Visions of Sustainability in Bioeconomy Research
Abstract
:1. Introduction
2. Methodology
2.1. Selecting Research Questions, Search Terms and Databases
2.2. Application of Screening Criteria
2.3. Reviewing Process
3. Results
Reference | Journal | Research domain | Category |
---|---|---|---|
Alvarenga et al. [19] | Ecological Indicators | Resources | II |
Arancibia [20] | Technology in Society | Social | IV |
Barney et al. [21] | Biomass and Bioenergy | Resources | IV |
Bartolini et al. [22] | Energy Policy | Policies | IV |
Becker et al. [23] | Energy Policy | Resources | II |
Benning et al. [24] | The Plant Journal | Resources | II |
Bergmann et al. [25] | Renewable and Sustainable Energy Reviews | Resources | I |
Binder et al. [26] | Energy and Environmental Science | Processing and Technology | II |
Boehlje et al. [27] | International Food and Agribusiness Management Review | Economics | II |
Bramsiepe et al. [28] | Chemical Engineering and Processing | Processing and Technology | II |
Brehmer et al. [29] | Biofuels, Bioproducts and Biorefining | Resources | II |
Brehmer et al. [30] | Biomass and Bioenergy | Resources | II |
Bruins et al. [31] | Biofuels, Bioproducts and Biorefining | Processing and Technology | I |
Brunori [32] | EuroChoices | Policies | III |
Centi et al. [33] | Catalysis Today | Processing and Technology | II |
Charlton et al. [34] | Chemical Engineering Research and Design | Processing and Technology | II |
Chen [35] | Chinese Journal of Biotechnology | Processing and Technology | I |
Chisti [4] | Biofuels, Bioproducts and Biorefining | Environmental impact | II |
Cichocka et al. [36] | Journal of Biotechnology | Research and Development | I |
De Jong et al. [37] | Biofuels, Bioproducts and Biorefining | Processing and Technology | II |
De Meester et al. [5] | Biofuels, Bioproducts and Biorefining | Environmental impact | II |
Dubois [38] | Current Opinion in Environmental Sustainability | Resources | II |
Dusselier et al. [39] | Energy and Environmental Science | Processing and Technology | II |
Ferdinands et al. [40] | Current Opinion in Environmental Sustainability | Resources | IV |
FitzPatrick et al. [41] | Bioresource Technology | Processing and Technology | II |
Galvez et al. [42] | Agriculture, Ecosystems & Environment | Environmental impact | II |
Hardy [43] | Trends in New Crops and New Uses | Policies | I |
Hatti-Kaul [44] | Crop Science | Processing and Technology | II |
Hoefnagels et al. [45] | Energy Policy | Economics | II |
Huang [46] | Botanical Journal of the Linnean Society | Environmental impact | II |
Jenkins [47] | Biofuels, Bioproducts and Biorefining | Processing and Technology | I |
Jordan et al. [48] | Science | Resources | II |
Junginger et al. [49] | Biomass and Bioenergy | Economics | II |
Keegan et al. [50] | Biofuels, Bioproducts and Biorefining | Processing and Technology | II |
Keijsers et al. [51] | Carbohydrate Polymers | Resources | II |
Kgathi et al. [52] | Energy Policy | Social | II |
Kircher [53] | Biofuels, Bioproducts and Biorefining | Policies | II |
Kitchen et al. [54] | Local Environment | Social | IV |
Krigsten et al. [55] | The Forestry Chronicle | Resources | II |
Landeweerd et al. [56] | Interface Focus | Resources | III |
Langeveld et al. [57] | Crop Science | Research and Development | III |
Lehtonen et al. [58] | Environment, Development and Sustainability | Economics | II |
Levidow et al. [59] | Science, Technology & Human Values | Research and Development | IV |
Liu [60] | Biotechnology Advances | Processing and Technology | II |
Liu et al. [61] | Biotechnology Advances | Processing and Technology | II |
Lorenz et al. [62] | Trends in Biotechnology | Processing and Technology | II |
Marsden [63] | Sustainability Science | Social | IV |
Mathews [64] | Biofuels, Bioproducts and Biorefining | Policies | II |
Mathews [65] | Biofuels, Bioproducts and Biorefining | Resources | II |
Müller et al. [66] | Journal of Biotechnology | Processing and Technology | II |
Murray et al. [67] | New Biotechnology | Resources | II |
Navia et al. [68] | Waste Management & Research | Processing and Technology | I |
Nuss et al. [69] | The International Journal of Life Cycle Assessment | Processing and Technology | III |
Osseweijer et al. [70] | Genomics, Society and Policy | Social | II |
Paula et al. [71] | Journal of Agricultural and Environmental Ethics | Social | III |
Ponte [72] | Science as Culture | Social | IV |
Preisig et al. [73] | Energy Procedia | Research and Development | II |
