A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK
Abstract
:1. Introduction
- ▪
- ▪
- the crop/feedstock chosen and how it is used (power, heat, CHP, or ethanol and biodiesel for transport), and
- ▪
- the amount of agrochemicals used [26].
2. Methods
2.1. Goal and Scope
- ▪
- To characterize, compare and contrast, environmentally and economically, the main supply chains of the products arising from land use for biotic production of food, energy and timber in the UK;
- ▪
- To determine which life cycle stages of the different products contribute most to overall GHG emissions from each system, and to the impacts on the provision of ecosystem services and on biodiversity.
- ▪
- To compare the environmental and economic performance of different product systems and investigate the relationship between them as a guide to sustainability.
2.2. Systems Description
2.3. Land Use for Food: Wheat and Oilseed Rape
Conventional | Organic | |||
Wheat | Oilseed Rape | Wheat | Oilseed Rape | |
Grain yield (t ha−1 yr−1) | 7.68 | 3.20 | 4.12 | 1.71 |
N fertilisation (kg N ha−1 yr−1) | 219 | 204 | 10.5 | 10.5 |
Main source of N | Ammonium Nitrate | Compost | ||
P fertilisation (kg P ha−1 yr−1) | 20.7 | 16.9 | 13.4 | 9.6 |
Main source of P | Triple Superphosphate | Rock Phosphate | ||
K fertilisation (kg K ha−1 yr−1) | 39.1 | 25.6 | 45.2 | 12.6 |
Ca fertilisation (kg Ca ha−1 yr−1) | 96.6 | 241.2 | 70.4 | 171.6 |
Diesel fuel in field operations (litres ha−1 yr−1) | 228.2 | 216.9 | 136.0 | 187.1 |
Fuel for drying and storage (MJ ha−1 yr−1)* | 973 | 473 | 522 | 254 |
2.4. Land Use for Energy: Miscanthus and Willow SRC
Input | Miscanthus | Willow SRC |
---|---|---|
Net yield at traded moisture content (t ha−1 yr−1) | 18 | 14 |
Traded moisture content (%) | 30 | 50 |
Yield of biomass (odt ha−1 yr−1) | 12.6 | 7 |
N fertiliser (kg N ha−1 yr−1) | 5.26 | 0 |
Type of N fertiliser | Ammonium Nitrate | N/A |
P fertiliser (kg P ha−1 yr−1) | 4.82 | 0 |
Type of P fertiliser | Phosphate | N/A |
K fertiliser (kg K ha−1 yr−1) | 5.07 | 0 |
Lime (kg C ha−1 yr−1) | 157.89 | 0 |
Diesel fuel consumption in cultivation (MJ ha-1 yr-1) | 477 | 440 |
Diesel fuel consumption in harvesting (MJ ha-1 yr-1) | 1,158 | 308 |
Diesel fuel consumption in handling (MJ ha-1 yr-1) | 847 | 39 |
2.5. Land Use for Timber: Scots Pine
2.6. Inventory Analysis
2.7. Impact Assessment
Average carbon stocks (t C ha−1) | Average carbon flows (t C ha−1 yr−1) | |||
---|---|---|---|---|
Land-use type | Soil | Biomass | Soil | Biomass |
Native Ecosystem (Temperate Forest) | 95.0 | 123.4 | 0.300 | 5.6 |
Conventional Wheat | 65.6 | 3.0 | –0.400 | 6.0 |
Organic Wheat | 77.4 | 2.0 | 0.250 | 4.0 |
Conventional OSR | 65.6 | 1.7 | –0.400 | 3.3 |
Organic OSR | 77.4 | 1.3 | 0.250 | 2.5 |
Miscanthus | 83.2 | 16.6 | 0.620 | 7.5 |
Willow SRC | 79.5 | 15.2 | 0.136 | 4.2 |
Scots Pine | 95.0 | 95.5 | 0.320 | 5.0 |
- ▪
- As justified above, the magnitude of the difference between the actual and the potential amounts of carbon in both biomass and soil is proportional to the impairment of the ability of ecosystems to provide services and to the impact on biodiversity, since these are directly and indirectly affected by the presence of carbon in biomass and soils.
- ▪
- There is no change in the ability of land to provide ecosystem services and to support biodiversity in the reference system.
