Mapping the Relationship of Inter-Village Variation in Agroforestry Tree Survival with Social and Ecological Characteristics: The Case of the Vi Agroforestry Project, Mara Region, Tanzania
Abstract
:1. Introduction
2. Methods
2.1. The Vi Agroforestry Program
2.2. Mara Region
2.3. The Vi Agroforestry Project in Mara Region
2.4. Study Design and Variables
Abbreviation | Description of variable | Variable characteristics type interval | |
---|---|---|---|
Sr1-30 | No of sample households with 1–30 agroforestry trees/soil-improvers (3 m soil-improvement hedge = 1 tree) surviving on their farm | discrete/interval | 0–21 |
Sr ≥ 40 | No of sample households with 40 or more agroforestry trees/soil-improvers (3 m soil-improvement hedge = 1 tree) surviving on their farm | discrete/interval | 0–21 |
Sp ≥ 5 | No of households with 5 or more surviving agroforestry-tree species of the species promoted by the project | discrete/interval | 0–21 |
SrX | Average number of agroforestry-trees/soil-improvers surviving per sample household in a village, i.e., the total number of surviving trees (3 meters of soil improvement hedges = 1 tree) divided by all 21 sample household | continuous/interval | 2.9–140.4 |
SrS | The accumulated total number of seasons from which the 21 sample household was found to have surviving agroforestry trees | continuous/interval | 3–41 |
Subsystems of adoption | Factor | Variables | |
---|---|---|---|
i | Local governance | local governance critical to agroforestry development | local collaboration (VEHh, VEVL, VLHh, Cle, Clh,) |
ii | Local belief | perceptions related to trees and agroforestry | perceived labour requirement of tree establishment, perception of tree ownership and the benefits of agroforestry trees (Bh, Be3 Ps, Ss) |
iii | Physical environment | characteristics of soil and water | main soil type, water source and distance to the lake (MS, MDW, LAK) |
iv | Subsistence system | subsistence activities and practices affecting agroforestry establishment | main economic activity, tilling method and main crop (MEA, MC, MTM) |
v | Project | project interventions | level, duration and type of project activities and characteristics of the project extension agent (VIM, Tws, Ttu, SEX, VEHL, VELE, VEDE, VEM, VEIS, Kef, Def) |
2.5. Data Collection
2.6. Data Analyses
3. Results and Discussion
3.1. VI-Agroforestry Project Outcome
3.2. Correlation Analysis
LAK | MDW | MS | MC | MTM | VIM | VEHh | VEVL | SEX | VELE | VEIS | VEM | Be3 | Bh | Ps | Ss | Kef | Cle | Clh | Ttu | Tws | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent variable | |||||||||||||||||||||
Sr1-30 | * | * | * | *** | |||||||||||||||||
Sr ≥ 40 | * | * | *** | * | *** | *** | |||||||||||||||
Sp ≥ 5 | ** | * | * | *** | *** | *** | |||||||||||||||
SrX | * | * | * | * | * | *** | * | *** | *** | ||||||||||||
SrS | * | * | *** | * | *** | *** | *** | ||||||||||||||
Independent variables | |||||||||||||||||||||
MDW | |||||||||||||||||||||
MC | − *** | ||||||||||||||||||||
MTM | − *** | ** | |||||||||||||||||||
MEA | * | − *** | * | − ** | |||||||||||||||||
VEHh | |||||||||||||||||||||
VEVL | |||||||||||||||||||||
