Segmenting Agritourism Visitors: Moving Beyond the General Market
Abstract
:1. Introduction
1.1. Segmenting Agritourism Visitors
1.2. Enduring Involvement and Agritourism Segmentation
2. Methods
3. Results
3.1. Demographics Profile
3.2. Factor Analysis
3.3. Cluster Analysis
3.4. Discriminant Analysis
3.5. Examining Differences in Demographics Between the Three Clusters
4. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katchova, A.L. Structural Changes in U.S. Agriculture: Financial Performance of Farms in Transition. European Association of Agricultural Economists. In Proceedings of the 114th Seminar, Berlin, Germany, 15–16 April 2010. [Google Scholar]
- Rauniyar, S.; Awasthi, M.K.; Kapoor, S.; Mishra, A.K. Agritourism: Structured literature review and bibliometric analysis. Tour. Recreat. Res. 2021, 46, 52–70. [Google Scholar] [CrossRef]
- Baby, J.; Joseph, A.G. Influence of travelers’ pro-environmental behavior and support of the local economy towards purchase intention of local foods. Int. J. Food Sci. Agric. 2023, 7, 368–378. [Google Scholar] [CrossRef]
- Veeck, G.; Che, D.; Veeck, A. Americas changing farmscape: A study of agricultural tourism in Michigan. Prof. Geogr. 2006, 58, 235–248. [Google Scholar] [CrossRef]
- Andéhn, M.; L’Espoir Decosta, J.P. Authenticity and product geography in the making of the agritourism destination. J. Travel Res. 2021, 60, 1282–1300. [Google Scholar] [CrossRef]
- Tew, C.; Barbieri, C. The perceived benefits of agritourism: The provider’s perspective. Tour. Manag. 2012, 33, 215–224. [Google Scholar] [CrossRef]
- Phillip, S.; Hunter, C.; Blackstock, K. A typology for defining agritourism. Tour. Manag. 2010, 31, 754–758. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.K.; Lee, D.; Jeong, J.; Moon, J. The effect of agritourism experience on consumers’ future food purchase patterns. Tour. Manag. 2019, 70, 144–152. [Google Scholar] [CrossRef]
- Flanigan, S.; Blackstock, K.; Hunter, C. Agritourism from the perspective of providers and visitors: A typology-based study. Tour. Manag. 2014, 40, 394–405. [Google Scholar] [CrossRef]
- Khanal, A.R.; Honey, U.; Omobitan, O. Diversification through ‘fun in the farm’: Analyzing structural factors affecting agritourism in Tennessee. Int. Food Agribus. Manag. Rev. 2020, 23, 105–120. [Google Scholar] [CrossRef]
- Phillips, W.J.; Wolfe, K.; Hodur, N.; Leistritz, F.L. Tourist word of mouth and revisit intentions to rural tourism destinations: A case of North Dakota, USA. Int. J. Tour. Res. 2013, 15, 93–104. [Google Scholar] [CrossRef]
- Baby, J.; Kim, D.Y. Sustainable agritourism for farm profitability: Comprehensive evaluation of visitors’ intrinsic motivation, environmental behavior, and satisfaction. Land 2024, 13, 1466. [Google Scholar] [CrossRef]
- Kotler, P. Principles of Marketing, 1st ed.; Prentice-Hall: Hoboken, NJ, USA, 1980. [Google Scholar]