- ▪
- The potential levels of carbon in soil and vegetation for UK is 96 and 57 t C ha−1 (temperate forest) [110]
- ▪
3. Results and Discussion
3.1. Environmental Profile
Global Warming
3.2. Ecosystem Services and Biodiversity
3.3. Integration of Economic and Environmental Profiles
Wheat (con) | Wheat (org) | OSR (con) | OSR (org) | Miscanthus | Willow SRC | Scots Pine | |
---|---|---|---|---|---|---|---|
Soil management | 86.5 | 97.9 | 83.3 | 92.2 | 23.5 | 2.4 | 8.6 |
Planting and establishment | 43.0 | 85.0 | 30.0 | 60.0 | 100.0 | 51.7 | 14.4 |
Fertilization | 113.5 | 62.5 | 124.6 | 71.9 | 8.1 | 0.0 | 2.7 |
Weed, pest and disease management | 186.2 | 0.0 | 175.7 | 0.0 | 1.6 | 68.8 | 35.4 |
Harvesting | 82.5 | 82.5 | 74.4 | 82.0 | 19.5 | 100.0 | 5.2 |
Storage, drying and cooling | 333.9 | 179.2 | 143.3 | 76.9 | 2.4 | 0.0 | 0.0 |
Total | 845.7 | 507.1 | 631.3 | 382.9 | 155.0 | 222.9 | 66.3 |
4. Conclusions
References and Notes
- Malthus, T. An Essay on the Principle of Population; Oxford University Press: Oxford, UK, 1798; p. 208. [Google Scholar]
- Lomborg, B. The Skeptical Environmentalist: Measuring the Real State of the World; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Chenoweth, J.; Feitelson, E. Neo-Malthusians and Cornucopians put to the test: Global 2000 and The Resourceful Earth revisited. Futures 2005, 37, 51–72. [Google Scholar] [CrossRef]
- Meadows, D.H.; Randers, J.; Meadows, D. Limits to Growth: The 30-Year Update; Chelsea Green Publishing Company and Earthscan: White River Junction, VT, USA, 2004. [Google Scholar]
- Lywood, W.; Pinkney, J.; Cockerill, S. The relative contributions of changes in yield and land area to increasing crop output. GCB Bioenergy 2009, 1, 360–369. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations Home Page. http://faostat.fao.org/(accessed on 1 November 2010).
- Mitchell, D. A Note on Rising Food Prices; The World Bank: Washington, DC, USA, 2008; p. 4682. [Google Scholar]
- Clift, R.; Mulugetta, Y. A plea for common sense (and biomass). In The Chemical Engineer; October 2007; pp. 24–26. [Google Scholar]
- Spirinckx, C.; Ceuterick, D. Biodiesel and Fossil Diesel Fuel: Comparative Life Cycle Assessment. Int. J. Life Cycle Assess. 1996, 1, 127–132. [Google Scholar] [CrossRef]
- Gärtner, S.O.; Reinhardt, G.A. Life Cycle Assessment of Biodiesel: Update and New Aspects; Project No. 530/025; IFEU: Heidelberg, Germany, 2003. [Google Scholar]
- Sheeham, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shpapouri, H. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus; U.S. Department of Energy and U.S. Department of Agriculture, U.S. Government Printing Office: Washington, DC, USA, 1998.
- Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.M.; Dickinson, R.E.; Hauglustaine, D.; Heinze, C.; Holland, E.; Jacob, D.; Lohmann, U.; Ramachandran, S.; da Silva Dias, P.L.; Wofsy, S.C.; Zhang, X. Couplings between Changes in the Climate System and Biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007. [Google Scholar]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, land-Use Change and Forestry; A Special Report of the Intergovernmental Panel on Climate Change; The Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2001. [Google Scholar]
- Righelato, R.; Spracklen, D.V. ENVIRONMENT: Carbon Mitigation by Biofuels or by Saving and Restoring Forests? Science 2007, 317, 902. [Google Scholar] [CrossRef] [PubMed]
- Milà i Canals, L.; Bauer, C.; Depestele, J.; Dubreuil, A.; Freiermuth, K.R.; Gaillard, G.; Michelsen, O.; Müller-Wenk, R.; Rydgren, B. Key elements in a framework for land use impact assessment in LCA. Int. J. Life Cycle Assess. 2007, 12, 5–15. [Google Scholar] [CrossRef]
- Britt, C.; Bullard, M.; Hickman, G.; Johnson, P.; King, J.; Nicholson, F.; Nixon, P.; Smith, N. Bioenergy Crops and Bioremediation—A Review; Department for Food, Environment and Rural Affairs: London, UK, 2002.