VLHh | * | ||||||||||||||||||||
SEX | − * | ||||||||||||||||||||
VELE | * | ||||||||||||||||||||
VEDE | − ** | ||||||||||||||||||||
VEIS | * | ||||||||||||||||||||
VEM | *** | * | |||||||||||||||||||
Be3 | * | ||||||||||||||||||||
Bh | * | * | * | ** | |||||||||||||||||
Ps | − * | − ** | |||||||||||||||||||
Ss | * | *** | *** | ||||||||||||||||||
Kef | * | * | * | ** | |||||||||||||||||
Def | ** | ** | * | ||||||||||||||||||
Cle | *** | * | ** | ||||||||||||||||||
Clh | *** | *** | |||||||||||||||||||
Ttu | − * | * | ** | * | |||||||||||||||||
Tws | * | * | * | *** | ** | *** | * | * | *** | * | *** |
3.3. Multiple Regression and Individual Analyses
Step | Variable | Parameter Estimate | Standard Error | Partial R2 | R2 | R2 adj | Mallows C-p | t-value | P-value | Individual test P-value | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | 5.36 | |||||||||||
1 | Tws | 3.00 | 0.748 | 12.79 | 12.7 | 11.7 | 7.5 | 4.01 | 0.000 | 0.001 | r | |
2 | Ttu | −5.60 | 1.903 | 6.04 | 18.8 | 16.9 | 3.1 | −2.94 | 0.004 | 0.984 | r | |
3 | VIM | −0.06 | 0.023 | 2.51 | 21.3 | 18.5 | 2.4 | −2.62 | 0.011 | 0.415 | a | |
4 | Kef | 2.80 | 1.732 | 2.96 | 24.3 | 20.7 | 1.3 | 1.60 | 0.113 | 0.043 | r | |
5 | VEDE | 1.29 | 0.846 | 1.98 | 26.2 | 21.8 | 1.2 | 1.52 | 0.132 | 0.132 | a | |
6 | Be3 | −2.00 | 1.361 | 1.93 | 28.2 | 22.9 | 1.1 | −1.45 | 0.151 | 0.784 | r | |
7 | VEM | 0.07 | 0.030 | 1.95 | 30.1 | 24.1 | 1.0 | 2.27 | 0.026 | 0.740 | a | |
8 | VEIS | −0.50 | 0.291 | 2.47 | 32.6 | 25.8 | 0.4 | −1.71 | 0.091 | 0.078 | a |
Step | Variable | Parameter Estimate | Standard Error | Partial R2 | R2 | R2 adj | Mallows C-p | t-value | P-value | Individual test P-value | |
---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | 3.01 | ||||||||||
1 | Ttu | 7.30 | 1.664 | 20.12 | 20.1 | 19.2 | 16.2 | 4.41 | 0.000 | 0.000 | r |
2 | Bh | 6.60 | 1.616 | 10.33 | 30.4 | 28.8 | 5.1 | 4.07 | 0.000 | 0.000 | r |
3 | MTM | −1.18 | 0.598 | 3.14 | 33.5 | 31.2 | 3.2 | −1.98 | 0.051 | 0.396 | a |
4 | Be3 | 3.10 | 1.394 | 2.49 | 36.0 | 33.0 | 2.0 | 2.21 | 0.030 | 0.045 | r |
5 | Kef | −4.20 | 1.764 | 3.39 | 39.4 | 35.8 | −0.3 | −2.38 | 0.020 | 0.799 | r |
6 | MDW | −0.97 | 0.573 | 2.04 | 41.5 | 37.2 | −0.9 | −1.69 | 0.095 | 0.329 | a |
Step | Variable | Parameter Estimate | Standard Error | Partial R2 | R2 | R2 adj | Mallows C-p | t-value | P-value | Individual test P-value | |
---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | 0.59 | ||||||||||
1 | Bh | 6.20 | 1.846 | 21.57 | 21.5 | 20.6 | 25.7 | 3.36 | 0.001 | 0.000 | r |
2 | Tws | 1.51 | 0.855 | 6.24 | 27.5 | 25.9 | 19.2 | 1.71 | 0.080 | 0.000 | r |
3 | MTM | -1.69 | 0.685 | 3.25 | 30.8 | 28.3 | 16.6 | -2.47 | 0.016 | 0.742 | a |
4 | MC | 1.73 | 0.641 | 4.29 | 35.1 | 32.0 | 12.5 | 2.69 | 0.009 | 0.550 | a |
5 | Ttu | 4.70 | 2.071 | 2.08 | 37.2 | 33.4 | 11.6 | 2.27 | 0.026 | 0.000 | r |
6 | VEVL | 0.91 | 0.516 | 2.19 | 39.3 | 34.9 | 10.5 | 1.77 | 0.080 | 0.016 | a |
7 | Be3 | 3.20 | 1.478 | 2.39 | 41.7 | 36.7 | 9.2 | 2.14 | 0.035 | 0.022 | r |
8 | Kef | -3.50 | 1.854 | 2.42 | 44.2 | 38.6 | 7.7 | -1.86 | 0.066 | 0.599 | r |
