Using Artificial Intelligence to Predict Power Demand in Small Power Grids—Problem Analysis as a Method to Limit Carbon Dioxide Emissions
Abstract
:1. Introduction
2. Literature Review
3. Power System Power Demand Changes
- ODM—Area Power Dispatch,
- ○
- CDM—Central Power Dispatch (central in the sense of a local distribution grid operator over a given area of the country),
- ▪
- RDM—Regional Power Dispatch.
3.1. Local Power System Power Demand Analysis
3.2. Power Demand Forecasting vs. The Issue of Reducing Carbon Dioxide Atmospheric Emissions
- MAPE = 2.7721%,
- MAE = 8.3009 MW,
- RMSE = 12.5277 MW,
- R = 0.9834.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PS | Power System |
PL | Power Lines |
SS | Switching Stations |
SCIF | State Critical Infrastructure Facilities |
NPS | National Power System |
KDM | National Power Dispatch |
LPS | Local Power System |
PTPiREE | Polish Power Transmission and Distribution Association |
HV/MV | High voltage/medium voltage |
ULS | Underfrequency Load Shedding |
GPZ | Transformer/Switching Substation |
MLP | Multilayer Perceptron |
RBF | Radial Basis Function |
SVM | Support Vector Machine |
ARMAX | AutoRegressive Moving Average with eXogenous input |
CNN | Convolutional Neural Network |
LSTM | Long Short-Term Memory |
ADAM | Adaptive Moment Estimation |
MAE | Mean Absolute Error |
RMSE | Root Mean Squared Error |
MAPE | Mean Absolute Percentage Error |
R | Pearson correlation coefficient |
ASLS | Automatic-Spontaneous Load Shedding |
ODM | Area Power Dispatch |
CPD | Central Power Dispatch |
RDM | Regional Power Dispatch |
References
- Lund, H.; Thellufsen, J.Z.; Østergaard, P.A.; Sorknæs, P.; Skov, I.R.; Mathiesen, B.V. EnergyPLAN—Advanced analysis of smart energy systems. Smart Energy 2021, 1, 100007. [Google Scholar] [CrossRef]
- Barnes, T.; Shivakumar, A.; Brinkerink, M.; Niet, T. OSeMOSYS Global, an open-source, open data global electricity system model generator. Sci. Data 2022, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili Aliabadi, D.; Wulff, N.; Jordan, M.; Cyffka, K.F.; Millinger, M. Soft-coupling energy and power system models to analyze pathways toward a de-fossilized German transport sector. In Operations Research Proceedings 2022; Lecture Notes in Operations Research; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Caban, D.; Walkowiak, T. Dependability analysis of hierarchically composed system-of-systems. In Proceedings of the Thirteenth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, Brunów, Poland, 2–6 July 2018; Springer: Cham, Switzerland, 2019; pp. 113–120. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Hassan, S.U.; Abi, Z.U.; Izhar, T. Advanced control techniques for micro-grids power quality improvement. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 24–26 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Łukasiak, J.; Rosiński, A.; Wiśnios, M. The Issue of Evaluating the Effectiveness of Miniature Safety Fuses as Anti-Damage Systems. Energies 2022, 15, 4013. [Google Scholar] [CrossRef]
- Skuza, A.; Ziemianek, S.; Suproniuk, M. Power System Division—Certain Issues Associated with Shaping Commutation Strategies in Power Substations. Energies 2022, 15, 7293. [Google Scholar] [CrossRef]
- Adhikari, S.; Li, F.; Li, H. P-Q and P-V Control of Photovoltaic Generators in Distribution Systems. IEEE Trans. Smart Grid 2015, 6, 2929–2941. [Google Scholar] [CrossRef]
- Singh, M.; Khadkikar, V.; Chandra, A.; Varma, R.K. Grid Interconnection of Renewable Energy Sources at the Distribution Level With Power-Quality Improvement Features. IEEE Trans. Power Deliv. 2011, 26, 307–315. [Google Scholar] [CrossRef]