- Chen, G.; Bao, J.; Huang, S. Developing a scale to measure backpackers’ personal development. J. Travel Res. 2014, 53, 522–536. [Google Scholar] [CrossRef]
- Huang, S.; Pearce, J.; Wen, J.; Dowling, R.K.; Smith, A.J. Segmenting Western Australian national park visitors by perceived benefits: A factor-item mixed approach. Int. J. Tour. Res. 2020, 22, 814–824. [Google Scholar] [CrossRef]
- Wen, J.; Huang, S. Chinese tourists visiting volatile destinations: Integrating cultural values into motivation-based segmentation. J. China Tour. Res. 2019, 15, 520–540. [Google Scholar] [CrossRef]
- Gu, Q.; Huang, S. Profiling Chinese wine tourists by wine tourism constraints: A comparison of Chinese Australians and long-haul Chinese tourists in Australia. Int. J. Tour. Res. 2019, 21, 206–220. [Google Scholar] [CrossRef]
- Santeramo, F.G.; Barbieri, C. On the demand for agritourism: A cursory review of methodologies and practice. Tour. Plan. Dev. 2017, 14, 139–148. [Google Scholar] [CrossRef]
- Forgas-Coll, S.; Palau-Saumell, R.; Matute, J.; Tárrega, S. How do service quality, experiences and enduring involvement influence tourists’ behavior? An empirical study in the Picasso and Miró Museums in Barcelona. Int. J. Tour. Res. 2017, 19, 246–256. [Google Scholar] [CrossRef]
- Lu, J.; Schuett, M.A. Examining the relationship between motivation, enduring involvement and volunteer experience: The case of outdoor recreation voluntary associations. Leis. Sci. 2014, 36, 68–87. [Google Scholar] [CrossRef]
- Ogbeide, O.A.; Bruwer, J. Enduring involvement with wine: Predictive model and measurement. J. Wine Res. 2013, 24, 210–226. [Google Scholar] [CrossRef]
- Barbieri, C. Assessing the sustainability of agritourism in the US: A comparison between agritourism and other farm entrepreneurial ventures. J. Sustain. Tour. 2013, 21, 252–270. [Google Scholar] [CrossRef]
- Baby, J.; Barbieri, C.; Knollenberg, W. Creative Tourism: An Umbrella for Agrifood Travel Experiences? Tour. Hosp. 2024, 5, 1363–1380. [Google Scholar] [CrossRef]
- Barbieri, C. Agritourism research: A perspective article. Tour. Rev. 2020, 75, 149–152. [Google Scholar] [CrossRef]
- Im, H.; Ha, Y. The effect of perceptual fluency and enduring involvement on situational involvement in an online apparel shopping context. J. Fash. Mark. Manag. Int. J. 2011, 15, 345–362. [Google Scholar] [CrossRef]
- Han, H. Travelers’ pro-environmental behavior in a green lodging context: Converging value-belief-norm theory and the theory of planned behavior. Tour. Manag. 2015, 47, 164–177. [Google Scholar] [CrossRef]
- Dolnicar, S.; Knezevic Cvelbar, L.; Grün, B. Do pro-environmental appeals trigger pro-environmental behavior in hotel guests? J. Travel Res. 2017, 56, 988–997. [Google Scholar] [CrossRef]
- Xu, F.; Huang, L.; Whitmarsh, L. Home and away: Cross-contextual consistency in tourists’ pro-environmental behavior. J. Sustain. Tour. 2020, 28, 1443–1459. [Google Scholar] [CrossRef]