Step | Variable | Parameter Estimate | Standard Error | Partial R2 | R2 | R2 adj | Mallows C-p | t-value | P-value | Individual test P-value | |
---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | −67.30 | ||||||||||
1 | Ttu | 85.00 | 12.490 | 27.97 | 27.9 | 27.1 | 27.9 | 6.78 | 0.000 | 0.000 | r |
2 | Bh | 40.00 | 12.250 | 7.96 | 35.9 | 34.4 | 17.4 | 3.26 | 0.002 | 0.000 | r |
3 | Be3 | 31.00 | 10.270 | 3.75 | 39.6 | 37.5 | 13.5 | 3.05 | 0.003 | 0.030 | r |
4 | MTM | −14.90 | 4.820 | 3.12 | 42.8 | 40.0 | 10.6 | -3.09 | 0.003 | 0.347 | a |
5 | MC | 14.20 | 4.598 | 3.01 | 45.8 | 42.5 | 7.9 | 3.09 | 0.003 | 0.846 | a |
6 | VEVL | 9.50 | 3.754 | 1.96 | 47.7 | 43.9 | 6.9 | 2.54 | 0.013 | 0.063 | a |
7 | VIM | 0.33 | 0.153 | 1.91 | 49.6 | 45.3 | 5.9 | 2.14 | 0.035 | 0.055 | a |
8 | LAK | 0.90 | 0.450 | 1.75 | 51.4 | 46.5 | 5.1 | 2.02 | 0.047 | 0.346 | a |
9 | VELE | 9.10 | 4.707 | 2.07 | 53.5 | 48.2 | 3.9 | 1.94 | 0.056 | 0.373 | a |
10 | Kef | −30.00 | 13.750 | 1.74 | 55.2 | 49.5 | 3.1 | −2.19 | 0.031 | 0.261 | r |
11 | Ps | 18.00 | 11.460 | 1.38 | 56.6 | 50.4 | 3.0 | 1.56 | 0.122 | 0.365 | r |
Step | Variable | Parameter Estimate | Standard Error | Partial R2 | R2 | R2 adj | Mallows C-p | t-value | P-value | Individual test P-value | |
---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | 9.94 | ||||||||||
1 | Tws | 5.90 | 1.347 | 30.14 | 30.1 | 29.3 | 1.1 | 4.39 | 0.000 | 0.000 | r |
2 | Bh | 7.70 | 3.196 | 3.31 | 33.4 | 31.9 | −1.0 | 2.41 | 0.018 | 0.000 | r |
3 | SEX | −2.50 | 1.224 | 2.98 | 36.4 | 34.1 | −2.7 | −2.04 | 0.044 | 0.425 | a |
4 | Kef | −6.90 | 3.255 | 2.95 | 39.3 | 36.5 | −4.3 | −2.11 | 0.038 | 0.966 | r |
5 | VEIS | 0.49 | 0.305 | 1.81 | 41.1 | 37.6 | −4.5 | 1.60 | 0.114 | 0.008 | a |
3.3.1. Village Proportion of Households with 1–30 Surviving Agroforestry Trees
3.3.2. Village Proportion of Households with 40 or more Surviving Agroforestry Trees
3.3.3. Village Proportion of Households with Five or More Surviving Agroforestry Species
3.3.4. Average Number of Surviving Agroforestry Trees per Household
3.3.5. Number of Seasons from which the Households had Surviving Agroforestry Trees
3.4. Pattern of Relationships
3.5. An Increasing Proportion of Households with an Increasing Number of Surviving Seedlings
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Baalman, P.; Schlamadinger, B. Scaling up AFOLU Mitigation Activities in Non-Annex I Countries; Working Paper of the Climate Strategy & GHG Services for the Eliasch Review; Climate Strategies: Cambridge, UK, 2008. [Google Scholar]
- Rights and Resources Initiative. Seeing People through the Trees: Scaling up Efforts to Advance Rights and Address Poverty, Conflict and Climate Change; RRI: Washington, DC, USA, 2008. [Google Scholar]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar]
- Rockström, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.W.; Temesgen, M.; Mawenya, L.; Barron, J.; Mutua, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil Till. Res. 2009, 103, 23–32. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Chirwa, P.W.; Ajayi, O.C.; Sileshi, G.; Matakala, P.; Kwesiga, F.R.; Harawa, R.; Makumba, W. Contribution of agroforestry research to livelihood of smallholder farmers in southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agric. J. 2008, 3, 58–75. [Google Scholar]
