A Systematic Review of Methodological Advances in Urban Heatwave Risk Assessment: Integrating Multi-Source Data and Hybrid Weighting Methods
Abstract
:1. Introduction
- (1)
- Conducting a systematic review of methodological innovations in heatwave risk assessment, emphasizing multi-source data integration and hybrid weighting approaches.
- (2)
- Proposing the HEVA framework, which extends traditional models by incorporating (a) dynamic adaptability indicators and (b) high-resolution spatial analysis.
- (3)
- Establishing a comparative evaluation of existing frameworks to identify best practices for urban-scale risk mapping, supported by empirical validation.
2. Development of Risk Assessment of Urban Heatwaves
3. Definition and Standards of Heatwaves
4. Construction of a Heatwave Risk Assessment System
4.1. Determination of the Risk Assessment Framework
- (1)
- Hazard: quantified via real-time thermal metrics.
- (2)
- Exposure: spatialized population density and mobility patterns.
- (3)
- Vulnerability: sociodemographic sensitivity.
- (4)
- Adaptability: cooling infrastructure and healthcare access.
4.2. Selection of Evaluation Indicators
4.2.1. Thermal Hazard Indicators
4.2.2. Thermal Exposure Indicators
4.2.3. Thermal Vulnerability Indicators
4.2.4. Thermal Adaptability Indicators
4.3. Quantification of Evaluation Indicator Weights
4.4. Construction of Comprehensive Evaluation Models
4.5. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- The Lancet. Global heating: An urgent call for action to protect health. Lancet 2022, 400, 1557. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Tang, T.; Zheng, Z.; Zhou, X.; Liu, W.; Zhang, Y. Thermal responses of workers during summer: An outdoor investigation of construction sites in South China. Sustain. Cities Soc. 2021, 66, 102705. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, D.; Dong, X.; Zhao, Z.; Li, L.; Duo, L.; Li, J. Will individuals visit hospitals when suffering heat-related illnesses? Yes, but…. Build. Environ. 2022, 208, 108587. [Google Scholar] [CrossRef]
- Goggins, W.B.; Chan, E.Y.Y.; Ng, E.; Ren, C.; Chen, L. Effect Modification of the Association between Short-term Meteorological Factors and Mortality by Urban Heat Islands in Hong Kong. PLoS ONE 2012, 7, e38551. [Google Scholar] [CrossRef]
- Wang, D.; Lau, K.K.-L.; Ren, C.; Goggins, W.B.; Shi, Y.; Ho, H.C.; Lee, T.-C.; Lee, L.-S.; Woo, J.; Ng, E. The impact of extremely hot weather events on all-cause mortality in a highly urbanized and densely populated subtropical city: A 10-year time-series study (2006–2015). Sci. Total Environ. 2019, 690, 923–931. [Google Scholar] [CrossRef]
- Guo, Y.; Punnasiri, K.; Tong, S. Effects of temperature on mortality in Chiang Mai city, Thailand: A time series study. Environ. Health 2012, 11, 36. [Google Scholar] [CrossRef]
- Guo, Y.; Gasparrini, A.; Armstrong Ben, G.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; Coelho Micheline de Sousa Zanotti, S.; Pan, X.; Kim, H.; Hashizume, M.; et al. Heat Wave and Mortality: A Multicountry, Multicommunity Study. Environ. Health Perspect. 2017, 125, 087006. [Google Scholar] [CrossRef]
- Huang, C.; Cheng, J.; Phung, D.; Tawatsupa, B.; Hu, W.; Xu, Z. Mortality burden attributable to heatwaves in Thailand: A systematic assessment incorporating evidence-based lag structure. Environ. Int. 2018, 121, 41–50. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xie, G.-d.; Xu, J. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban. For. Urban. Green. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Qi, Q.; Meng, Q.; Dong, L.; Ren, P. Discussion on the Way of Combining between Urban Planning and Thermal Environment. J. Hum. Settl. West. China 2021, 36, 46–56. (In Chinese) [Google Scholar] [CrossRef]
- Ren, C.; Wu, E.; Lutz, K.; Feng, Z. The Development of Urban Climatic Map and Its Current Application Situation. J. Appl. Meteorol. Sci. 2012, 23, 593–603. (In Chinese) [Google Scholar]