Puddister et al. [74] | The Forestry Chronicle | Resources | II |
Raghu et al. [75] | Current Opinion in Environmental Sustainability | Environmental impact | II |
Richardson [76] | Environment and Planning C: Government and Policy | Policies | IV |
Rossi et al. [77] | Biomass and Bioenergy | Social | IV |
Rüsch gen. Klaas et al. [78] | ChemSusChem | Processing and Technology | II |
Sanders et al. [79] | Energies | Economics | II |
Schmid et al. [80] | Bio-based and Applied Economics | Social | III |
Sheppard et al. [81] | Current Opinion in Environmental Sustainability | Environmental impact | IV |
Sheppard et al. [82] | Current Opinion in Environmental Sustainability | Environmental impact | III |
Sheppard et al. [83] | Current Opinion in Environmental Sustainability | Environmental impact | IV |
Smyth et al. [84] | AgBioForum | Social | II |
Smyth et al. [85] | AgBioForum | Social | II |
Spiertz [86] | European Journal of Agronomy | Resources | II |
Sultana [87] | Biomass and Bioenergy | Resources | II |
Tanksale et al. [88] | Renewable and Sustainable Energy Reviews | Processing and Technology | I |
Templer et al. [89] | Interface Focus | Research and Development | III |
Ten Bos et al. [90] | Carbohydrate Polymers | Research and Development | III |
Tsiropoulos et al. [91] | Journal of Cleaner Production | Processing and Technology | I |
Vaaje-Kolstad et al. [92] | Science | Processing and Technology | II |
Van Dam et al. [93] | Industrial Crops and Products | Resources | II |
Vaneeckhaute et al. [94] | Water, Air, & Soil Pollution | Processing and Technology | II |
Vaneeckhaute et al. [95] | Biomass and Bioenergy | Environmental impact | I |
Vaneeckhaute et al. [96] | Biomass and Bioenergy | Environmental impact | II |
Vanholme et al. [97] | Frontiers in plant science | Processing and Technology | II |
Vitasari et al. [98] | Bioresource Technology | Processing and Technology | II |
Voll et al. [99] | Biofuels, Bioproducts and Biorefining | Processing and Technology | III |
Wellisch et al. [6] | Biofuels, Bioproducts and Biorefining | Environmental impact | II |
Wesseler et al. [100] | AgBioForum | Environmental impact | II |
Zhang et al. [101] | Current Opinion in Chemical Engineering | Processing and Technology | I |
Zilbermann et al. [102] | AgBioForum | Processing and Technology | I |
3.1. Bibliographic Analysis
3.2. Sustainability and the Bioeconomy
Contribution/Condition/Problem | Number of papers | ||||
---|---|---|---|---|---|
Σ | I | II | III | IV | |
Contribution | |||||
Reduction of greenhouse gas emissions | 21 | 3 | 18 | - | - |
Sustainable production of commodities | 18 | 6 | 12 | - | - |
General contribution | 14 | 2 | 12 | - | - |
Sustainable society | 9 | - | 9 | - | - |
Reduction of negative environmental impact | 7 | 3 | 4 | - | - |
Sustainable use of resources | 7 | - | 7 | - | - |
Sustainable fertilizers | 5 | 1 | 4 | - | - |
Sustainable energy | 4 | 1 | 3 | - | - |
Biodiversity | 3 | 1 | 2 | - | - |
Social equity | 3 | - | 3 | - | - |
Possible contribution | 10 | - | - | 10 | - |
Condition | |||||
Sustainable biomass production | 18 | - | 14 | 4 | - |
Assessment of production chains and impact | 13 | - | 11 | 1 | 1 |
Efficient use of biomass resources: all components and by-products | 13 | - | 12 | 1 | - |
Assessment of sustainability or application of criteria | 12 | - | 10 | 1 | 1 |
Sustainability central element in bioeconomy | 12 | - | 7 | 5 | - |
Efficient use of biomass resources: best application of resources | 11 | - | 8 | 3 | - |
Sustainable production chains | 10 | - | 9 | 1 | - |
Research and Development: innovative products | 10 | - | 8 | 2 | - |
Efficient land use | 7 | - | 5 | 1 | 1 |
Public participation | 6 | - | 3 | 2 | 1 |
Assessment of best biomass sources | 5 | - | 5 | - | - |
Assessment of efficient biomass use | 5 | - | 5 | - | - |
Improved agricultural practices | 5 | - | 4 | 1 | - |
Research and Development: sustainability of bioeconomy | 5 | - | 4 | 1 | - |
Assessment and management of invasion risks and effects | 4 | - | - | 1 | 3 |
Regulation: sustainability standards for resources | 4 | - | 4 | - | - |
Assessment of policy impact | 3 | - | 1 | - | 2 |
Biodiversity conservation | 3 | - | 2 | - | 1 |
Incentives: sustainable land use | 3 | - | 3 | - | - |
International cooperation | 3 | - | 1 | 1 | 1 |
Reduction of greenhouse gas emissions | 3 | - | - | 2 | 1 |
Sustainable land use | 3 | - | 2 | - | 1 |
Assessment of biomass availability | 2 | - | 2 | - | - |
