Eiselt, K.-U.; Graversen, R.; Fredriksen, H.-B. Time dependence of climate sensitivity. In Proceedings of the EGU General Assembly 2020, EGU2020-12950. Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Bonsor, H.; MacDonald, A.; Calow, R. Potential Impact of Climate Change on Improved and Unimproved Water Supplies in Africa. RSC Issues Environ Sci. Technol 2010, 31, 25–50. [Google Scholar] [CrossRef]
- Sun, H.; Liang, L.; Wang, C.; Wu, Y.; Yang, F.; Rong, M. Prediction of the Electrical Strength and Boiling Temperature of the Substitutes for Greenhouse Gas SF6 Using Neural Network and Random Forest. IEEE Access 2020, 8, 124204–124216. [Google Scholar] [CrossRef]
- Cai, W.; Wei, R.; Xu, L.; Ding, X. A Method for Modelling Greenhouse Temperature Using Gradient Boost Decision Tree. Inf. Process. Agric. 2022, 9, 343–354. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wang, R.; Zhang, M.; Huang, Y.; Hu, J.; Peng, J. Measuring the Critical Influence Factors for Pre-dicting Carbon Dioxide Emissions of Expanding Megacities by XGBoost. Atmosphere 2022, 13, 599. [Google Scholar] [CrossRef]
- Rasp, S.; Pritchard, M.S.; Gentine, P. Deep Learning to Represent Subgrid Processes in Climate Models. Proc. Natl. Acad. Sci. USA 2018, 115, 9684–9689. [Google Scholar] [CrossRef]
- Isphording, R.N.; Alexander, L.V.; Bador, M.; Green, D.; Evans, J.P.; Wales, S. A Standardized Benchmarking Framework to Assess Downscaled Precipitation Simulations. J. Climate 2024, 37, 1089–1110. [Google Scholar] [CrossRef]
- Fabbri, S.; Hauschild, M.Z.; Lenton, T.M.; Owsianiak, M. Multiple Climate Tipping Points Metrics for Improved Sustainability Assessment of Products and Services. Environ. Sci. Technol. 2021, 55, 2800–2810. [Google Scholar] [CrossRef]
- Ye, S. Analysis of Influencing Factors of Carbon Emissions from China’s Marine Fishery Energy Consumption under Different Development Scenarios. Front. Mar. Sci. 2024, 11, 1377215. [Google Scholar] [CrossRef]
- Tudor, C.; Sova, R. Benchmarking GHG Emissions Forecasting Models for Global Climate Policy. Electronics 2021, 10, 3149. [Google Scholar] [CrossRef]
- Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. In Proceedings of the Interspeech 2014, Singapore, 14–18 September 2014; ISCA: Pune, India, 2024; pp. 338–342. [Google Scholar]
- Zhang, L.; Cai, Y.; Huang, H.; Li, A.; Yang, L.; Zhou, C. A CNN-LSTM Model for Soil Organic Carbon Content Prediction with Long Time Series of MODIS-Based Phenological Variables. Remote Sens. 2022, 14, 4441. [Google Scholar] [CrossRef]
- Panja, M.; Chakraborty, T.; Biswas, A.; Deb, S. E-STGCN: Extreme Spatiotemporal Graph Convolutional Networks for Air Quality Forecasting. arXiv 2024, arXiv:2411.12258. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Wu, X.; Yuan, Q.; Zhou, C.; Chen, X.; Xuan, D.; Song, J. Carbon Emissions Forecasting Based on Temporal Graph Transform-er-Based Attentional Neural Network. J. Comput. Methods Sci. Eng. 2024, 24, 1405–1421. [Google Scholar] [CrossRef]
- Li, S.; Yuan, G.; Chen, J.; Tan, C.; Zhou, H. Self-Supervised Learning for Solar Radio Spectrum Classification. Universe 2022, 8, 656. [Google Scholar] [CrossRef]
- Kim, S.-J.; Chung, Y.-J. Multi-Scale Features for Transformer Model to Improve the Performance of Sound Event Detection. Appl. Sci. 2022, 12, 2626. [Google Scholar] [CrossRef]
- Hewage, P.; Behera, A.; Trovati, M.; Pereira, E.; Ghahremani, M.; Palmieri, F.; Liu, Y. Temporal Convolutional Neural (TCN) Network for an Effective Weather Forecasting Using Time-Series Data from the Local Weather Station. Soft Comput. 2020, 24, 16453–16482. [Google Scholar] [CrossRef]
- Qin, Y.; Song, D.; Chen, H.; Cheng, W.; Jiang, G.; Cottrell, G. A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2627–2633. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021; Curran Associates, Inc.: New York, NY, USA, 2021; Volume 34, pp. 22419–22430. Available online: https://proceedings.neurips.cc/paper/2021/hash/bcc0d400288793e8bdcd7c19a8ac0c2b-Abstract.html (accessed on 14 November 2024).