- Quella, L.; Chase, L.; Conner, D.; Reynolds, T.; Wang, W.; Singh-Knights, D. Visitors and values: A qualitative analysis of agritourism operator motivations across the US. J. Agric. Food Syst. Community Dev. 2021, 10, 287–301. [Google Scholar] [CrossRef]
- Srikatanyoo, N.; Campiranon, K. Agritourist needs and motivations: The Chiang Mai case. J. Travel Tour. Mark. 2010, 27, 166–178. [Google Scholar] [CrossRef]
- Baby, J.; Joseph, A.G. Applying the Theory of Planned Behavior in local food purchasing. Int. J. Hosp. Tour. Syst. 2024, 17, 19–29. [Google Scholar]
- Aprile, M.C.; Caputo, V.; Nayga, R.M., Jr. Consumers’ preferences and attitudes toward local food products. J. Food Prod. Mark. 2016, 22, 19–42. [Google Scholar] [CrossRef]
- Brune, S.; Knollenberg, W.; Stevenson, K.T.; Barbieri, C.; Schroeder-Moreno, M. The influence of agritourism experiences on consumer behavior toward local food. J. Travel Res. 2021, 60, 1318–1332. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, M.J.; Hwang, Y.S. Tourists’ environmentally responsible behavior in response to climate change and tourist experiences in nature-based tourism. Sustainability 2016, 8, 644. [Google Scholar] [CrossRef]
- Li, S.; Wei, M.; Qu, H.; Qiu, S. How does self-image congruity affect tourists’ environmentally responsible behavior? J. Sustain. Tour. 2020, 28, 2156–2174. [Google Scholar] [CrossRef]
- Baby, J.; Joseph, A.G. Tourists’ perceptions and motivations for local food. J. Bus. Manag. Stud. 2023, 5, 160–165. [Google Scholar] [CrossRef]
- Soper, D.S. A-Priori Sample Size Calculator for Hierarchical Multiple Regression. Available online: https://www.danielsoper.com/statcalc/calculator.aspx?id=16 (accessed on 10 May 2022).
- Fanelli, R.M.; Romagnoli, L. Customer satisfaction with farmhouse facilities and its implications for the promotion of agritourism resources in Italian municipalities. Sustainability 2020, 12, 1749. [Google Scholar] [CrossRef]
- Shah, C.; Gibson, D.; Shah, S.; Pratt, S. Exploring a market for agritourism in Fiji: Tourists’ perspective. Tour. Recreat. Res. 2020, 45, 204–217. [Google Scholar] [CrossRef]
- Getz, D.; Robinson, R.; Andersson, T.; Vujicic, S. Foodies and Food Tourism; Goodfellow Publishers: Oxford, UK, 2014. [Google Scholar]
- Shen, C.C.; Wang, D. Using the RPM model to explore the impact of organic agritourism destination fascination on loyalty—The mediating roles of place attachment and pro-environmental behavior. Agriculture 2023, 13, 1767. [Google Scholar] [CrossRef]
- Alebaki, M.; Iakovidou, O. Segmenting the Greek wine tourism market using a motivational approach. New Medit. 2010, 9, 31. [Google Scholar]
- Nella, A.; Christou, E. Segmenting wine tourists on the basis of involvement with wine. J. Travel Tour. Mark. 2014, 31, 783–798. [Google Scholar] [CrossRef]