- Naderipour, A.; Abdul-Malek, Z.; Afrouzi, H.N.; Ramachandaramurthy, V.K.; Guerrero, J.M. A Novel Compensation Current Control Method for Grid-Connected PV Inverter to Improve Power Quality in Micro-Grid. In Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kota Kinabalu, Malaysia, 7–10 October 2018; pp. 143–148. [Google Scholar] [CrossRef]
- Kaur, G.; Associate, A.P.; Rao, K.U. Design and Implementation of Hybrid Microgrid in MATLAB for Fault Current Analysis in Different Modes of Microgrid Operations. In Proceedings of the 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 10–11 October 2019; pp. 368–372. [Google Scholar] [CrossRef]
- Salmeron, P.; Herrera, R.S.; Vazquez, J.R. Mapping matrices against vectorial frame in the instantaneous reactive power compensation. IET Electr. Power Appl. 2007, 1, 727–736. [Google Scholar] [CrossRef]
- Li, Y.; Guldenmund, F.W. Safety management systems: A broad overview of the literature. Saf. Sci. 2018, 103, 94–123. [Google Scholar] [CrossRef]
- Chiang, S.Y.; Kan, Y.C.; Chen, Y.S.; Tu, Y.C.; Lin, H.C. Fuzzy computing model of activity recognition on WSN movement data for ubiquitous healthcare measurement. Sensors 2016, 16, 2053. [Google Scholar] [CrossRef]
- Siergiejczyk, M.; Paś, J.; Rosiński, A. Evaluation of Safety of Highway CCTV System’s Maintenance Process. In Telematics—Support for Transport. TST 2014. Communications in Computer and Information Science; Mikulski, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 471, pp. 69–79. [Google Scholar] [CrossRef]
- Dziula, P.; Paś, J. Low Frequency Electromagnetic Interferences Impact on Transport Security Systems Used in Wide Transport Areas. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2018, 12, 251–258. [Google Scholar] [CrossRef]
- Shah, A.U.A.; Christian, R.; Kim, J.; Kim, J.; Park, J.; Kang, H.G. Dynamic Probabilistic Risk Assessment Based Response Surface Approach for FLEX and Accident Tolerant Fuels for Medium Break LOCA Spectrum. Energies 2021, 14, 2490. [Google Scholar] [CrossRef]
- Chen, C.Y.; Liu, H.L.; Xiao, Y.; Zhu, F.G.; Ding, L.; Yang, F.W. Power generation scheduling for a hydro-wind-solar hybrid system: A systematic survey and prospect. Energies 2022, 15, 8747. [Google Scholar] [CrossRef]
- Yu, L.; Wu, X.F.; Zhou, Z.H. Multi-objective optimal operation of cascade hydropower plants considering ecological flow under different ecological conditions. J. Hydrol. 2021, 601, 126599. [Google Scholar] [CrossRef]
- Farahmand, H.; Jaehnert, S.; Aigner, T.; Huertas-Hernando, D. Nordic hydropower flexibility and transmission expansion to support integration of North European wind power. Wind Energy 2015, 18, 1075–1103. [Google Scholar] [CrossRef]
- Naghdalian, S.; Amraee, T.; Kamali, S.; Capitanescu, F. Stochastic network constrained unit commitment to determine flexible ramp reserve for handling wind power and demand uncertainties. IEEE Trans. Ind. Inform. 2020, 16, 4580–4591. [Google Scholar] [CrossRef]
- Süsser, D.; Gaschnig, H.; Ceglarz, A.; Stavrakas, V.; Flamos, A.; Lilliestam, J. Better suited or just more complex? On the fit between user needs and modeller-driven improvements of energy system models. Energy 2022, 239, 121909. [Google Scholar] [CrossRef]
- Oberle, S.; Elsland, R. Are open access models able to assess today’s energy scenarios? Energy Strategy Rev. 2019, 26, 100396. [Google Scholar] [CrossRef]
- Siergiejczyk, M.; Paś, J.; Rosiński, A. Modeling of process of exploitation of transport telematics systems with regard to electro-magnetic interferences. In Proceedings of the TOOLS OF TRANSPORT TELEMATICS, 15th International Conference on Transport Systems Telematics (TST), Wrocław, Poland, 15–17 April 2015; Volume 531, pp. 99–107. [Google Scholar] [CrossRef]
