Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis
Abstract
:1. Introduction
2. A Review on Economic Models of Water Use
3. Modeling Framework and Scenarios
3.1. Modeling Framework
3.2. Scenarios
3.2.1. Scenario 1: An Increase in the Proportion of Urban Population
3.2.2. Scenario 2: Economic Structural Change
4. Results and Discussion
4.1. Scenario 1: An Increase in the Proportion of Urban Population
Scenario 1 | Scenario 2 | Total | |||
---|---|---|---|---|---|
Urbanization | Non-agricultural productivity growth | Agricultural water saving | Household water saving | ||
Absolute change (billion m3) | |||||
Field crops | −34.2 | −38.7 | −47.8 | 3.4 | −117.3 |
Intensive crops | −2.8 | 8.0 | 12.5 | 6.6 | 24.3 |
Livestock | 8.1 | 4.7 | 10.8 | 5.9 | 29.5 |
Other agriculture | −10.3 | −17.2 | 7.2 | 2.2 | −18.1 |
Household | 10.5 | 5.7 | 11.9 | −21.3 | 6.8 |
Industry | 28.7 | 37.5 | 5.4 | 3.2 | 74.8 |
Percentage change (%) | |||||
Field crops | −11.2 | −12.6 | −15.6 | 1.1 | −38.3 |
Intensive crops | −3.2 | 8.5 | 13.4 | 7.1 | 25.8 |
Livestock | 24.6 | 14.3 | 32.8 | 17.9 | 89.7 |
Other agriculture | −37.9 | −63.5 | 26.6 | 8.1 | −66.7 |
Household | 14.8 | 8.1 | 16.8 | −30.0 | 9.7 |
Industry | 19.0 | 24.8 | 3.6 | 2.1 | 49.5 |
Scenario 1 | Scenario 2 | Total | |||
---|---|---|---|---|---|
Urbanization | Non-agricultural productivity growth | Agricultural water saving | Household water saving | ||
Field crops | −19.4 | −21.6 | 42.3 | 2.9 | 4.2 |
Intensive crops | −1.2 | 5.8 | 34.7 | 2.1 | 41.4 |
Livestock | 17.5 | 2.3 | 21.8 | 1.2 | 42.8 |
Other agriculture | −4.1 | −6.6 | 12.7 | 0.8 | 2.8 |
Industry | 15.2 | 19.6 | 0.6 | 0.2 | 35.6 |
Scenario 1 | Scenario 2 | Total | |||
---|---|---|---|---|---|
Urbanization | Non-agricultural productivity growth | Agricultural water saving | Household water saving | ||
SE | 2.4 | 1.6 | −0.8 | −0.6 | 2.6 |
ZH | 3.6 | 3.1 | −0.9 | −1.0 | 4.8 |
YT | 3.3 | 2.3 | −0.5 | −1.4 | 3.7 |
SW | 0.9 | 0.4 | −0.3 | −0.6 | 0.4 |
HA | 1.4 | 0.9 | −0.5 | −0.7 | 1.1 |
SL | 1.1 | 0.5 | −0.8 | −0.1 | 0.7 |
IL | 1.4 | 1.0 | −1.3 | −0.2 | 0.9 |
YE | 2.5 | 1.7 | −1.6 | −0.3 | 2.3 |
HL | 4.2 | 2.2 | −0.7 | −1.1 | 4.6 |
4.2. Scenario 2: Economic Structural Change
4.3. Macroeconomic Outcomes
Scenario 1 | Scenario 2 | Total | |||
---|---|---|---|---|---|
Urbanization | Non-agricultural productivity growth | Agricultural water saving | Household water saving | ||
Real GDP | 16.6 | 22.3 | 0.6 | 0.1 | 39.6 |
Real consumption | 15.9 | 21.2 | 0.5 | 0.1 | 37.7 |
Real investment | 20.1 | 25.0 | 0.4 | 0.1 | 45.6 |
Export volume | 17.2 | 25.9 | 0.3 | 0.1 | 43.5 |
Import volume | 11.5 | 15.8 | 0.1 | 0.0 | 27.4 |
Employment | 13.2 | 4.7 | 0.0 | 0.0 | 17.9 |
Region | Real GDP | Real consumption | Real investment | Export volume | Import volume | Employment |
---|---|---|---|---|---|---|
SE | 49.1 | 47.3 | 42.1 | 32.7 | 22.0 | 22.7 |
ZH | 64.3 | 59.4 | 89.8 | 61.3 | 43.7 | 32.0 |
YT | 59.4 | 57.2 | 83.3 | 66.9 | 30.8 | 33.5 |