- Scherer, D.; Fehrenbach, U.; Beha, H.D.; Parlow, E. Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmos. Environ. 1999, 33, 4185–4193. [Google Scholar] [CrossRef]
- Paszynski, J. Mapping urban topoclimates. Energy Build. 1991, 16, 1059–1062. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Build. Environ. 2009, 44, 198–206. [Google Scholar] [CrossRef]
- Toshiaki, I.; Keisuke, H.; Kazuhiro, S. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 1999, 33, 3897–3909. [Google Scholar]
- Ren, C.; Ng, E.Y.Y.; Katzschner, L. Urban climatic map studies: A review. Int. J. Climatol. 2011, 31, 2213–2233. [Google Scholar] [CrossRef]
- He, X.D.; Miao, S.; Dou, J.; Shen, S. Preliminary establishment of Beijing Urban Climate Map (UCMap) system. J. Nanjing Univ. 2014, 50, 359–371. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Verdonck, M.-L.; Demuzere, M.; Hooyberghs, H.; Beck, C.; Cyrys, J.; Schneider, A.; Dewulf, R.; Van Coillie, F. The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data. Landsc. Urban. Plan. 2018, 178, 183–197. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Build. Environ. 2019, 156, 21–32. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, G.; Jiang, L.; Chen, X.; Xie, T.; Wei, Y.; Xu, L.; Pan, Z.; An, P.; Lun, F. Mapping local climate zones and their associated heat risk issues in Beijing: Based on open data. Sustain. Cities Soc. 2021, 74, 103174. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bagade, A. Evaluating urban heat island in the critical local climate zones of an Indian city. Landsc. Urban. Plan. 2018, 169, 92–104. [Google Scholar] [CrossRef]
- Zhou, R.; Jiang, W.; He, X. Numerical simulation of the impacts of the thermal effects of urban canopy structure on the formation and the intensity of the urban heat island. Chin. J. Geophys. 2008, 51, 715–726. (In Chinese) [Google Scholar]
- Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Understanding land surface temperature impact factors based on local climate zones. Sustain. Cities Soc. 2021, 69, 102818. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C. Urban ventilation corridors and spatiotemporal divergence patterns of urban heat island intensity: A local climate zone perspective. Environ. Sci. Pollut. Res. 2022, 29, 74394–74406. [Google Scholar] [CrossRef]
- Zheng, B.; Chen, Y.; Hu, Y. Analysis of land cover and SUHII pattern using local climate zone framework—A case study of Chang-Zhu-Tan main urban area. Urban. Clim. 2022, 43, 101153. [Google Scholar] [CrossRef]
- Thomas, G.; Sherin, A.P.; Ansar, S.; Zachariah, E.J. Analysis of Urban Heat Island in Kochi, India, Using a Modified Local Climate Zone Classification. Procedia Environ. Sci. 2014, 21, 3–13. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Yuan, Q.; Shi, Q.; Shen, H.; Zhang, L. Coupling Dual Graph Convolution Network and Residual Network for Local Climate Zone Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1221–1234. [Google Scholar] [CrossRef]
- Rosentreter, J.; Hagensieker, R.; Waske, B. Towards large-scale mapping of local climate zones using multitemporal Sentinel 2 data and convolutional neural networks. Remote Sens. Environ. 2020, 237, 111472. [Google Scholar] [CrossRef]
- Yoo, C.; Han, D.; Im, J.; Bechtel, B. Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 157, 155–170. [Google Scholar] [CrossRef]
- Thirumalai, K.; DiNezio, P.N.; Okumura, Y.; Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 2017, 8, 15531. [Google Scholar] [CrossRef] [PubMed]
- Phung, D.; Chu, C.; Tran, D.N.; Huang, C. Spatial variation of heat-related morbidity: A hierarchical Bayesian analysis in multiple districts of the Mekong Delta Region. Sci. Total Environ. 2018, 637–638, 1559–1565. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef]