- Edwards, R.; Szekeres, S.; Neuwahl, F.; Mahieu, V. Biofuels in the European Context: Facts and Uncertainties; European Commission, Directorate-General Joint Research Centre: Ispra, Italy, 2008; p. 30. [Google Scholar]
- Brandão, M.; Milà i Canals, L.; Clift, R. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 2010, in press. [Google Scholar]
- Brandão, M.; ter Horst, E. Soils and Climate Change: Implication for biofuels. Seesoil 2009, 18. [Google Scholar]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land-Use Change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land Clearing and the Biofuel Carbon Debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, E. The Gallagher Review of the Indirect Effects of Biofuels Production; The Renewable Fuels Agency: East Sussex, UK, July 2008; p. 92. [Google Scholar]
- “Biofuel carbon debt” refers to the amount of carbon that is released from plant biomass and soil as a result of land conversion to biofuels. “Carbon payback time” of different biofuels refers to the number of years required for the carbon savings from avoided fossil fuel combustion to offset the losses in ecosystem carbon from clearing land to grow new feedstocks (see [21] and [24])
- Gibbs, H.K.; Johnston, M.; Foley, J.A.; Holloway, T.; Monfreda, C.; Ramankutty, N.; Zaks, D. Carbon payback times for crop-based biofuel expansion in the tropics: The effects of changing yield and technology. Environ. Res. Lett. 2008, 3, 034001. [Google Scholar] [CrossRef]
- 20% share of renewable energies in energy use in general and, specifically, a 10% share of biofuels in petrol and diesel consumption by 2020 (EU DIRECTIVE 2009/28/EC)
- Crutzen, P.J.; Mosier, A.R.; Smith, K.A.; Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 2007, 7, 11191–11205. [Google Scholar] [CrossRef]
- Landis, A.E.; Miller, S.A.; Theis, T.L. Life Cycle of the Corn-Soybean Agroecosystem for Biobased Production. Environ. Sci. Technol. 2007, 41, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M.; Van Dorland, R. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007; pp. 129–234. [Google Scholar]
- Fritsche, U.R.; Hunecke, K.; Hermann, A.; Schulze, F.; Wiegmann, K. WWF Sustainability Standards for Bioenergy; WWF Germany: Frankfurt am Main, Germany, 2006; p. 80. [Google Scholar]
- Foereid, B.; de Neergaard, A.; Hogh-Jensen, H. Turnover of organic matter in a Miscanthus field: Effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol. Biochem. 2004, 36, 1075–1085. [Google Scholar] [CrossRef]
- Larson, E.D. A review of LCA studies on liquid biofuels for the transport sector. Energ. Sustain. Dev. 2006, X, 109–126. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- United Nations. Desertification: Its Causes and Consequences. In United Nations Secretariat Conference on Desertification, Nairobi, Kenya, 29 August–9 September 1977.
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; Blair, R. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Milà i Canals, L.; Romanya, J.; Cowell, S. Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in Life Cycle Assessment (LCA). J. Clean Prod. 2007, 15, 1426–1440. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Lal, R.; Griffin, M.; Apt, J.; Lave, L.; Morgan, M.G. ECOLOGY: Managing Soil Carbon. Science 2004, 304, 393. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M. Food, Feed, Fuel, Fibre, Forest or Nature? Towards Sustainable Land Use—An Integrated Systems Approach for Assessing Land-use Sustainability in UK. Ph.D. Thesis, University of Surrey, Guildford, UK, 2010. [Google Scholar]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Baumann, H.; Tillman, A.-M. The Hitch Hiker’s Guide to LCA; Studentlitteratur AB: Lund, Sweden, 2004; p. 535. [Google Scholar]
- Pennington, D.W.; Potting, J.; Finnveden, G.; Lindeijer, E.; Jolliet, O.; Rydberg, T.; Rebitzer, G. Life cycle assessment Part 2: Current impact assessment practice. Environ. Int. 2004, 30, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Brentrup, F.; Kusters, J.; Kuhlmann, H.; Lammel, J. Application of the Life Cycle Assessment methodology to agricultural production: An example of sugar beet production with different forms of nitrogen fertilisers. Eur. J. Agron. 2001, 14, 221–233. [Google Scholar] [CrossRef]
- Brentrup, F.; Kusters, J.; Kuhlmann, H.; Lammel, J. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. Eur. J. Agron. 2004, 20, 247–264. [Google Scholar] [CrossRef]
- Brentrup, F.; Kusters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Ciroth, A.; Huppes, G.; Klöpffer, W.; Rüdenauer, I.; Steen, B.; Swarr, T. Environmental Life Cycle Costing; The Society of Environmental Toxicology and Chemistry: New York, NY, USA, 2008. [Google Scholar]
- Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO International Organisation for Standardisation: Geneva, Switzerland, 2006; Volume Series 14040.
