Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup
Abstract
:1. Introduction
2. Motivation and Purpose of the Work
3. Methodology
3.1. Test-Room Setup
EXTERNAL WALL | |||
Thickness | Conductivity | ||
1. Plaster dense | 0.020 m | 0.50 W/mK | Thermal transmittance (surface-to-surface) 0.29 W/m2K |
2. EPS insulation | 0.090 m | 0.04 W/mK | |
3. Brickwork, inner leaf | 0.300 m | 0.27 W/mK | |
4. Gypsum plastering | 0.020 m | 0.40 W/mK | |
ROOF | |||
Thickness | Conductivity | ||
1. Bitumen sheet | 0.010 m | 0.23 W/mK | Thermal transmittance (surface-to-surface) 0.25 W/m2K |
2. Mineral wool insulation | 0.100 m | 0.04 W/mK | |
5. Aerated concrete slab | 0.200 m | 0.16 W/mK | |
5. Gypsum plastering | 0.015 m | 0.40 W/mK | |
GROUND FLOOR | |||
Thickness | Conductivity | ||
1. Linoleum | 0.004 m | 0.17 W/mK | Thermal transmittance (surface-to-surface) 0.30 W/m2K |
2. Glass fiber slab | 0.100 m | 0.04 W/mK | |
5. Cast concrete | 0.300 m | 1.13 W/mK |
INDOOR MONITORING STATION |
Air velocity [m/s] |
Turbulence intensity [%] |
Mean radiant Temperature [°C] |
Air temperature [°C] |
Air relative humidity [%] |
Surface temperature of internal and external side of the façade [°C] |
Surface temperature of internal and external side of the roof [°C] |
Thermal flux through the north external wall and through the roof [W/m2] |
Global radiation reflected by the roof [W/m2] |
Energy consumption [kWh] |
OUTDOOR MONITORING STATION |
Wind velocity [m/s] |
Prevailing wind direction, wind direction [°] |
Dry bulb temperature, Tout [°C] |
Air relative humidity [%] |
Sunshine duration (referred to a certain threshold) [0–1] |
Direct radiation from the sun [W/m2] |
Global solar irradiance [W/m2] |
Rain fall [mm] |
3.2. Thermal Bridges Evaluation by Means of Infrared Thermography
4. Discussion of the Results
4.1. Envelope Thermal Performance
4.2. Analysis of Each Thermal Bridge Contribution
- (1)
- Line between two walls (L-WW);
- (2)
- Corner between wall and roof (C-WR);
- (3)
- Corner between wall and ground floor (C-WG);
- (4)
- Line between wall and ground floor (L-WG);
- (5)
- Lines between clay elements and concrete elements in the roof ceiling structure (L-PT);
- (6)
- Line between wall and roof (L-WR);
- (7)
- Line between roof and wall (L-RW);
- (8)
- Lines between wall and door (L-WD);
- (9)
- Lines between wall and window (L-WI);
Thermal Bridge | Itb |
---|---|
L-WW | 1.28 |
C-WR | 2.15 |
C-WG | 1.79 |
L-WG | 1.52 |
L-PT | 1.23 |
L-WR | 1.53 |
L-RW | 1.48 |
L-WD | 1.44 |
L-WI | - |
4.3. Combined Assessment of in-Field Thermal-Energy Performance
Energy Consumption without Thermal Bridges [kWh] | Energy Consumption with Thermal Bridges [kWh] | Measured Energy Consumption of the Heat Pump System [kWh] |
---|---|---|
4.816 ± 0.082 | 5.258 ± 0.100 | 5.272 ± 0.527 |
Difference (%) | 9.2% | 0.3% |
5. Conclusions
Nomenclature
Itb | Incidence factor of the thermal bridge [-] |
htb_i | Convective coefficient of the thermal bridge zone [W/m2K] |
h1D_i | Convective coefficient of the undisturbed zone [W/m2K] |
Apixel | Surface of the single pixel [m2] |
A1D | Surface of the entire thermografic image [m2] |
Ti | Temperature of the inner air [K] |
Tpixel_is | Temperature of the single pixel on the surface [K] |
T1D_is | Temperature of the surface on undisturbed zone defined by thermogram [K] |
N | Total number of pixels |
T1D | Thermal transmittance of the undisturbed zone [W/m2K] |
Utb | Thermal transmittance of the zone influenced by thermal bridge [W/m2K] |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pikas, E.; Thalfeldt, M.; Kurnitski, J. Cost optimal and nearly zero energy building solutions for office buildings. Energy Build. 2014, 74, 30–42. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldassarri, C.; Fthenakis, V. Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy Build. 2013, 64, 73–89. [Google Scholar] [CrossRef]
- Franzitta, V.; Milone, A.; Milone, D.; Pitruzzella, S.; Trapanese, M.; Viola, A. Experimental evidence on the thermal performance of opaque surfaces in Mediterranean climate. Adv. Mater. Res. 2014, 860–863, 1227–1231. [Google Scholar]