- Zampieri, M.; Russo, S.; di Sabatino, S.; Michetti, M.; Scoccimarro, E.; Gualdi, S. Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Sci. Total Environ. 2016, 571, 1330–1339. [Google Scholar] [CrossRef]
- Chen, Y.; Amani-Beni, M.; Chen, C.; Liang, Y.; Li, J.; Yang, L. Projection of urban land surface temperature: An inter- and intra-annual modeling approach. Urban. Clim. 2023, 51, 101637. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bagade, A.; Ramesh, A. Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach. Landsc. Urban. Plan. 2019, 190, 103586. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef]
- Liu, D.; Chen, N.; Zhang, X.; Wang, C.; Du, W. Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS J. Photogramm. Remote Sens. 2020, 159, 337–351. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Wu, Z.; Chen, Y. Complex mechanisms linking land surface temperature to greenspace spatial patterns: Evidence from four southeastern Chinese cities. Sci. Total Environ. 2019, 674, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Hajat, S.; Sheridan, S.C.; Allen, M.J.; Pascal, M.; Laaidi, K.; Yagouti, A.; Bickis, U.; Tobias, A.; Bourque, D.; Armstrong, B.G.; et al. Heat-health warning systems: A comparison of the predictive capacity of different approaches to identifying dangerously hot days. Am. J. Public Health 2010, 100, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Jänicke, B.; Holtmann, A.; Kim, K.R.; Kang, M.; Fehrenbach, U.; Scherer, D. Quantification and evaluation of intra-urban heat-stress variability in Seoul, Korea. Int. J. Biometeorol. 2019, 63, 1–12. [Google Scholar] [CrossRef]
- Chen, L.; Yu, B.; Yang, F.; Mayer, H. Intra-urban differences of mean radiant temperature in different urban settings in Shanghai and implications for heat stress under heat waves: A GIS-based approach. Energy Build. 2016, 130, 829–842. [Google Scholar] [CrossRef]
- Pereira, C.T.; Masiero, É.; Bourscheidt, V. Socio-spatial inequality and its relationship to thermal (dis)comfort in two major Local Climate Zones in a tropical coastal city. Int. J. Biometeorol. 2021, 65, 1177–1187. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Gál, C.V.; Kántor, N. Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. Urban. Clim. 2020, 32, 100571. [Google Scholar] [CrossRef]
- Guo, F.; Guo, R.; Zhang, H.; Dong, J.; Zhao, J. A canopy shading-based approach to heat exposure risk mitigation in small squares. Urban. Clim. 2023, 49, 101495. [Google Scholar] [CrossRef]
- Guo, F.; Guo, R. A new evaluation method for heat exposure risk integrated with outdoor spatial behaviour. World Archit. 2022, 9, 92–96. (In Chinese) [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research: Integrated assessment of the energy, environmental, vulnerability, and health impact. Synergies with the global climate change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Qi, X.; Li, D.; Jin, X.; Chen, Y. A review of Western research on heatwaves. Acta Ecol. Sin. 2016, 36, 2773–2778. (In Chinese) [Google Scholar]
- Kalkstein, L.S.; Jamason, P.F.; Greene, J.S.; Libby, J.; Robinson, L. The Philadelphia Hot Weather–Health Watch/Warning System: Development and application, summer 1995. Bull. Am. Meteorol. Soc. 1996, 77, 1519–1528. [Google Scholar] [CrossRef]
- Huynen, M.M.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect. 2001, 109, 463–470. [Google Scholar] [CrossRef]
- Höppe, P.R. Heat balance modelling. Experientia 1993, 49, 741–746. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Heat stress in Greece. Int. J. Biometeorol. 1997, 41, 34–39. [Google Scholar] [CrossRef]
- Huang, W.; Kan, H.; Kovats, S. The impact of the 2003 heat wave on mortality in Shanghai, China. Sci. Total Environ. 2010, 408, 2418–2420. [Google Scholar] [CrossRef]