- Biswas, G.; Clift, R.; Davis, G.; Ehrenfeld, J.; Forster, R.; Jolliet, O.; Knoepfel, I.; Luterbacher, U.; Russell, D.; Hunkeler, D. Ecometrics: Identification, Categorization and Life Cycle Validation. Int. J. Life Cycle Assess. 1998, 3, 183–190. [Google Scholar] [CrossRef]
- Clift, R.; Wright, L. Relationships between Environmental Impacts and Added Value along the Supply Chain. Technol. Forecast. Soc. Change 2000, 65, 281–295. [Google Scholar] [CrossRef]
- Blewitt, J. Understanding Sustainable Development; Earthscan: London, UK, 2008. [Google Scholar]
- Clift, R.; Sim, S.; Sinclair, P. The sustainability of international supply chains: Aspirations and practicality. J. Ind. Ecol. 2010, in press. [Google Scholar]
- Clift, R. Metrics for supply chain sustainability. Clean Technol. Environ. Policy 2003, 5, 240–247. [Google Scholar] [CrossRef]
- Rigged Rules and Double Standards: Trade, Globalization and the Fight against Poverty; Oxfam: Oxford, UK, 2002.
- DEFRA, SEERAD, DARD, DEPC Agriculture in the United Kingdom 2009; The Stationery Office: London, UK, 2010; p. 146.
- Forestry Facts & Figures 2009; Forestry Commission: Farnham, UK, 2009.
- Williams, A.G.; Audsley, E.; Sandards, D.L. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities; DEFRA Research Project ISO205; Cranfield University and Defra: Bedford, UK, 2006. [Google Scholar]
- “Organic agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved.” (IFOAM, 2008). “Organic agriculture is a holistic production management system which promotes and enhances agro-ecosystem health, including biodiversity, biological cycles, and soil biological activity. It emphasizes the use of management practices in preference to the use of off-farm inputs, taking into account that regional conditions require locally adapted systems. This is accomplished by using, where possible, agronomic, biological, and mechanical methods, as opposed to using synthetic materials, to fulfill any specific function within the system.” (FAO/WHO Codex Alimentarius Commission, 1999)
- Lampkin, N.; Measures, M.; Padel, S. 2007 Organic Farm Management Handbook; Welsh Institute of Rural Studies: Aberystwyth, UK, 2006. [Google Scholar]
- DEFRA; SEERAD; DARD; DEPC Agriculture in the United Kingdom 2008; The Stationery Office: London, UK, 2009; p. 168.
- RCEP Biomass as a Renewable Energy Source; A Limited Report by The Royal Commission on Environmental Pollution: London, UK, 2004; p. 92.
- RCEP Energy—The Changing Climate; The Stationery Office: London, UK, 2000; p. 292.
- Tuck, G.; Glendining, M.J.; Smith, P.; House, J.I.; Wattenbach, M. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenerg. 2006, 30, 183–197. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Andersen, R.S.; Towers, W.; Smith, P. Assessing the potential for biomass energy to contribute to Scotland’s renewable energy needs. Biomass Bioenerg. 2005, 29, 73–82. [Google Scholar] [CrossRef]
- Nix, J. Farm Management Pocketbook, 37th ed.; Imperial College Press: London, UK, 2007. [Google Scholar]
- odt—at 0% moisture content, for practical purposes
- Lewandowski, I.; Kicherer, A.; Vonier, P. CO2-balance for the cultivation and combustion of Miscanthus. Biomass Bioenerg. 1995, 8, 81–90. [Google Scholar] [CrossRef]
- Price, L.; Bullard, M.; Lyons, H.; Anthony, S.; Nixon, P. Identifying the yield potential of Miscanthus x giganteus: An assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales. Biomass Bioenerg. 2004, 26, 3–13. [Google Scholar] [CrossRef]
- Powlson, D.S.; Riche, A.B.; Shield, I. Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann. Appl. Biol. 2005, 146, 193–201. [Google Scholar] [CrossRef]
- DEFRA Planting and Growing Miscanthus; Department for Environment, Food and Rural Affairs (DEFRA): London, UK, 2007; p. 19.