- Moezzi, M.; Janda, K.B.; Rotmann, S. Using stories, narratives, and storytelling in energy and climate change research. Energy Res. Soc. Sci. 2017, 31, 1–10. [Google Scholar] [CrossRef]
- Wiśnios, M.; Tatko, S.; Mazur, M.; Paś, J.; Łukasiak, J.M.; Klimczak, T. Identifying Characteristic Fire Properties with Stationary and Non-Stationary Fire Alarm Systems. Sensors 2024, 24, 2772. [Google Scholar] [CrossRef]
- Nitsch, F.; Schimeczek, C.; Nienhaus, K.; Frey, U.; Sperber, E.; Sarfarazi, S.; Kochems, J.; El Ghazi, A.A. AMIRIS-The Open Agent-based Market Model: How to get involved and profit from our model. In Proceedings of the Openmod Workshop, Laxenburg, Austria, 22–24 March 2023. [Google Scholar]
- Kwasiborska, A.; Skorupski, J. Assessment of the Method of Merging Landing Aircraft Streams in the Context of Fuel Consumption in the Airspace. Sustainability 2021, 13, 12859. [Google Scholar] [CrossRef]
- Antosz, K.; Machado, J.; Mazurkiewicz, D.; Antonelli, D.; Soares, F. Systems Engineering: Availability and Reliability. Appl. Sci. 2022, 12, 2504. [Google Scholar] [CrossRef]
- Jakubowski, K.; Paś, J.; Duer, S.; Bugaj, J. Operational Analysis of Fire Alarm Systems with a Focused, Dispersed and Mixed Structure in Critical Infrastructure Buildings. Energies 2021, 14, 7893. [Google Scholar] [CrossRef]
- Vinogradov, A.; Bolshev, V.; Vinogradova, A.; Jasiński, M.; Sikorski, T.; Leonowicz, Z.; Goňo, R.; Jasińska, E. Analysis of the power supply restoration time after failures in power transmission lines. Energies 2020, 13, 2736. [Google Scholar] [CrossRef]
- Sterniczuk, D.; Zaklika, W.; Kozłowski, M. Identification Tests of Modern Vehicles’ Electromagnetic Environment as Part of the Assessment of Their Functional Safety. Sensors 2025, 25, 7. [Google Scholar] [CrossRef]
- Soszyńska-Budny, J. General approach to critical infrastructure safety modelling. In Safety Analysis of Critical Infrastructure. Lecture Notes in Intelligent Transportation and Infrastructure; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Ruddle, A.R.; Martin, A.J.M. Adapting automotive EMC to meet the needs of the 21st century. IEEE Electromagn. Compat. Mag. 2019, 8, 75–85. [Google Scholar] [CrossRef]
- Stawowy, M.; Rosiński, A.; Siergiejczyk, M.; Perlicki, K. Quality and Reliability-Exploitation Modeling of Power Supply Systems. Energies 2021, 14, 2727. [Google Scholar] [CrossRef]
- Łukasiak, J.; Rosiński, A.; Wiśnios, M. The Impact of Temperature of the Tripping Thresholds of Intrusion Detection System Detection Circuits. Energies 2021, 14, 6851. [Google Scholar] [CrossRef]
- Slowak, P.; Kaniewski, P. Stratified Particle Filter Monocular SLAM. Remote Sens. 2021, 13, 3233. [Google Scholar] [CrossRef]
- Pas, J.; Klimczak, T.; Rosinski, A.; Stawowy, M. The analysis of the operational process of a complex fire alarm system used in transport facilities. Build. Simul. 2022, 15, 615–629. [Google Scholar] [CrossRef]
- Paś, J.; Rosiński, A.; Białek, K. A reliability-exploitation analysis of a static converter taking into account electromagnetic interference. Transp. Telecommun. 2021, 22, 217–229. [Google Scholar] [CrossRef]
- Paś, J.; Rosiński, A.; Wetoszka, P.; Białek, K.; Klimczak, T.; Siergiejczyk, M. Assessment of the Impact of Emitted Radiated Interference Generated by a Selected Rail Traction Unit on the Operating Process of Trackside Video Monitoring Systems. Electronics 2022, 11, 2554. [Google Scholar] [CrossRef]
- Rosiński, A.; Paś, J.; Białek, K. A reliability-operational analysis of a track-side CCTV cabinet taking into account interference, Bulletin of the Polish Academy of sciences. Tech. Sci. 2021, 69, 1–11. [Google Scholar] [CrossRef]