- Wibig, J. Heat waves in Poland in the period 1951–2015: Trends, patterns, and driving factors. Meteorol. Hydrol. Water Manage. 2018, 6, 37–45. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, B.; You, Q.; Zhang, Y.; Ullah, S. Observed changes in heat waves with different severities in China during 1961–2015. Theor. Appl. Climatol. 2020, 141, 1529–1540. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef]
- He, S.; Ge, Q.; Wu, S.; Li, M. Pre-estimation of spatiotemporal pattern of extreme heat hazard in China. J. Nat. Disasters 2010, 19, 91–97. (In Chinese) [Google Scholar] [CrossRef]
- Chen, R.; Lu, R. Comparisons of the circulation anomalies associated with extreme heat in different regions of Eastern China. J. Clim. 2015, 28, 5830–5844. [Google Scholar] [CrossRef]
- McCarthy, M.; Armstrong, L.; Armstrong, N. A new heatwave definition for the UK. Weather 2019, 74, 382–387. [Google Scholar] [CrossRef]
- Dian-Xiu, Y.; Ji-Fu, Y.; Zheng-Hong, C.; You-Fei, Z.; Rong-Jun, W. Spatial and temporal variations of heat waves in China from 1961 to 2010. Adv. Clim. Change Res. 2014, 5, 66–73. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Luo, Y.; Zhao, Z.; Xu, Y. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor. Appl. Climatol. 2017, 128, 507–522. [Google Scholar] [CrossRef]
- Steadman, R.G. The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. Climatol. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Steadman, R.G. A universal scale of apparent temperature. J. Appl. Meteorol. Climatol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Jianguo, T. Development of relative comfort index for assessing heat stress in Shanghai summer. Trans. Atmos. Sci. 2005, 2, 213–218. (In Chinese) [Google Scholar] [CrossRef]
- Abrar, R.; Sarkar, S.K.; Nishtha, K.T.; Talukdar, S.; Shahfahad; Rahman, A.; Islam, A.R.; Mosavi, A. Assessing the spatial mapping of heat vulnerability under urban heat island (UHI) effect in the Dhaka Metropolitan Area. Sustainability 2022, 14, 4945. [Google Scholar] [CrossRef]
- Nalau, J.; Verrall, B. Mapping the evolution and current trends in climate change adaptation science. Clim. Risk Manag. 2021, 32, 100290. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect. 2013, 121, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Markanday, A.; Galarraga, I.; Markandya, A. A critical review of cost-benefit analysis for climate change adaptation in cities. Clim. Change Econ. 2019, 10, 1950014. [Google Scholar] [CrossRef]
- Araya-Muñoz, D.; Metzger, M.J.; Stuart, N.; Wilson, A.M.W.; Alvarez, L. Assessing urban adaptive capacity to climate change. J. Environ. Manag. 2016, 183, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Oberlack, C.; Eisenack, K. Alleviating barriers to urban climate change adaptation through international cooperation. Glob. Environ. Change 2014, 24, 349–362. [Google Scholar] [CrossRef]
- Masson, V.; Marchadier, C.; Adolphe, L.; Aguejdad, R.; Avner, P.; Bonhomme, M.; Bretagne, G.; Briottet, X.; Bueno, B.; de Munck, C.; et al. Adapting cities to climate change: A systemic modelling approach. Urban. Clim. 2014, 10, 407–429. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Avery, K.; Alley, R.; Berntsen, T.; Bindoff, N.; Chidthaisong, A. Climate Change 2001: The Physical Science Basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2001.
- Li, S.; Zhang, D.; Liu, X. Spatiotemporal variability of heat waves in the Beijing-Tianjin-Hebei region and influencing factors in recent 54 years. J. Appl. Meteorol. Sci. 2015, 26, 545–554. (In Chinese) [Google Scholar]
- Krüger, T.; Held, F.; Hoechstetter, S.; Goldberg, V.; Geyer, T.; Kurbjuhn, C. A new heat sensitivity index for settlement areas. Urban. Clim. 2013, 6, 63–81. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Q.C.; Huang, X.; Tao, Y.; Dong, C.; Das, S.; Liu, Y. Health-integrated heat risk assessment in Australian cities. Environ. Impact Assess. Rev. 2023, 102, 107176. [Google Scholar] [CrossRef]
- Crichton, D. The risk triangle. Nat. Disaster Manag. 1999, 102, 102–103. [Google Scholar]