- Elsayed, M.A.; Mathews, R.; Mortimer, N.D. Carbon and Energy Balances for a Range of Biofuel Options; Resources Research Institute, Sheffield Hallam University: Sheffield, UK, 2003; p. 71. [Google Scholar]
- BEAT2—Biomass Environmental Assessment Tool. Available online: http://www.biomassenergycentre.org.uk/portal/page?_pageid=74,153193&_dad=portal&_schea=PORTAL (accessed on 1 December 2009).
- Losses are due to crop trampling by machinery, to excessive moisture content and to fallen leaves and tops.
- DEFRA Creating Value from Renewable Materials: A Strategy for Non-food Crops and Uses; Two Year Progress Report; Department for Environment, Food and Rural Affairs: Londen, UK, 2006.
- Dawson, J.J.C.; Smith, P. Carbon losses from soil and its consequences for land-use management. Sci. Total Environ. 2007, 382, 165–190. [Google Scholar] [CrossRef] [PubMed]
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change: Kanagawa, Japan, 2006.
- Lewandowski, I.; Heinz, A. Delayed harvest of Miscanthus—Influences on biomass quantity and quality and environmental impacts of energy production. Eur. J. Agron. 2003, 19, 45–63. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Breuer, J.; Jones, M.B. Carbon mitigation by the energy crop, Miscanthus. Global Change Biol. 2007, 13, 2296–2307. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Stampfl, P.F.; Jones, M.B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biol. 2004, 10, 509–518. [Google Scholar] [CrossRef]
- Styles, D.; Jones, M.B. Miscanthus and willow heat production—An effective land-use strategy for greenhouse gas emission avoidance in Ireland? Energ. Policy 2008, 36, 97–107. [Google Scholar] [CrossRef]
- Biomass Energy Centre Homepage. http://www.biomassenergycentre.org.uk/portal/page?_pageid=73,1&_dad=portal&_schema=PORTAL(accessed on 1 December 2009).
- Yield Models for Energy Coppice of Poplar and Willow. Available online: http://www.forestry.gov.uk/src (accessed on 2 December 2009).
- DEFRA Growing Short-Rotation Coppice. Available online: http://www.naturalengland.org.uk/Images/short-rotation-coppice_tcm6-4262.pdf (accessed on 2 December 2009).
- Matthews, R. Personal Communication—A forest carbon accounting system based on a ‘binary baseline moving average’. Forest Research, Alice Holt Lodge: Farnham, UK, 2008. [Google Scholar]
- Audsley, E.; Williams, A.; Sandards, D. Environmental Burdens of Agricultural and Horticultural Commodity Production; Department for Environment Food and Rural Affairs: London, UK, 2005. [Google Scholar]
- Smith, P.; Milne, R.; Powlson, D.S.; Smith, J.U.; Falloon, P.; Coleman, K. Revised estimates of the carbon mitigation potential of UK agricultural land. Soil Use Manage. 2000, 16, 293–295. [Google Scholar] [CrossRef]
- Smith, P.; Powlson, D.S.; Smith, J.U.; Falloon, P.; Coleman, K. Meeting Europe’s climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biol. 2000, 6, 525–539. [Google Scholar] [CrossRef]
- Grogan, P.; Matthews, R. A modelling analysis of the potential for soil carbon sequestration under short rotation coppice willow bioenergy plantations. Soil Use Manage. 2002, 18, 175–183. [Google Scholar] [CrossRef]
- Grogan, P.; Matthews, R. Review of the Potential for Soil Carbon Sequestration under Bioenergy Crops in the U.K.; MAFF Report on Contract; Institute of Water and Environment, Cranfield University: Cranfield, UK, 2001. [Google Scholar]
- Arrouays, D.; Balesdent, J.; Germon, J.; Jayet, P.; Soussana, J.; Stengel, P. Stocker du carbone dans les sols agricoles de France? Expertise Scientifique Collective. Rapport d’expertise réalisé par INRA à la demande du Ministère de l’Ecologie et du Développement Durable; INRA: Paris, France, October 2002. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Global Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Bradley, R.I.; Milne, R.; Bell, J.; Lilly, A.; Jordan, C.; Higgins, A. A soil carbon and land use database for the United Kingdom. Soil Use Manage. 2005, 21, 363–369. [Google Scholar] [CrossRef]
- Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change: Kanagawa, Japan, 2003.