- Carletti, C.; Gallo, P.; Gargari, C.; Sciurpi, F. Building regulations based on sustainable principles in Italy: State of the art and trends. WIT Trans. Ecol. Environ. 2005, 84, 193–200. [Google Scholar]
- Fantozzi, F.; Leccese, F.; Salvadori, G.; Tuoni, G. Energy demand analysis and energy labelling of new residential buildings in Tuscany (Italy). WIT Trans. Ecol. Environ. 2009, 122, 217–229. [Google Scholar]
- De Lieto Vollaro, R.; Demegni, G.; Carnielo, E.; Botta, F.; de Lieto Vollaro, E. Determination of photometric properties of materials for energy purposes through the experimental study of a two-axis goniophotometer. Int. J. Eng. Technol. 2013, 5, 4465–4471. [Google Scholar]
- Bottillo, S.; de Lieto Vollaro, A.; Galli, G.; Vallati, A. CFD modeling of the impact of solar radiation in a tridimensional urban canyon at different wind conditions. Sol. Energy 2014, 102, 212–222. [Google Scholar] [CrossRef]
- Carletti, C.; Cellai, G.; Sciurpi, F. Adapting prescriptions for energy saving technologies to historical buildings. In Proceedings of the 2nd Rebuild European Conference, Florence, Italy, 1–3 April 1998; pp. 290–293.
- Pisello, A.L.; Asdrubali, F. Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies. Appl. Energy 2014, 133, 224–235. [Google Scholar] [CrossRef]
- Dutil, Y.; Rousse, D.; Quesada, G. Sustainable buildings: An ever evolving target. Sustainability 2011, 3, 443–464. [Google Scholar] [CrossRef]
- Cotana, F.; Rossi, F.; Filipponi, M.; Coccia, V.; Pisello, A.L.; Bonamente, E.; Petrozzi, A.; Cavalaglio, G. Albedo control as an effective strategy to tackle Global Warming: A case study. Appl. Energy 2014. [Google Scholar] [CrossRef]
- De Lieto Vollaro, R.; Calvesi, M.; Battista, G.; Evangelisti, L.; Gori, P.; Guattari, C. A new method of technical analysis to optimise the design of low impact energy systems for buildings. Int. J. Eng. Technol. Innov. 2013, 3, 241–250. [Google Scholar]
- Franzitta, V.; Milone, D.; Trapanese, M.; Viola, A.; Di Dio, V.; Pitruzzella, S. Energy and economic comparison of different conditioning system among traditional and eco-sustainable building. Appl. Mech. Mater. 2013, 394, 289–295. [Google Scholar] [CrossRef]
- Galli, G.; Vallati, A.; Recchiuti, C.; de Lieto Vollaro, R.; Botta, F. Passive cooling design options to improve thermal comfort in an Urban District of Rome, under hot summer conditions. Int. J. Eng. Technol. 2013, 5, 4495–4500. [Google Scholar]
- Ciampi, M.; Leccese, F.; Tuoni, G. Multi-layered walls design to optimize building-plant interaction. Int. J. Therm. Sci. 2004, 43, 417–429. [Google Scholar] [CrossRef]
- Brás, A.; Gonçalves, F.; Faustino, P. Cork-based mortars for thermal bridges correction in a dwelling: Thermal performance and cost evaluation. Energy Build. 2014, 72, 296–308. [Google Scholar] [CrossRef]
- Theodosiou, T.G.; Papadopoulos, A.M. The impact of thermal bridges on the energy demand of buildings with double brick wall constructions. Energy Build. 2008, 40, 2083–2089. [Google Scholar]
- Ascione, F.; Bianco, N.; de Masi, R.F.; Vanoli, G.P. Rehabilitation of the building envelope of hospitals: Achievable energy savings and microclimatic control on varying the HVAC systems in Mediterranean climates. Energy Build. 2013, 60, 125–138. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Dahlan, N.D.; Berardi, U.; Ghaffarianhoseini, A.; Makaremi, N.; Ghaffarianhoseini, M. Sustainable energy performances of green buildings: A review of current theories, implementations and challenges. Renew. Sustain. Energy Rev. 2013, 25, 1–17. [Google Scholar] [CrossRef]
- Rossi, F.; Pisello, A.L.; Nicolini, A.; Filipponi, M.; Palombo, M. Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model. Appl. Energy 2014, 114, 621–631. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G.; Bianchi, F. Influence of cavities geometric and emissivity properties on the overall thermal performance of aluminum frames for windows. Energy Build. 2013, 60, 298–309. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Recca, A.; Gagliano, A.; Summerscales, J.; Latteri, A.; Cozzo, G.; Cicala, G. Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Constr. Build. Mater. 2014, 55, 406–414. [Google Scholar] [CrossRef]