- Akinnifesi, F.K.; Sileshi, G.; Ajayi, O.C.; Chirwa, P.W.; Kwesiga, F.R.; Harawa, R. Contributions of agroforestry research and development to livelihood of smallholder farmers in southern Africa: 2. Fruit, medicine, fuelwood, and fodder tree systems. Agric. J. 2008, 3, 76–88. [Google Scholar]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Oyebade, B.A.; Aiyeloja, A.A.; Ekeke, B.A. Sustainable agroforestry potentials and climate change mitigation. Adv. Environ. Biol. 2010, 4, 58–63. [Google Scholar]
- Schoeneberger, M.M. Agroforestry: Working trees for sequestering carbon on agricultural lands. Agrofor. Syst. 2009, 75, 27–37. [Google Scholar] [CrossRef]
- Kalaba, K.F.; Chirwa, P.; Syampungani, S.; Ajayi, O.C. Contribution of Agroforestry to Biodiversity and Livelihoods Improvement in Rural Communities of Southern African Regions. In Tropical Rainforests and Agroforestry under Global Change: Ecological and Socio-Economic Valuations; Tscharntke, T., Leuschner, C., Veldkamp, E., Faust, H., Guhardja, E., Bidin, A., Eds.; Springer: New York, NY, USA, 2010; pp. 461–476. [Google Scholar]
- Franzel, S.; Denning, G.L.; Lillesø, J.P.B.; Mercado, A.R., Jr. Scaling up the impact of agroforestry: Lessons from three sites in Africa and Asia. Agrofor. Syst. 2004, 61, 329–344. [Google Scholar]
- Cooper, P.J.; Leakey, R.R.B.; Rao, M.R.; Reynolds, L. Agroforestry and the mitigation of land degradation in the humid and sub-humid tropics of Africa. Exp. Agric. 1996, 32, 235–290. [Google Scholar] [CrossRef]
- Trees on the Farm: Assessing the Adoption Potential of Agroforestry Practices in Africa; Franzel, S.; Scherr, S.J. (Eds.) CABI: Wallingford, UK, 2002; p. 197.
- Place, F.; Franzel, S.; DeWolf, J.; Rommelse, R.; Kwesiga, F.; Niang, A.; Jama, B. Agroforestry for Soil Fertility Replenishment: Evidence on Adoption Processes in Kenya and Zambia. In Natural Resources Management in African Agriculture: Understanding and Improving Current Practices; Barrett, C.B., Place, F., Aboud, A.A., Eds.; CAB International: Wallingford, UK, 2002; pp. 155–168. [Google Scholar]
- Sanchez, P.A. Science in agroforestry. Agrofor. Syst. 1995, 9, 259–274. [Google Scholar]
- Johansson, K.-E.V.; Nylund, J.-E. NGO Policy Change in Relation to Donor Discourse. The Case of Vi Skogen; The Swedish University of Agricultural Sciences, Department of Forest Products: Uppsala, Sweden, 2008; Report No 8. [Google Scholar]
- Johansson, K.-E.V.; Elgström, O.; Kimanzu, N.; Nylund, J.-E.; Persson, R. Trends in development aid, negotiation process and NGO policy change. Voluntas 2010, 21, 371–392. [Google Scholar] [CrossRef]
- Vi Agroforestry. Annual Report; Larsson Offsettryck: Linköping, Sweden, 2012. [Google Scholar]
- Brulin, G.; Svensson, L. Managing Sustainable Development: A Learning Approach To Change; Gower Publishing Limited: Farnham, UK, 2012. [Google Scholar]
- Svensson, L.; Brulin, G.; Jansson, S.; Sjöberg, K. Capturing Effects of Projects and Programmes; Studentlitteratur: Lund, Sweden, 2013. [Google Scholar]