- Houghton, R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 1999, 51, 298–313. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Lashof, D.A.; Moura-Costa, P. Accounting for time in mitigating global warming through land-use change and forestry. Mitig. Adapt. Strateg. Glob. Chang. 2000, 5, 239–270. [Google Scholar] [CrossRef]
- Moura Costa, P.; Wilson, C. An equivalence factor between CO2 avoided emissions and sequestration—Description and applications in forestry. Mitig. Adapt. Strateg. Glob. Chang. 2000, 5, 51–60. [Google Scholar] [CrossRef]
- Fearnside, P.M. Time preference in global warming calculations: A proposal for a unified index. Ecol. Econ. 2002, 41, 21–31. [Google Scholar] [CrossRef]
- Fearnside, P.M. Why a 100-Year Time Horizon Should Be Used for Global Warming Mitigation Calculations. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 19–30. [Google Scholar] [CrossRef]
- Korhonen, R.; Pingoud, K.; Savolainen, I.; Matthews, R. The role of carbon sequestration and the tonne-year approach in fulfilling the objective of climate convention. Environ. Sci. Policy 2002, 5, 429–441. [Google Scholar] [CrossRef]
- Nebel, B.; Cowell, S.J. Global Warming Reduction Potential of Biomass Based Products: An Example of Wood Products. In Proceedings of the XXth SETAC-Europe Annual Meeting, Hamburg, Germany, 27 April–1 May 2003; p. 49.
- Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services; British Standards Institution: London, UK, 2008; PAS 2050:2008.
- Nebel, B.; Cowell, S.J.; Aumônier, S.; Brandão, M.; Sinden, G.; Clift, R. Accounting for finite carbon sequestration and delayed release of greenhouse gases. 2010; unpublished work. [Google Scholar]
- Müller-Wenk, R.; Brandão, M. Climatic impact of land use in LCA—Carbon transfers between vegetation/soil and air. Int. J. Life Cycle Assess. 2010, 15, 172–182. [Google Scholar] [CrossRef]
- Clift, R.; Brandão, M. Carbon Storage and Timing of Emissions. In CES Working Papers; Centre for Environmental Strategy: Guildford, UK, 2008. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Quantitative Indicators of Soil Quality: A Minimum Data Set. In Methods for Assessing Soil Quality; SSSA: Madison, WI, USA, 1996. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Property of Soils, 12th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Turbé, A.; Toni, A.D.; Benito, P.; Lavelle, P.; Lavelle, P.; Ruiz, N.; van der Putten, W.H.; Labouze, E.; Mudgal, S. Soil Biodiversity: Functions, Threats and Tools for Policy Makers; Bio Intelligence Service, IRD, and NIOO Report for the European Commission. European Commission: Brussels, Belgium, 2010. Available online: http://ec.europa.eu/environment/soil/pdf/biodiversity_report.pdf (accessed on 24 March 2010).