SW | 17.7 | 16.8 | 27.5 | 37.5 | 31.4 | −2.7 |
HA | 30.7 | 29.2 | 38.7 | 32.4 | 34.6 | 15.4 |
SL | 28.2 | 27.0 | 24.5 | 31.9 | 17.2 | 12.6 |
IL | 12.3 | 10.6 | 12.1 | 36.4 | 10.1 | −3.4 |
YE | 25.6 | 24.8 | 25.0 | 34.7 | 33.3 | 8.6 |
HL | 63.3 | 64.9 | 77.7 | 67.4 | 32.1 | 34.4 |
National | 39.6 | 37.7 | 45.6 | 43.5 | 27.4 | 17.9 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Shindell, D.; Faluvegi, G.; Lacis, A.; Hansen, J.; Ruedy, R.; Aguilar, E. Role of tropospheric ozone increases in 20th century climate change. J. Geophys. Res. 2006, 111. Article D08302. [Google Scholar]
- Rosegrant, M.W.; Cai, X.; Cline, S.A. World Water and Food to 2025: Dealing With Scarcity; International Food Policy Research Institute: Washington, DC, USA, 2002. [Google Scholar]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Zhang, F.; Wang, Z.; Li, X.; Zhang, T. An extended input output table compiled for analyzing water demand and consumption at county level in China. Sustainability 2014, 6, 3301–3320. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). China Statistical Yearbooks (2007); China Statistics Press: Beijing, China, 2008.
- Yang, H.; Zhang, X.H.; Zehnder, J.B. Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture. Agric. Water Manag. 2003, 61, 143–161. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). China Statistical Yearbooks (2010); China Statistics Press: Beijing, China, 2011.
- Calzadilla, A.; Rehdanz, K.; Tol, R.S. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis. J. Hydrol. 2010, 384, 292–305. [Google Scholar] [CrossRef]
- Dixon, P.; Parmenter, B.; Sutton, J.; Vincent, D. ORANI: A Multisectoral Model of the Australian Economy; North-Holland Publishing Company: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Berrittella, M.; Rehdanz, K.; Tol, R.S.; Zhang, J. The impact of trade liberalization on water use: A computable general equilibrium analysis. J. Econ. Integr. 2008, 23, 631–655. [Google Scholar] [CrossRef]
- Seung, C.K.; Harris, T.R.; MacDiarmid, T.R.; Shaw, W.D. Economic impacts of water reallocation: A CGE analysis for the Walker River Basin of Nevada and California. J. Region. Anal. Pol. 1998, 28, 13–34. [Google Scholar]
- Decaluwe, B.; Patry, A.; Savard, L. When Water is No Longer Heaven Sent: Comparative Pricing Analysis in an AGE Model; Working Paper 9908, CRE´FA 99–05; De´partment d’e´conomique, Universite´ Laval: Québec, QC, Canada, 1999. [Google Scholar]
- Letsoalo, A.; Blignaut, J.; de Wet, T.; de Wit, M.; Hess, S.; Tol, R.S.J.; van Heerden, J. Triple dividends of water consumption charges in South Africa. Water Resour. Res. 2007, 43. Article W05412. [Google Scholar]
- Watson, P.S.; Davies, S. Modeling the effects of population growth on water resources: A CGE analysis of the South Platte River Basin in Colorado. Ann. Region. Sci. 2011, 46, 331–348. [Google Scholar] [CrossRef]
- Wittwer, G. (Ed.) Economic Modeling of Water: The Australian CGE Experience; Springer: New York, NY, USA, 2012.