- Miller, D.; Merrilees, B.; Coghlan, A. Sustainable urban tourism: Understanding and developing visitor pro-environmental behaviors. J. Sustain. Tour. 2015, 23, 26–46. [Google Scholar] [CrossRef]
- Ammirato, S.; Felicetti, A.M.; Raso, C.; Pansera, B.A.; Violi, A. Agritourism and sustainability: What we can learn from a systematic literature review. Sustainability 2020, 12, 9575. [Google Scholar] [CrossRef]
- Seabra, C.; Dolnicar, S.; Abrantes, J.L.; Kastenholz, E. Heterogeneity in risk and safety perceptions of international tourists. Tour. Manag. 2013, 36, 502–510. [Google Scholar] [CrossRef]
Variable | Frequency | Percentage | |
---|---|---|---|
Gender (n = 550) | |||
Male | 261 | 47.5% | |
Female | 289 | 52.5% | |
Annual Income (n = 550) | |||
Less than USD 20,000 | 66 | 12.0% | |
USD 20,000–USD 34,999 | 79 | 14.4% | |
USD 35,000–USD 49,999 | 59 | 10.7% | |
USD 50,000–USD 74,999 | 92 | 16.7% | |
USD 75,000–USD 99,999 | 77 | 14.0% | |
USD 100,000–USD 149,999 | 96 | 17.5% | |
USD 150,000 or more | 81 | 14.7% | |
Education (n = 550) | |||
High School Graduate | 114 | 20.7% | |
Some College, No Degree | 119 | 21.6% | |
Associate Degree | 63 | 11.5% | |
Bachelor’s Degree | 150 | 27.3% | |
Graduate or Professional Degree | 104 | 18.9% | |
Race/Ethnicity (n = 550) | |||
African American or Black | 65 | 11.8% | |
Caucasian or White | 427 | 77.6% | |
Asian or Pacific Islander | 24 | 4.2% | |
Others | 34 | 6.2% |
Items | Mean | Standard Deviation | Factor Loading | Eigenvalue | Variance Explained (%) |
---|---|---|---|---|---|
Intrinsic Motivation (Cronbach alpha = 0.903) | 5.74 | 47.85 | |||
IM1 | 3.94 | 0.9758 | 0.85 | ||
IM2 | 4.03 | 0.9831 | 0.77 | ||
IM3 | 4.05 | 0.9462 | 0.80 | ||
IM4 | 3.92 | 0.9313 | 0.73 | ||
IM5 | 3.86 | 0.9692 | 0.75 | ||
IM6 | 3.87 | 1.0683 | 0.81 | ||
IM7 | 4.14 | 0.9288 | 0.71 | ||
Environmental Behavior (Cronbach alpha = 0.890) | 2.19 | 18.26 | |||
EB1 | 4.20 | 0.8254 | 0.82 | ||
EB2 | 4.17 | 0.8246 | 0.80 | ||
EB3 | 4.27 | 0.8082 | 0.83 | ||
EB4 | 4.11 | 0.8819 | 0.77 | ||
EB5 | 4.16 | 0.8535 | 0.84 |
Items | Cluster 1: Agritourism Lovers (n = 220) | Cluster 2: Greenies (n = 225) | Cluster 3: Neophytes (n = 105) | F-Ratio | p-Value |
---|---|---|---|---|---|
IM1 | 4.49 | 4.11 | 2.89 | 204.66 | <0.001 |
IM2 | 4.55 | 4.08 | 2.93 | 146.14 | <0.001 |
IM3 | 4.37 | 3.94 | 2.90 | 168.26 | <0.001 |
IM4 | 4.35 | 3.86 | 2.80 | 130.02 | <0.001 |
IM5 | 4.35 | 4.04 | 2.49 | 136.62 | <0.001 |
IM6 | 4.60 | 4.12 | 3.29 | 193.17 | <0.001 |
IM7 | 4.80 | 3.96 | 3.44 | 96.54 | <0.001 |
EB1 | 4.76 | 3.92 | 3.46 | 191.12 | <0.001 |
EB2 | 4.89 | 4.04 | 3.47 | 170.36 | <0.001 |
EB3 | 4.73 | 3.90 | 3.28 | 227.33 | <0.001 |
EB4 | 4.80 | 3.88 | 3.41 | 174.86 | <0.001 |
EB5 | 4.49 | 4.11 | 2.89 | 194.76 | <0.001 |
Function | Eigenvalue | Variance Explained | Canonical Correlation |
---|---|---|---|
1 | 3.090 | 96.2 | 0.869 |
2 | 0.121 | 3.8 | 0.328 |
Function | Wilks’ Lambda | χ2 | p-value |