- Baldinelli, G.; Asdrubali, F.; Baldassarri, C.; Bianchi, F.; D’Alessandro, F.; Schiavoni, S.; Basilicata, C. Energy and environmental performance optimization of a wooden window: A holistic approach. Energy Build. 2014, 79, 114–131. [Google Scholar] [CrossRef]
- Corgnati, S.P.; D’Oca, S.; Fabi, V.; Andersen, R.K. Leverage of behavioural patterns of window opening and heating set point adjustments on energy consumption and thermal comfort in residential buildings. Lect. Notes Electr. Eng. 2014, 261, 23–31. [Google Scholar]
- Balaras, C.A.; Argiriou, A.A. Infrared thermography for building diagnostics. Energy Build. 2002, 34, 171–183. [Google Scholar] [CrossRef]
- Barreira, E.; de Freitas, V.P. Evaluation of building materials using infrared thermography. Constr. Build. Mater. 2007, 21, 218–224. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Moropoulou, A. Emissivity considerations in building thermography. Energy Build. 2002, 35, 663–667. [Google Scholar] [CrossRef]
- Datcu, S.; Ibos, L.; Candau, Y.; Matteï, S. Improvement of building wall surface temperature measurements by infrared thermography. Infrared Phys. Technol. 2005, 46, 451–467. [Google Scholar] [CrossRef]
- Zalewski, L.; Lassue, S.; Rousse, D.; Boukhalfa, K. Experimental and numerical characterization of thermal bridges in prefabricated building walls. Energy Convers. Manag. 2010, 51, 2869–2877. [Google Scholar] [CrossRef]
- Déqué, F.; Ollivier, F.; Roux, J.J. Effect of 2D modelling of thermal bridges on the energy performance of buildings—Numerical application on the Matisse apartment. Energy Build. 2001, 33, 583–587. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G.; Bianchi, F. A quantitative methodology to evaluate thermal bridges in buildings. Appl. Energy 2012, 97, 365–373. [Google Scholar] [CrossRef]
- Pisello, A.L.; Cotana, F.; Nicolini, A.; Buratti, C. Effect of dynamic characteristics of building envelope on thermal-energy performance in winter conditions: In field experiment. Energy Build. 2014. [Google Scholar] [CrossRef]
- Barreneche, C.; de Gracia, A.; Serrano, S.; Navarro, M.E.; Borreguero, A.M.; Fernández, A.I.; Carmona, M.; Rodriguez, J.F.; Cabeza, L.F. Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials. Appl. Energy 2013, 109, 421–427. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Thermal Bridges in Building Construction—Linear Thermal Transmittance—Simplified Methods and Default Values; EN ISO 14683: 2008; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Ente Nazionale Italiano di Unificazione (UNI). Prestazioni Energetiche Degli Edifici—Parte 1: Determinazione del Fabbisogno di Energia Termica dell’Edificio per la Climatizzazione Estiva ed Invernale; UNI/TS 11300–1: 2008; UNI: Milano, Italy, 2008. [Google Scholar]
- Flir System. In User’s Manual; Flir System: Wilsonville, OR, USA, 2008.
- Air Conditioners, Liquid Chilling Packages and Heat Pumps, with Electrically Driven Compressors, for Space Heating and Cooling—Testing and Rating at Part Load Conditions and Calculation of Seasonal Performance; UNI EN 14825: 2012; BSI: London, UK, 2012.
- International Organization for Standardization (ISO). Guide to the Expression of Uncertainty in Measurement; ENV 13005: 2008; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Evola, G.; Margani, G.; Marletta, L. Energy and cost evaluation of thermal bridge correction in Mediterranean climate. Energy Build. 2011, 43, 2385–2393. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, F.; Pisello, A.L.; Baldinelli, G.; Asdrubali, F. Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup. Sustainability 2014, 6, 7107-7120. https://doi.org/10.3390/su6107107
Bianchi F, Pisello AL, Baldinelli G, Asdrubali F. Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup. Sustainability. 2014; 6(10):7107-7120. https://doi.org/10.3390/su6107107
Chicago/Turabian StyleBianchi, Francesco, Anna Laura Pisello, Giorgio Baldinelli, and Francesco Asdrubali. 2014. "Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup" Sustainability 6, no. 10: 7107-7120. https://doi.org/10.3390/su6107107
APA StyleBianchi, F., Pisello, A. L., Baldinelli, G., & Asdrubali, F. (2014). Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup. Sustainability, 6(10), 7107-7120. https://doi.org/10.3390/su6107107