- Kiptot, E.P.; Hebinck, P.; Franzel, S.; Richards, P. Adopters, testers or pseudo-Adopters? Dynamics of the use of improved tree fallows by farmers in Western Kenya. Agric. Syst. 2007, 94, 509–519. [Google Scholar] [CrossRef]
- Montambault, J.R.; Alavalapati, J.R.R. Socioeconomic research in agroforestry: A decade in review. Agrofor. Syst. 2005, 65, 151–161. [Google Scholar] [CrossRef]
- Mercer, D.E. Adoption of agroforestry innovations in the tropics: A review. Agrofor. Syst. 2004, 63, 311–328. [Google Scholar] [CrossRef]
- Pattanayak, S.K.; Mercer, D.E.; Sills, E.; Yang, J.C. Taking stock of agroforestry adoption studies. Agrofor. Syst. 2003, 57, 173–186. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Akinnifesi, F.K.; Seleshi, G.; Chakeredza, S. Adoption of renewable soil fertility replenishment technologies in the southern African region: Lessons learnt and the way forward. Nat. Resourc. For. 2007, 31, 306–317. [Google Scholar]
- Behre, R.T.; Martinez, J.; Verplanke, J. Adaptation and dissonance in quality of life: A case study in Mekelle, Ethiopia. Soc. Indic. Res. 2013. [Google Scholar] [CrossRef]
- Korten, D.C. Community organization and rural development: A learning process approach. Public Admin. Rev. 1980, 40, 480–511. [Google Scholar] [CrossRef]
- Kapfudzaruwa, F.; Sowman, M. Is there a role for traditional governance systems in South Africa’s new water management regime? Water SA 2009, 35, 683–692. [Google Scholar]
- Elbakidze, M.; Angelstam, P. Implementing sustainable forest management in Ukraine’s Carpathian Mountains: The role of traditional village systems. For. Ecol. Manag. 2007, 249, 28–38. [Google Scholar] [CrossRef]
- Woolcock, M.; Narayan, D. Social capital: Implications for development theory, research, and policy. W. Bank Res. Observ. 2000, 15, 225–249. [Google Scholar] [CrossRef]
- Axelsson, R.; Angelstam, P.; Degerman, E.; Teitelbaum, S.; Andersson, K.; Elbakidze, M.; Drotz, M.K. Social and cultural sustainability: Interpretation, indicators and variables for measurement and visualization to support planning. AMBIO 2013, XLII, 215–228. [Google Scholar]
- Viklund, K. ‘Vi-Skogen: Ett Grönt Biståndsprojekt’(The We Forest: A Green Aid Project). In Examensarbete vid Journalisthögskolan i Göteborg. Institutionen för Journalistik och Masskommunikation; (in Swedish). Göteborgs Universitet: Göteborg, Germany, 1992. [Google Scholar]
- The Planning Commission & Regional Commissioner’s Office. Mara Region Socioeconomic Profile; The United Nations Population Fund: Dar es Salaam, Tanzania, 1998. [Google Scholar]
- Swallow, B.M.; Sang, J.K.; Nyabenge, M.; Bundotich, D.K.; Anantha K. Duraiappah, A.K.; Yatich, T.B. Tradeoffs, synergies and traps among ecosystem services in the Lake Victoria basin of East Africa. Environ. Sci. Policy 2009, 12, 504–519. [Google Scholar] [CrossRef]
- Odada, E.O.; Olago, D.O.; Kulindwa, K.; Ntiba, M.; Wandiga, S. Mitigation of environmental problems in Lake Victoria, East Africa: Causal chain and policy options analyses. AMBIO 2004, 33, 13–23. [Google Scholar]
- Anon, Annual report for the FY 2000; Vi Agroforestry Project Mara, 2001.