- Berrittella, M.; Rehdanz, K.; Tol, R.S. The economic impact of the South-North Water Transfer Project in China: A computable general equilibrium analysis. Available online: http://dx.doi.org/10.2139/ssrn.952938 (accessed on 15 March 2014).
- Horridge, M.; Madden, J.; Wittwer, G. Using a highly disaggregated multi-regional single-country model to analyse the impacts of the 2002–2003 drought on Australia. J. Pol. Model. 2005, 27, 285–308. [Google Scholar] [CrossRef]
- Peterson, D.; Dwyer, G.; Appels, J.; Fry, J. Water trade in the southern Murray-Darling basin. Econ. Rec. 2005, 81 (Suppl. S1), S115–S127. [Google Scholar] [CrossRef]
- Wittwer, G.; Griffith, M. Modeling drought and recovery in the southern Murray-Darling Basin. Aust. J. Agric. Resour. Econ. 2011, 55, 342–359. [Google Scholar] [CrossRef]
- Ejaz Qureshi, M.; Proctor, W.; Young, M.D.; Wittwer, G. The economic impact of increased water demand in Australia: A computable general equilibrium analysis. Econ. Pap. J. Appl. Econ. Pol. 2012, 31, 87–102. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K. A new and integrated hydro-economic accounting and analytical framework for water resources: A case study for North China. J. Environ. Manag. 2008, 88, 1300–1313. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Wang, D.; Wang, D. Evaluation of economic and hydrologic impacts of unified water flow regulation in the Yellow River Basin. Water Resour. Manag. 2009, 23, 1387–1401. [Google Scholar] [CrossRef]
- Yuan, R.; Zhu, J.; Tao, X.; Mao, C. Application of shadow price method in calculation of water resources theoretical value. J. Nat. Resour. 2002, 17, 757–761. [Google Scholar]
- Feng, S.; Li, L.; Duan, Z.; Zhang, J. Assessing the impacts of South-to-North Water Transfer Project with decision support systems. Decis. Support Syst. 2007, 42, 1989–2003. [Google Scholar] [CrossRef]
- Horridge, M.; Wittwer, G. SinoTERM, a multi-regional CGE model of China. China Econ. Rev. 2008, 19, 628–634. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, S. Evaluating and predicting shadow prices of water resources in China and its nine major river basins. Water Resour. Manag. 2009, 23, 1467–1478. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospect: The 2011 Revision; United Nations: New York, NY, USA, 2012. [Google Scholar]
- Dixon, P.; Rimmer, M. Dynamic general equilibrium modelling for forecasting and policy: A practical guide and documentation of MONASH. In Contributions to Economic Analysis; Blundell, R., Caballero, R., Laffont, J.J., Persson, T., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Hassan, R.; Thurlow, J. Macro-micro feedback links of water management in South Africa: CGE analyses of selected policy regimes. Agric. Econ. 2011, 42, 235–247. [Google Scholar] [CrossRef]
- Domene, E.; Saurí, D. Urbanisation and water consumption: Influencing factors in the metropolitan region of Barcelona. Urban Stud. 2006, 43, 1605–1623. [Google Scholar] [CrossRef]
- Pingali, P. Westernization of Asian diets and the transformation of food systems: Implications for research and policy. Food Pol. 2007, 32, 281–298. [Google Scholar] [CrossRef]
- Popkin, B.M. Urbanization, lifestyle changes and the nutrition transition. World Dev. 1999, 27, 1905–1916. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Wu, F.; Liu, Y.; Deng, X. Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis. Sustainability 2014, 6, 7586-7600. https://doi.org/10.3390/su6117586
Jiang L, Wu F, Liu Y, Deng X. Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis. Sustainability. 2014; 6(11):7586-7600. https://doi.org/10.3390/su6117586
Chicago/Turabian StyleJiang, Li, Feng Wu, Yu Liu, and Xiangzheng Deng. 2014. "Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis" Sustainability 6, no. 11: 7586-7600. https://doi.org/10.3390/su6117586