- Dong, W.; Liu, Z.; Zhang, L.; Tang, Q.; Liao, H.; Li, X. Assessing heat health risk for sustainability in Beijing’s urban heat island. Sustainability 2014, 6, 7334–7357. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Di Stefano, V.; Orlandini, S.; Gensini, G.F. Urban-hazard risk analysis: Mapping of heat-related risks in the elderly in major Italian cities. PLoS ONE 2015, 10, e0127277. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.C.; Lau, K.K.-L.; Ren, C.; Ng, E. Characterizing prolonged heat effects on mortality in a sub-tropical high-density city, Hong Kong. Int. J. Biometeorol. 2017, 61, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.S.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM(2.5) concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ding, M.; Yang, X.; Hu, K.; Qi, J. Spatially explicit assessment of heat health risk by using multi-sensor remote sensing images and socioeconomic data in Yangtze River Delta, China. Int. J. Health Geogr. 2018, 17, 15. [Google Scholar] [CrossRef]
- Verdonck, M.-L.; Demuzere, M.; Hooyberghs, H.; Priem, F.; Van Coillie, F. Heat risk assessment for the Brussels capital region under different urban planning and greenhouse gas emission scenarios. J. Environ. Manag. 2019, 249, 109210. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R.; IPCC. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lapola, D.M.; Braga, D.R.; Di Giulio, G.M.; Torres, R.R.; Vasconcellos, M.P. Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals. Clim. Change 2019, 154, 477–492. [Google Scholar] [CrossRef]
- Räsänen, A.; Heikkinen, K.; Piila, N.; Juhola, S. Zoning and weighting in urban heat island vulnerability and risk mapping in Helsinki, Finland. Reg. Environ. Chang. 2019, 19, 1481–1493. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, J.; Shi, L.; Zhang, D.; Pangali Sharma, T.P.; Prodhan, F.A. Mapping Heat-Related Risks in Northern Jiangxi Province of China Based on Two Spatial Assessment Frameworks Approaches. Int. J. Environ. Res. Public Health 2020, 17, 6584. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Qin, H.; Dickinson, K. Urban vulnerability to temperature-related hazards: A meta-analysis and meta-knowledge approach. Glob. Environ. Change 2012, 22, 670–683. [Google Scholar] [CrossRef]
- Rinner, C.; Patychuk, D.; Bassil, K.; Nasr, S.; Gower, S.; Campbell, M. The Role of Maps in Neighborhood-level Heat Vulnerability Assessment for the City of Toronto. Cartogr. Geogr. Inf. Sci. 2010, 37, 31–44. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M. IPCC 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC 2007, 18, 95–123. Available online: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm (accessed on 15 October 2024).
- Wolf, T.; McGregor, G. The development of a heat wave vulnerability index for London, United Kingdom. Weather. Clim. Extrem. 2013, 1, 59–68. [Google Scholar] [CrossRef]
- El-Zein, A.; Tonmoy, F.N. Assessment of vulnerability to climate change using a multi-criteria outranking approach with application to heat stress in Sydney. Ecol. Indic. 2015, 48, 207–217. [Google Scholar] [CrossRef]
- Nagy, G.J.; Filho, W.L.; Azeiteiro, U.M.; Heimfarth, J.; Verocai, J.E.; Li, C. An Assessment of the Relationships between Extreme Weather Events, Vulnerability, and the Impacts on Human Wellbeing in Latin America. Int. J. Environ. Res. Public Health 2018, 15, 1802. [Google Scholar] [CrossRef]
- Ozkan, A.; Ozkan, G.; Yalaman, A.; Yildiz, Y. Climate risk, culture and the COVID-19 mortality: A cross-country analysis. Sci. Direct World Dev. 2021, 141, 105412. [Google Scholar] [CrossRef]