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Thoning, K.W.; Crotwell, A.M.; Mund, J.W. Atmospheric Carbon Dioxide Dry Air Mole Fractions from Continuous Measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and South Pole, 1973-Present; Version 2024-08-15, National Oceanic and Atmospheric Administration (NOAA); Global Monitoring Laboratory (GML): Boulder, CO, USA, 2024. [Google Scholar] [CrossRef]
- Gu, Z.; Zhu, X.; Ye, H.; Zhang, L.; Wang, J.; Zhu, Y.; Jiang, S.; Xiong, Z.; Li, Z.; Wu, W.; et al. Xiezhi: An Ever-Updating Benchmark for Holistic Domain Knowledge Evaluation. Proc. AAAI Conf. Artif. Intell. 2024, 38, 18099–18107. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, Z.; Bao, X. A Ship Trajectory Prediction Method Based on an Optuna–BILSTM Model. Appl. Sci. 2024, 14, 3719. [Google Scholar] [CrossRef]
- Farnsworth, A.; Lo, Y.T.E.; Valdes, P.J.; Buzan, J.R.; Mills, B.J.W.; Merdith, A.S.; Scotese, C.R.; Wakeford, H.R. Climate Extremes Likely to Drive Land Mammal Extinction during next Supercontinent Assembly. Nat. Geosci. 2023, 16, 901–908. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shafiullah, M.; Alam, M.S.; Rahman, M.S.; Alsanad, M.A.; Islam, M.M.; Islam, M.K.; Rahman, S.M. Decision Tree-Based Ensemble Model for Predicting National Greenhouse Gas Emissions in Saudi Arabia. Appl. Sci. 2023, 13, 3832. [Google Scholar] [CrossRef]
- Kumari, S.; Singh, S.K. Machine Learning-Based Time Series Models for Effective CO2 Emission Prediction in India. Env. Sci. Pollut. Res. 2023, 30, 116601–116616. [Google Scholar] [CrossRef]
- McNorton, J.; Bousserez, N.; Agustí-Panareda, A.; Balsamo, G.; Cantarello, L.; Engelen, R.; Huijnen, V.; Inness, A.; Kipling, Z.; Parrington, M.; et al. Quantification of Methane Emissions from Hotspots and during COVID-19 Using a Global Atmospheric Inversion. Atmos. Chem. Phys. 2022, 22, 5961–5981. [Google Scholar] [CrossRef]
- Ou, Y.; Roney, C.; Alsalam, J.; Calvin, K.; Creason, J.; Edmonds, J.; Fawcett, A.A.; Kyle, P.; Narayan, K.; O’Rourke, P.; et al. Deep Mitigation of CO2 and Non-CO2 Greenhouse Gases toward 1.5 °C and 2 °C Futures. Nat. Commun. 2021, 12, 6245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Mei, Y.; Ren, J.; Zhu, X.; Qian, Z. Multi-Scale Temporal Integration for Enhanced Greenhouse Gas Forecasting: Advancing Climate Sustainability. Sustainability 2025, 17, 3436. https://doi.org/10.3390/su17083436
Wang H, Mei Y, Ren J, Zhu X, Qian Z. Multi-Scale Temporal Integration for Enhanced Greenhouse Gas Forecasting: Advancing Climate Sustainability. Sustainability. 2025; 17(8):3436. https://doi.org/10.3390/su17083436
Chicago/Turabian StyleWang, Haozhe, Yuqi Mei, Jingxuan Ren, Xiaoxu Zhu, and Zhong Qian. 2025. "Multi-Scale Temporal Integration for Enhanced Greenhouse Gas Forecasting: Advancing Climate Sustainability" Sustainability 17, no. 8: 3436. https://doi.org/10.3390/su17083436
APA StyleWang, H., Mei, Y., Ren, J., Zhu, X., & Qian, Z. (2025). Multi-Scale Temporal Integration for Enhanced Greenhouse Gas Forecasting: Advancing Climate Sustainability. Sustainability, 17(8), 3436. https://doi.org/10.3390/su17083436