- Törnqvist, A. Geografi, agroforestry och GIS i östra Afrika: Att analysera landskap med blivande geografilärare. Geografiska Notiser 2012, 70, 6–16. [Google Scholar]
- Diamond, J. Overview: Laboratory Experiments, Field Experiments, and Natural Experiments. In Community Ecology; Diamond, J.M., Case, T.J., Eds.; Harper & Row: New York, NY, USA, 1986; pp. 3–22. [Google Scholar]
- Sood, K.K.; Mitchell, P. Identifying important biophysical and social determinants of on-farm tree growing in subsistence-based traditional agroforestry systems. Agrofor. Syst. 2009, 75, 175–187. [Google Scholar] [CrossRef]
- Sanginga, P.C.; Chitsike, C.A.; Njuki, J.; Kaaria, S.; Kanzikwera, R. Enhanced learning from multi-stakeholder partnerships: Lessons from the enabling rural innovation in Africa programme. Nat. Resourc. For. 2007, 31, 273–285. [Google Scholar]
- Nemarundwe, N.; Richards, M. Participatory Methods for Exploring Livelihood Values Derived from Forests: Potential and Limitations. In Uncovering the Hidden Harvest: Valuation Methods for Woodland and Forest Resources; Campbell, B.M., Luckert, M.K., Eds.; Earthscan: London, UK, 2002; pp. 168–198. [Google Scholar]
- Shork, M.A.; Remington, R.R. Statistics with Applications to the Biological and Health Sciences; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 2000. [Google Scholar]
- Gujarati, D. Multicollinearity: What Happens if the Regressors are Correlated? In Basic Econometrics, 5th ed.; Gujarati, D.N., Porter, D.C., Eds.; McGraw Hill: Boston, MA, USA, 2009; pp. 363–363. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Mardia, K.V.; Kent, J.; Bibby, J.M. Multivariate Analysis; Academic Press: London, UK, 1982. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 1966. [Google Scholar]
- Olsson, U. Statistics for Life Science 2; Studentlitteratur: Lund, Sweden, 2011. [Google Scholar]
- Akaike, H. An information criterion (AIC). Math. Sci. 1976, 14, 5–9. [Google Scholar]
- Roger, M.; Nunn, C. Stepwise model fitting and statistical inference: Turning noise into signal pollution. Am. Nat. 2009, 173, 119–123. [Google Scholar] [CrossRef]
- Ajayi, O.C.; Katanga, R. Improved fallows and local institutions. LEISA 2005, 21, 18–19. [Google Scholar]
- Ajayi, O.C.; Kwesiga, F. Implications of local policies and institutions on the adoption of improved fallows in eastern Zambia. Agrofor. Syst. 2003, 59, 327–336. [Google Scholar] [CrossRef]
- Place, F. The Role of Land and Tree Tenure on the Adoption of Agroforestry Technologies in Uganda, Burundi, Zambia, and Malawi: A Summary and Synthesis; Land Tenure Center, University of Wisconsin: Madison, WI, USA, 1995. [Google Scholar]
- Place, F.; Dewees, P. Policies and incentives for the adoption of improved fallow. Agrofor. Syst. 1999, 47, 323–343. [Google Scholar] [CrossRef]
- Pollini, J. Agroforestry and the search for alternatives to slash-and-burn cultivation: From technological optimism to a political economy of deforestation. Agric. Ecosyst. Environ. 2009, 133, 48–60. [Google Scholar] [CrossRef]
- Mercer, D.E.; Miller, R.P. Socioeconomic research in agroforestry: Progress, prospects, priorities. Agrofor. Syst. 1997, 38, 177–193. [Google Scholar] [CrossRef]
- Axelsson, R.; Angelstam, P.; Elbakidze, M.; Stryamets, N.; Johansson, K.-E. Sustainable development and sustainability: Landscape approach as a practical interpretation of principles and implementation concepts. J. Landsc. Ecol. 2011, 4, 5–30. [Google Scholar]
- Johansson, K.-E.; Axelsson, R.; Kimanzu, N.; Sassi, S.O.; Bwana, E.; Otsyina, R. The pattern and process of adoption and scaling up: Variation in project outcome reveals the importance of multilevel collaboration in agroforestry development. Sustainability 2013, 5, 5195–5224. [Google Scholar]
Dimension/variable | Description of variable | Scale | Type | |
---|---|---|---|---|
i. Local governance | ||||
VEHh | Level of cooperation between VEA & households according to Project advisors & Zonal Managers; | ordinal scale | discrete 1–5 | |
1 = very poor, | 4 = good | |||
2 = poor, | 5 = very good | |||
3 = normal, | ||||
VEVL | Level of cooperation between VEA & village leadership to Project advisors & Zonal Managers; | ordinal scale | discrete 1–5 | |
1 = very poor, | 4 = good | |||
2 = poor, | 5 = very good | |||
3 = normal | ||||
VLHh | Level of cooperation between village leadership & households according to Project advisors & Zonal Managers; | ordinal scale | discrete 1–5 | |
1 = very Poor, | 4 = good | |||
2 = poor, | 5 = very good | |||