- Guo, R.; Guo, F.; Dong, J.; Wang, Z.; Zheng, R.; Zhang, H. Finer-scale urban health risk assessment based on the interaction perspective of thermal radiation, human, activity, and space. Front. Archit. Res. 2024, 13, 682–697. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, R.; Yin, J. Temporal and spatial feature analyses of summer high temperature and heat wave in Jiangsu Province in past 50 years. J. Nat. Disasters 2012, 21, 43–50. (In Chinese) [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Liu, X. Spatiotemporal distribution of extreme maximum temperature in agro-pastoral zone of north China. J. Nat. Disasters 2014, 23, 190–199. (In Chinese) [Google Scholar] [CrossRef]
- Wu, R.; Liu, J.; Tan, J.; Xu, X.; Yu, Y. Trend analysis of high temperature disaster in large cities of the Yangtze River Delta. J. Nat. Disasters 2010, 19, 56–63. (In Chinese) [Google Scholar] [CrossRef]
- Shen, H.; Wang, P.; Kong, L. Analysis on heat waves variation features in China during 1961–2014. J. Meteorol. Sci. 2018, 38, 28–36. (In Chinese) [Google Scholar]
- Liu, J.; Wang, L. Thermal Health Risk Identification, Assessment and Urban Design Intervention in High-Density Cities from the Perspective of Climate Change: A Case Study of Macao. Urban. Plan. Int. 2022, 1, 1–14. (In Chinese) [Google Scholar] [CrossRef]
- Han, X.; Dou, F. Study of obtaining high resolution near-surface atmosphere temperature by using the land surface temperature from meteorological satellite data. Acta Meteorol. Sin. 2012, 70, 1107–1118. (In Chinese) [Google Scholar]
- Wei, J.; Xu, Q. Research on High Temperature Indices of Beijing City and Its Spatiotemporal Pattern Based on Satellite Data. Clim. Environ. Res. 2014, 19, 332–342. (In Chinese) [Google Scholar]
- Kaufman, J.; Deguen, S.; Benmarhnia, T.; Smargiassi, A. Vulnerability to Heat-related Mortality: A Systematic Review, Meta-analysis, and Meta-regression Analysis. Epidemiology 2015, 26, 781–793. [Google Scholar] [CrossRef]
- Bekkar, B.; Pacheco, S.; Basu, R.; DeNicola, N. Association of Air Pollution and Heat Exposure With Preterm Birth, Low Birth Weight, and Stillbirth in the US: A Systematic Review. JAMA Netw. Open 2020, 3, e208243. [Google Scholar] [CrossRef]
- Mac, V.V.T.; McCauley, L.A. Farmworker Vulnerability to Heat Hazards: A Conceptual Framework. J. Nurs. Scholarsh. 2017, 49, 617–624. [Google Scholar] [CrossRef]
- Yin, Z.E.; Yin, J.; Zhang, X. Multi-scenario-based hazard analysis of high temperature extremes experienced in China during 1951–2010. J. Geogr. Sci. 2013, 23, 436–446. [Google Scholar] [CrossRef]
- Ji, C.; Li, W.; Xuan, C. Impact of urban growth on the heat island in Beijing. Chin. J. Geophys. 2006, 49, 69–77. (In Chinese) [Google Scholar]
- Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L. Heat-Related Deaths during the July 1995 Heat Wave in Chicago. N. Engl. J. Med. 1996, 335, 84–90. [Google Scholar] [CrossRef]
- Al-Bouwarthan, M.; Quinn, M.M.; Kriebel, D.; Wegman, D.H. Assessment of Heat Stress Exposure among Construction Workers in the Hot Desert Climate of Saudi Arabia. Ann. Work. Expo. Health 2019, 63, 505–520. [Google Scholar] [CrossRef]
- Li, H.; Cheng, Y. Concepts and Assessment Methods of Vulnerability. Prog. Geogr. 2008, 27, 18–25. (In Chinese) [Google Scholar]
- Yang, H.; Tao, S.; Pan, J.; Liu, K.; Wu, M. Vulnerability to Heat Waves and Adaptation: A Summary. Sci. Technol. Rev. 2010, 28, 98–102. (In Chinese) [Google Scholar]
- Pei, X.; Wang, J.; Xue, J.; Zhao, J.; Liu, C.; Tian, Y. Assessment on Cities’ Adaptation to Climate Change in China. Urban. Dev. Stud. 2022, 29, 39–46, 52. (In Chinese) [Google Scholar] [CrossRef]
- Reid, C.E.; O’Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping Community Determinants of Heat Vulnerability. Environ. Health Perspect. 2009, 117, 1730–1736. [Google Scholar] [CrossRef]
- Imran, H.M.; Hossain, A.; Shammas, M.I.; Das, M.K.; Islam, M.R.; Rahman, K.; Almazroui, M. Land surface temperature and human thermal comfort responses to land use dynamics in Chittagong city of Bangladesh. Geomat. Nat. Hazards Risk 2022, 13, 2283–2312. [Google Scholar] [CrossRef]