- Pham, H. Safety and RiskModeling and its Applications; Springer Series in Reliability Engineering; Springer: London, UK, 2011; p. 125. [Google Scholar]
- Saleh, J.H.; Haga, R.A.; Favarò, F.M.; Bakolas, E. Texas City refinery accident: Case study in breakdown of defense-in-depth and violation of the safety—Diagnosability principle in design. Eng. Fail. Anal. 2014, 36, 121–133. [Google Scholar] [CrossRef]
- Duer, S.; Rokosz, K.; Zajkowski, K.; Bernatowicz, D.; Ostrowski, A.; Woźniak, M.; Iqbal, A. Intelligent Systems Supporting the Use of Energy Devices and Other Complex Technical Objects: Modeling, Testing, and Analysis of Their Reliability in the Operating Process. Energies 2022, 15, 6414. [Google Scholar] [CrossRef]
- Oszczypała, M.; Ziółkowski, J.; Małachowski, J. Analysis of Light Utility Vehicle Readiness in Military Transportation Systems Using Markov and Semi-Markov Processes. Energies 2022, 15, 5062. [Google Scholar] [CrossRef]
- Duer, S.; Zajkowski, K.; Harničárová, M.; Charun, H.; Bernatowicz, D. Examination of Multivalent Diagnoses Developed by a Diagnostic Program with an Artificial Neural Network for Devices in the Electric Hybrid Power Supply System “House on Water”. Energies 2021, 14, 2153. [Google Scholar] [CrossRef]
- Veit, S.; Steiner, F. Defect Trends in Fire Alarm Systems: A Basis for Risk-Based Inspection (RBI) Approaches. Safety 2024, 10, 95. [Google Scholar] [CrossRef]
- Duer, S. Diagnostic system for the diagnosis of a reparable technical object, with the use of an artificial neural network of RBF type. Neural Comput. Appl. 2010, 19, 691–700. [Google Scholar] [CrossRef]
- Kaniewski, P. Extended Kalman Filter with Reduced Computational Demands for Systems with Non-Linear Measurement Models. Sensors 2020, 20, 1584. [Google Scholar] [CrossRef]
- Gajjar, S.; Palazoglu, A. A data-driven multidimensional visualization technique for process fault detection and diagnosis. Chemom. Intell. Lab. Syst. 2016, 154, 122–136. [Google Scholar] [CrossRef]
- Kang, Y.; Duan, B.; Zhou, Z.; Shang, Y.; Zhang, C. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs. J. Power Sources 2019, 417, 132–144. [Google Scholar] [CrossRef]
- Stawowy, M.; Perlicki, K.; Sumiła, M. Comparison of uncertainty multilevel models to ensure ITS services. In Safety and Reliability: Theory and Applications, Proceedings of the European Safety and Reliability Conference ESREL 2017, Portoroz, Slovenia, 18–22 June 2017; Cepin, M., Bris, R., Eds.; CRC Press/Balkema: London, UK, 2017; pp. 2647–2652. [Google Scholar]
- Szczupak, P.; Kossowski, T.; Szostek, K.; Szczupak, M. Tests of pulse interference from lightning discharges occurring in unmanned aerial vehicle housings made of carbon fibers. Eksploat. I Niezawodn.—Maint. Reliability 2024, 27, 193984. [Google Scholar] [CrossRef]
- Sadeghi, B.; Westerlund, P.; Giri, M.; Bollen, M. Analysis of the Measurements of the Radiated Emission from 9 kHz to 150 kHz from Electric Railways. Energies 2024, 17, 4951. [Google Scholar] [CrossRef]
- Xu, Z.; Lei, C.; Yan, F. Electromagnetic safety evaluation of Advanced Driving Assistance System in the anechoic chamber. In Proceedings of the 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, 8–11 May 2022; pp. 119–122. [Google Scholar] [CrossRef]
- Sabat, W.; Klepacki, D.; Kamuda, K.; Kuryło, K.; Jankowski-Mihułowicz, P. Estimation of the Immunity of an AC/DC Converter of an LED Lamp to a Standardized Electromagnetic Surge. Electronics 2024, 13, 4607. [Google Scholar] [CrossRef]