3 = normal, | ||||
Cle | The village proportion of households’ scoring the cooperation between village leaders and project extension agent to be good out of three levels:
| ratio scale | continuous 0–1 | |
Clh | The village proportion of households’ scoring the cooperation between village leaders and themselves to be good, out of three levels:
| ratio scale | continuous 0–1 | |
ii. Local belief system | ||||
Bh | The village proportion of households believing they own the trees they plant. | ratio scale | continuous 0–1 | |
Be3 | The village proportion of households believing in the good effect of agroforestry | ratio scale | continuous 0–1 | |
Ps | The village proportion of households’ ranking of PLANTING SEEDLINGS according to instructions among the three least demanding tasks out of 6 normal agricultural/agroforestry-tasks
| ratio scale | continuous 0–1 | |
Ss | The village proportion of households’ ranking the task to SOW TREE SEED according to instructions among the three least demanding tasks out of 6 normal agricultural/AF-tasks:
| ratio scale | continuous 0–1 | |
iii. Physical environment | ||||
LAK | Mean distance from village middle to the Lake shore in km | ratio | discrete 1–8 | |
MDW | Main source of domestic water:
| binary | discrete 0 or 1 | |
MS | Main soil type of the village:
| binary | discrete 0 or 1 | |
iv. Subsistence system | ||||
MEA | Main Economic activity of the village:
| binary | discrete 0 or 1 | |
MTM | Main tilling method used in the village:
| binary | discrete 0 or 1 | |
MC | Main Crop type:
| binary | discrete 0 or 1 | |
v. Project | ||||
SEX | Gender of the project extension agent in the village:
| binary | discrete 0 or 1 | |
VEIS | In-service training; No of weeks of in-service training that the project extension agent has participated in | ratioscale | discrete 3–8 | |
VEM | No of months that the project extension agent has been employed by the project | ratioscale | approximatelycontinuous 3–75 | |
VEHL | Language of the project extension agent in relation to the main language in her/his village:
| binary | discrete 1 or 0 | |
VELE | Duration/level of education of the project extension agent:
| binary | discrete 0 or 1 | |
VEDE | Education discipline of the project extension agent:
| binary | discrete 0 or 1 | |
Kef | The village proportion of households’ ranking the project extension agent as number one in agroforestry knowledge among seven other key actors in the village;
| ratio scale | Continuous 0–1 | |
Def | The village proportion of households’ ranking the project extension agent as number one in devotion to agroforestry among five other key actors in the village;
| ratio scale | Continuous 0–1 | |
Tws | Total number of field training workshops that the sample-households claim participation in divided by number of sample households (n = 21) | ratio scale | Continuous 0–3 | |
Ttu | Total number of farmer to farmer tours that the sample-households claim participation in divided by the number of sample households (n = 21) | ratio scale | Continuous 0–1 | |
VIM | No of months that the project have been active in a village | Ratio scale | approximately continues 1–65 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Johansson, K.-E.; Axelsson, R.; Kimanzu, N. Mapping the Relationship of Inter-Village Variation in Agroforestry Tree Survival with Social and Ecological Characteristics: The Case of the Vi Agroforestry Project, Mara Region, Tanzania. Sustainability 2013, 5, 5171-5194. https://doi.org/10.3390/su5125171
Johansson K-E, Axelsson R, Kimanzu N. Mapping the Relationship of Inter-Village Variation in Agroforestry Tree Survival with Social and Ecological Characteristics: The Case of the Vi Agroforestry Project, Mara Region, Tanzania. Sustainability. 2013; 5(12):5171-5194. https://doi.org/10.3390/su5125171
Chicago/Turabian StyleJohansson, Karl-Erik, Robert Axelsson, and Ngolia Kimanzu. 2013. "Mapping the Relationship of Inter-Village Variation in Agroforestry Tree Survival with Social and Ecological Characteristics: The Case of the Vi Agroforestry Project, Mara Region, Tanzania" Sustainability 5, no. 12: 5171-5194. https://doi.org/10.3390/su5125171
APA StyleJohansson, K. -E., Axelsson, R., & Kimanzu, N. (2013). Mapping the Relationship of Inter-Village Variation in Agroforestry Tree Survival with Social and Ecological Characteristics: The Case of the Vi Agroforestry Project, Mara Region, Tanzania. Sustainability, 5(12), 5171-5194. https://doi.org/10.3390/su5125171