- Maier, G.; Grundstein, A.; Jang, W.; Li, C.; Naeher, L.P.; Shepherd, M. Assessing the Performance of a Vulnerability Index during Oppressive Heat across Georgia, United States. Weather. Clim. Soc. 2014, 6, 253–263. [Google Scholar] [CrossRef]
- Song, C.; Wang, F.; Zhang, R.; Bai, C.; Liu, K.; Long, Q. Risk Analysis and Assessment of High-temperature and Heat-wave Disaster in Chinese Cities Under the Background of Climate Change. J. Catastrophology 2016, 31, 201–206. (In Chinese) [Google Scholar]
- Dong, J.; Peng, J.; He, X.; Corcoran, J.; Qiu, S.; Wang, X. Heatwave-induced human health risk assessment in megacities based on heat stress-social vulnerability-human exposure framework. Landsc. Urban. Plan. 2020, 203, 103907. [Google Scholar] [CrossRef]
- O’Neill, M.S.; Zanobetti, A.; Schwartz, J. Modifiers of the Temperature and Mortality Association in Seven US Cities. Am. J. Epidemiol. 2003, 157, 1074–1082. [Google Scholar] [CrossRef]
- Stillman, J.H. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology 2019, 34, 86–100. [Google Scholar] [CrossRef]
- Hajat, S.; Vardoulakis, S.; Heaviside, C.; Eggen, B. Climate change effects on human health: Projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J. Epidemiol. Community Health 2014, 68, 641. [Google Scholar] [CrossRef] [PubMed]
- Azhar, G.; Saha, S.; Ganguly, P.; Mavalankar, D.; Madrigano, J. Heat Wave Vulnerability Mapping for India. Int. J. Environ. Res. Public. Health 2017, 14, 357. [Google Scholar] [CrossRef]
- Xiang, Z.; Qin, H.; He, B.-J.; Han, G.; Chen, M. Heat vulnerability caused by physical and social conditions in a mountainous megacity of Chongqing, China. Sustain. Cities Soc. 2022, 80, 103792. [Google Scholar] [CrossRef]
- Bao, J.; Li, X.; Yu, C. The Construction and Validation of the Heat Vulnerability Index, a Review. Int. J. Environ. Res. Public Health 2015, 12, 7220–7234. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban. Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.; Jiang, J. Effect of the Urbanization of Wetlands on Microclimate: A Case Study of Xixi Wetland, Hangzhou, China. Sustainability 2016, 8, 885. [Google Scholar] [CrossRef]
- Guo, B.; Bian, Y.; Zhang, D.; Su, Y.; Wang, X.; Zhang, B.; Wang, Y.; Chen, Q.; Wu, Y.; Luo, P. Estimating Socio-Economic Parameters via Machine Learning Methods Using Luojia1-01 Nighttime Light Remotely Sensed Images at Multiple Scales of China in 2018. IEEE Access 2021, 9, 34352–34365. [Google Scholar] [CrossRef]
- Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-Time Light Data: A Good Proxy Measure for Economic Activity? PLoS ONE 2015, 10, e0139779. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Xie, P.; Wang, Y.; Peng, J.; Liu, Y. Health related urban heat wave vulnerability assessment: Research progress and framework. Prog. Geogr. 2015, 34, 165–174. (In Chinese) [Google Scholar]
- Luc, V.; Martine, R.; Florian, R. Assessing public health risk due to extremely high temperature events: Climate and social parameters. Clim. Res. 2005, 30, 71–78. [Google Scholar]
- Aubrecht, C.; Oezceylan, D. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability. Environ. Int. 2013, 56, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Bagdanaviciute, I.; Kelpsaite-Rimkiene, L.; Galiniene, J.; Soomere, T. Index based multi-criteria approach to coastal risk assesment. J. Coast. Conserv. 2019, 23, 785–800. [Google Scholar] [CrossRef]
- Tran, D.N.; Doan, V.Q.; Nguyen, V.T.; Khan, A.; Thai, P.K.; Huang, C.R.; Chu, C.; Schak, E.; Phung, D. Spatial patterns of health vulnerability to heatwaves in Vietnam. Int. J. Biometeorol. 2020, 64, 863–872. [Google Scholar] [CrossRef]
- Alonso, L.; Renard, F. A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context. Int. J. Environ. Res. Public Health 2020, 17, 1004. [Google Scholar] [CrossRef]
- Haijing, H.; Jinhui, M.J.; Yufei, Y. Spatial Identification and Risk Assessment of High-Temperature Heat Wave Disasters in Mountain Cities: A Case Study of Chongqing. Landsc. Archit. 2024, 31, 95–103. (In Chinese) [Google Scholar]