- Burdzik, R. Application of vibration signals as independent and alternative information channels to support the reliability of positioning and prediction systems for transport means movement. Eksploat. I Niezawodn.—Maint. Reliability 2025, 27, 196929. [Google Scholar] [CrossRef]
- Duer, S. Examination of the reliability of a technical object after its regeneration in a maintenance system with an artificial neural network. Neural Comput. Appl. 2012, 21, 523–534. [Google Scholar] [CrossRef]
- Osowski, S.; Szmurlo, R.; Siwek, K.; Ciechulski, T. Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study. Energies 2022, 15, 3265. [Google Scholar] [CrossRef]
- Ciechulski, T.; Osowski, S. High Precision LSTM Model for Short-Time Load Forecasting in Power Systems. Energies 2021, 14, 2983. [Google Scholar] [CrossRef]
- Ciechulski, T.; Osowski, S. Deep Learning Approach to Power Demand Forecasting in Polish Power System. Energies 2020, 13, 6154. [Google Scholar] [CrossRef]
- Ciechulski, T.; Osowski, S. The method of 24-hour load forecasting with application of fuzzy sets and C-means algorithm. Przegląd Elektrotechniczny 2019, 10, 185–189. [Google Scholar] [CrossRef]
- Ciechulski, T.; Osowski, S. The neural method applied for 24-hour load forecasting for the next day in National Power System in Poland. Przegląd Elektrotechniczny 2018, 9, 108–112. [Google Scholar] [CrossRef]
- Ceschini, A.; Rosato, A.; Panella, M. Design of an LSTM cell on a quantum hardware. IEEE Trans. Circuits Syst. 2022, 69, 1822–1826. [Google Scholar] [CrossRef]
- Herui, C.; Xu, P.; Yupei, M. Electric Load Forecast Using Combined Models with HP Filter-SARIMA and ARMAX Optimized by Regression Analysis Algorithm. Math. Probl. Eng. 2015, 2015, 386925. [Google Scholar] [CrossRef]
- Liu, P.; Zheng, P.; Chen, Z. Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting. Energies 2019, 12, 2445. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Structure and Production of Electricity in Poland. Available online: https://www.cire.pl/strony/struktura-i-produkcja-energii-elektrycznej-w-polsce (accessed on 11 February 2025).
Parameter | [MW] |
---|---|
Minimum value | 119.99 |
Maximum value | 609.52 |
Mean | 334.25 |
Median | 328.35 |
Standard deviation | 93.47 |
Variation range | 489.53 |
Parameters of the Neural Model | [Search Space], Selected Parameter |
---|---|
Number of neurons in hidden layer | [300…465…650] |
Number of epochs to train model | [50…70…150] |
Optimizer function | [rmsprop, adam, sgdm, lbfgs] |
Learning rate | [0.001, 0.005, 0.01] |
Loss functions which are minimized during training | [mae, mape, mse] |
Number of ensemble members | [3…5…10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciechulski, T.; Paś, J.; Stawowy, M.; Duer, S. Using Artificial Intelligence to Predict Power Demand in Small Power Grids—Problem Analysis as a Method to Limit Carbon Dioxide Emissions. Sustainability 2025, 17, 3694. https://doi.org/10.3390/su17083694
Ciechulski T, Paś J, Stawowy M, Duer S. Using Artificial Intelligence to Predict Power Demand in Small Power Grids—Problem Analysis as a Method to Limit Carbon Dioxide Emissions. Sustainability. 2025; 17(8):3694. https://doi.org/10.3390/su17083694
Chicago/Turabian StyleCiechulski, Tomasz, Jacek Paś, Marek Stawowy, and Stanisław Duer. 2025. "Using Artificial Intelligence to Predict Power Demand in Small Power Grids—Problem Analysis as a Method to Limit Carbon Dioxide Emissions" Sustainability 17, no. 8: 3694. https://doi.org/10.3390/su17083694
APA StyleCiechulski, T., Paś, J., Stawowy, M., & Duer, S. (2025). Using Artificial Intelligence to Predict Power Demand in Small Power Grids—Problem Analysis as a Method to Limit Carbon Dioxide Emissions. Sustainability, 17(8), 3694. https://doi.org/10.3390/su17083694