- Strassburg, B.B.N.; Kelly, A.; Balmford, A.; Davies, R.G.; Gibbs, H.K.; Lovett, A.; Miles, L.; Orme, C.D.L.; Price, J.; Turner, R.K.; Rodrigues, A.S.L. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 2009, 3, 98–105. [Google Scholar] [CrossRef]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Lindeijer, E.; Müller-Wenk, R.; Steen, B. Impact Assessment of Resources and Land Use. In Life Cycle Impact Assessment: Striving Towards Best Practice; Udo de Haes, H.A., Finnveden, G., Goedkoop, M., Hauschild, M., Hertwich, E.G., Hofstetter, P., Jolliet, O., Klöpffer, W., Krewitt, W., Lindeijer, E., Müller-Wenk, R., Olsen, S.I., Pennington, D.W., Potting, J., Steen, B., Eds.; SETAC: Pensacola, FL, USA, 2002; pp. 11–64. [Google Scholar]
- Beaton, C. The Farm Management Handbook 2006/2007, 27th ed.; Scottish Agricultural College: Edinburgh, UK, 2006. [Google Scholar]
- Koellner, T.; Scholz, R. Assessment of land use impacts on the natural environment. Int. J. Life Cycle Assess. 2008, 13, 32–48. [Google Scholar]
- Milà i Canals, L. Contributions to LCA Methodology for Agricultural Systems. Site-dependency and Soil Degradation Impact Assessment. Ph.D. Thesis, Autonomous University of Barcelon, Barcelona, Spain, 2003. [Google Scholar]
- Koellner, T.; Brandão, M.; Mueller-Wenk, R.; Margni, M.; Wittstock, B.; Civit, B.; Milà i Canals, L. Modeling land use impacts, biodiversity, and ecosystem services. In Presented at the 8th International Conference on Ecobalance, Tokyo, Japan, 10–12 December 2008.
- Jungk, N.C.; Reinhardt, G.; Gartner, S.O. Agricultural reference systems in life cycle assessments. In Economics of Sustainable Energy in Agriculture; van Ierland, E.C., Oude Lansink, A.G., Eds.; Kluwer Academic Publishers: Secausus, NJ, USA, 2002; p. 247. [Google Scholar]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Social aspects could be included in the assessment with reference to Value Chain Analysis (VCA), which is a complementary tool that provides an economic and social analysis of the operations making up the supply chain providing a product or service, concentrating on the economic Added Value at each stage (see [50,120,121,122,123]). VCA can also be used to describe an established “soft system” approach to examining the governance structure of supply chains (see [52,124,125]). More recently, the UNEP-SETAC Life Cycle Initiative has produced guidelines for social life cycle assessment of products (UNEP-SETAC, 2009)
- Kløverpris, J.; Wenzel, H.; Nielsen, P. Life cycle inventory modelling of land use induced by crop consumption. Int. J. Life Cycle Assess. 2008, 13, 13–21. [Google Scholar]
- Dahlstrom, K.; Ekins, P. Eco-efficiency Trends in the UK Steel and Aluminum Industries: Differences between Resource Efficiency and Resource Productivity. J. Ind. Ecol. 2005, 9, 171–188. [Google Scholar] [CrossRef]
- Dahlstrom, K.; Ekins, P. Combining economic and environmental dimensions: Value chain analysis of UK iron and steel flows. Ecol. Econ. 2006, 58, 507–519. [Google Scholar] [CrossRef]
- Dahlstrom, K.; Ekins, P. Combining economic and environmental dimensions: Value chain analysis of UK aluminium flows. Resour. Conserv. Recycl. 2007, 51, 541–560. [Google Scholar] [CrossRef]
- Dahlström, K.; Ekins, P.; He, J.; Davis, J.; Clift, R. Iron, Steel and Aluminium in the UK: Material Flows and Their Economic Dimensions; Centre for Environmental Strategy, University of Surrey, Guildford/Policy Studies Institute: London, UK, 2004. [Google Scholar]
- Sim, S. Sustainable Sourcing of Consumer Products; EngD Portfolio; University of Surrey: Guildford, UK, 2007. [Google Scholar]
- Sim, S.; Barry, M.; Clift, R.; Cowell, S. The relative importance of transport in determining an appropriate sustainability strategy for food sourcing. Int. J. Life Cycle Assess. 2007, 12, 422–431. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Brandão, M.; Clift, R.; Canals, L.M.i.; Basson, L. A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK. Sustainability 2010, 2, 3747-3776. https://doi.org/10.3390/su2123747
Brandão M, Clift R, Canals LMi, Basson L. A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK. Sustainability. 2010; 2(12):3747-3776. https://doi.org/10.3390/su2123747
Chicago/Turabian StyleBrandão, Miguel, Roland Clift, Llorenç Milà i Canals, and Lauren Basson. 2010. "A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK" Sustainability 2, no. 12: 3747-3776. https://doi.org/10.3390/su2123747
APA StyleBrandão, M., Clift, R., Canals, L. M. i., & Basson, L. (2010). A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK. Sustainability, 2(12), 3747-3776. https://doi.org/10.3390/su2123747