- Wu, X.L.; Liu, Q.S.; Huang, C.; Li, H. Mapping Heat-Health Vulnerability Based on Remote Sensing: A Case Study in Karachi. Remote Sens. 2022, 14, 1590. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Y.; Wan, H.; Xiao, Q.; Teng, M.; Xu, W.; Qiu, X.; Wu, X.; Wu, C. Effectiveness of potential strategies to mitigate surface urban heat island: A comprehensive investigation using high-resolution thermal observations from an unmanned aerial vehicle. Sustain. Cities Soc. 2024, 113, 105716. [Google Scholar] [CrossRef]
- Almeida, C.R.; Teodoro, A.C.; Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Nagar, C.; Verma, S.K.; Sen, S. Synergistic deployment of green infrastructure and reflective pavements for mitigation of UHI within urban blocks. Discov. Cities 2025, 2, 7. [Google Scholar] [CrossRef]
Order | Keywords | Number | Order | Criteria | Focus |
---|---|---|---|---|---|
1 | Climate change | 88 | 11 | Precipitation | 19 |
2 | Mortality | 53 | 12 | Impacts | 15 |
3 | Impact | 51 | 13 | Model | 15 |
4 | Temperature | 51 | 14 | Thermal comfort | 14 |
5 | Risk | 34 | 15 | City | 13 |
6 | Index | 22 | 16 | Health | 13 |
7 | Waves | 22 | 17 | Adaptation | 12 |
8 | Summer | 20 | 18 | Heat waves | 12 |
9 | Variability | 20 | 19 | Events | 11 |
10 | Climate | 19 | 20 | Extreme heat | 11 |
National/International Organizations | Measurement Indicators | Criteria | Focus |
---|---|---|---|
World Meteorological Organization (WMO) | Daily maximum temperature and duration | Daily maximum temperature > 32 °C for more than 3 consecutive days | Temperature |
China Meteorological Administration | Daily maximum temperature and duration | Daily maximum temperature ≥ 35 °C for more than 3 consecutive days | Temperature |
Royal Netherlands Meteorological Institute | Daily maximum temperature and duration | Daily maximum temperature > 25 °C for 5 days, with at least 3 days exceeding 30 °C | Temperature |
United Kingdom | Daily maximum and nighttime temperatures with duration | Daily maximum temperature > 30 °C for 2 consecutive days, nighttime temperature > 15 °C | Temperature |
Greece | Daily maximum temperature and duration | Daily maximum temperature ≥ 38 °C for more than 3 consecutive days | Temperature |
India, Malta | Daily maximum temperature | Daily maximum temperature > 40 °C | Temperature |
Turkey | instantaneous temperature and relative humidity | temperature > 27 °C and relative humidity > 40% | Temperature and humidity |
USA, Canada, Israel | Heat index (apparent temperature) | Heat index > 40.5 °C for more than 3 h on 2 consecutive days, or >46.5 °C at any time | Combined temperature and humidity |
Germany | Physiological equivalent temperature (PET) | PET > 41 °C as the threshold for heatwave warning | Human heat balance model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Wei, R.; Tong, H. A Systematic Review of Methodological Advances in Urban Heatwave Risk Assessment: Integrating Multi-Source Data and Hybrid Weighting Methods. Sustainability 2025, 17, 3747. https://doi.org/10.3390/su17083747
Xu C, Wei R, Tong H. A Systematic Review of Methodological Advances in Urban Heatwave Risk Assessment: Integrating Multi-Source Data and Hybrid Weighting Methods. Sustainability. 2025; 17(8):3747. https://doi.org/10.3390/su17083747
Chicago/Turabian StyleXu, Chang, Ruihan Wei, and Hui Tong. 2025. "A Systematic Review of Methodological Advances in Urban Heatwave Risk Assessment: Integrating Multi-Source Data and Hybrid Weighting Methods" Sustainability 17, no. 8: 3747. https://doi.org/10.3390/su17083747
APA StyleXu, C., Wei, R., & Tong, H. (2025). A Systematic Review of Methodological Advances in Urban Heatwave Risk Assessment: Integrating Multi-Source Data and Hybrid Weighting Methods. Sustainability, 17(8), 3747. https://doi.org/10.3390/su17083747