1 through 2 | 0.218 | 831.952 | <0.001 |
2 | 0.892 | 62.244 | <0.001 |
Discriminant Loading | Function 1 | Function 2 | |
IM | 0.759 | 0.676 | |
EB | 0.800 | −0.627 |
Function 1 | Function 2 | |
---|---|---|
IM | 0.617 | 0.787 a |
EB | 0.665 | −0.747 a |
Function 1 | Function 2 | |
---|---|---|
Cluster 1 | 1.789 | −0.235 |
Cluster 2 | −0.337 | 0.411 |
Cluster 3 | −3.025 | −0.389 |
Cluster 1: Agritourism Lovers (n = 220) | Cluster 2: Greenies (n = 225) | Cluster 3: Neophytes (n = 105) | χ2 | p | |
---|---|---|---|---|---|
Gender (n = 550) | |||||
Male | 106 (48.2%) | 111 (49.3%) | 44 (41.9%) | 1.66 | 0.436 |
Female | 114 (51.8%) | 114 (50.7%) | 61 (58.1%) | ||
Age (n = 550) | |||||
18–24 years | 12 (5.5%) | 20 (8.9%) | 21 (20.0%) | 37.98 *** | <0.001 |
25–34 years | 37 (16.8%) | 35 (15.6%) | 22 (21.0%) | ||
35–44 years | 62 (28.2%) | 62 (27.6%) | 24 (22.9%) | ||
45–54 years | 31 (14.1%) | 22 (9.8%) | 5 (4.8%) | ||
55–64 years | 56 (25.5%) | 38 (16.9%) | 19 (18.1%) | ||
65+ years | 22 (10.0%) | 48 (21.3%) | 14 (13.2%) | ||
Race/Ethnicity (n = 550) | |||||
African American or Black | 23 (10.5%) | 23 (10.2%) | 19 (18.1%) | 9.42 | 0.151 |
Caucasian or White | 179 (81.4%) | 174 (77.3%) | 74 (70.5%) | ||
Asian or Pacific Islander | 9 (4.1%) | 9 (4.0%) | 6 (5.7%) | ||
Others | 9 (4.1%) | 19 (8.4%) | 6 (5.7%) | ||
Education (n = 550) | |||||
High school graduate | 38 (17.3%) | 52 (23.1%) | 24 (22.9%) | 8.36 | 0.399 |
Some college, no degree | 44 (20.0%) | 48 (21.3%) | 27 (25.7%) | ||
Associate degree | 25 (11.4%) | 23 (10.2%) | 15 (14.3%) | ||
Bachelor’s degree | 63 (28.6%) | 63 (28.0%) | 24 (22.9%) | ||
Graduate or professional | 50 (22.7%) | 39 (17.3%) | 15 (14.3%) | ||
Annual Income (n = 550) | |||||
Less than USD 20,000 | 26 (11.8%) | 23 (10.2%) | 17 (16.2%) | 25.83 * | 0.011 |
USD 20,000–USD 34,999 | 28 (12.7%) | 30 (13.3%) | 21 (20.0%) | ||
USD 35,000–USD 49,999 | 21 (9.5%) | 24 (10.7%) | 14 (13.3%) | ||
USD 50,000–USD 74,999 | 29 (13.2%) | 49 (21.8%) | 14 (13.3%) | ||
USD 75,000–USD 99,999 | 31 (14.1%) | 33 (14.7%) | 13 (12.4%) | ||
USD 100,000–USD 149,999 | 37 (16.8%) | 40 (17.8%) | 19 (18.1%) | ||
USD 150,000 or more | 48 (21.8%) | 26 (11.6%) | 7 (6.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baby, J.; Kim, D.-Y. Segmenting Agritourism Visitors: Moving Beyond the General Market. Sustainability 2025, 17, 3620. https://doi.org/10.3390/su17083620
Baby J, Kim D-Y. Segmenting Agritourism Visitors: Moving Beyond the General Market. Sustainability. 2025; 17(8):3620. https://doi.org/10.3390/su17083620
Chicago/Turabian StyleBaby, Jibin, and Dae-Young Kim. 2025. "Segmenting Agritourism Visitors: Moving Beyond the General Market" Sustainability 17, no. 8: 3620. https://doi.org/10.3390/su17083620
APA StyleBaby, J., & Kim, D.-Y. (2025). Segmenting Agritourism Visitors: Moving Beyond the General Market. Sustainability, 17(8), 3620. https://doi.org/10.3390/su17083620