Assessment of land use efficiency | 2 | - | 2 | - | - |
Incentives: industrial application of biomass | 2 | - | 2 | - | - |
Socially responsible biomass production | 2 | - | - | 2 | - |
Sustainable forest management | 2 | - | 2 | - | - |
Problem | |||||
Competition for land | 24 | - | 14 | 6 | 4 |
Competition for resources | 21 | - | 15 | 3 | 3 |
Reduction of emissions unclear | 16 | - | 11 | 3 | 2 |
Contribution to sustainable development questionable | 13 | - | 3 | 2 | 8 |
Negative impacts on water systems | 13 | - | 8 | 3 | 2 |
Negative impacts on the environment | 12 | - | 7 | 3 | 2 |
Negative impacts on soils | 10 | - | 7 | 2 | 1 |
Negative impacts on habitats and biodiversity | 9 | - | 6 | 2 | 1 |
Risks posed by invasive species | 7 | - | 1 | 2 | 4 |
Agricultural intensification | 6 | - | 3 | 1 | 2 |
Social concerns | 5 | - | 2 | 1 | 2 |
Risks posed by new techniques and unknown long term effects | 5 | - | 2 | - | 3 |
Economic feasibility | 4 | - | 2 | - | 2 |
Health risks | 2 | - | - | 1 | 1 |
3.2.1. Category I: Sustainability as an Inherent Characteristic
3.2.2. Category II: Conditional Benefits
3.2.3. Category III: Tentative Criticism
3.2.4. Category IV: Negative Impact
3.2.5. Research Domains and Sustainability
3.3. Strategies for the Bioeconomy
3.3.1. Drivers of the Bioeconomy
3.3.2. Food Security, Marginal Land Use and Residual Biomass
3.3.3. Regional Scale
3.3.4. Integrated Approach
4. Discussion
4.1. The Undefined Position of Sustainability in Current Research
4.2. The Hegemony of Optimism
4.3. Conditions for a Sustainable Bioeconomy
4.4. Sustainability from Side to Central Issue
4.5. Decentralized Organization Fits Sustainability
4.6. Food vs. Fuel in the Short and Long Run
4.7. The Plus of Trans-Disciplinarity
4.8. Feasibility and Impact
4.9. Elaborating Sustainability
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Organization for Economic Cooperation and Development (OECD). The Bioeconomy to 2030: Designing a Policy Agenda; OECD Publishing: Paris, France, 2009. [Google Scholar]
- Bio-Economy Technology Platforms (BECOTEPS). White Paper “The European Bioeconomy in 2030—Delivering Sustainable Growth by Addressing the Grand Societal Challanges”; BECOTEPS: Brussels, Belgium, 2011. [Google Scholar]
- Chisti, Y. A bioeconomy vision of sustainability. Biofuel. Bioprod. Bior. 2010, 4, 359–361. [Google Scholar] [CrossRef]
- De Meester, S.; Callewaert, C.; de Mol, E.; van Langenhove, H.; Dewulf, J. The resource footprint of biobased products: A key issue in the sustainable development of biorefineries. Biofuel. Bioprod. Bior. 2011, 5, 570–580. [Google Scholar] [CrossRef]
- Wellisch, M.; Jungmeier, G.; Karbowski, A.; Patel, M.K.; Rogulska, M. Biorefinery systems—Potential contributors to sustainable innovation. Biofuel. Bioprod. Bior. 2010, 4, 275–286. [Google Scholar] [CrossRef]
- Birch, K.; Levidow, L.; Papaioannou, T. Sustainable capital? The neoliberalization of nature and knowledge in the European “knowledge-based bio-economy”. Sustainability 2010, 2, 2898–2918. [Google Scholar] [CrossRef] [Green Version]
- McCormick, K.; Kautto, N. The Bioeconomy in Europe: An overview. Sustainability 2013, 5, 2589–2608. [Google Scholar] [CrossRef]
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef]
- Fink, A. Conducting Research Literature Reviews, 3rd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010; p. 272. [Google Scholar]
- Stechemesser, K.; Guenther, E. Carbon accounting: A systematic literature review. J. Clean. Prod. 2012, 36, 17–38. [Google Scholar] [CrossRef]
- Tress, G.; Tress, B.; Fry, G. Clarifying integrative research concepts in landscape ecology. Landsc. Ecol. 2004, 20, 479–493. [Google Scholar] [CrossRef]
- Web of Science. Available online: http://www.thomsonreuters.com/web-of-science (accessed on 23 January 2014).
- Scirus. Available online: http://www.scirus.com (accessed on 23 January 2014).
- ScienceDirect. Available online: http://www.sciencedirect.com (accessed on 23 January 2014).
- EconLit. Available online: http://www.aeaweb.org/econlit (accessed on 23 January 2014).
- IBSS. Available online: http://search.proquest.com/ibss (accessed on 23 January 2014).
- ATLAS.ti. Available online: http://www.atlasti.com/index.html (accessed on 23 January 2014).
- Alvarenga, R.A.F.; Dewulf, J.; van Langenhove, H. A new natural resource balance indicator for terrestrial biomass production systems. Ecol. Indicat. 2013, 32, 140–146. [Google Scholar] [CrossRef]
- Arancibia, F. Challenging the bioeconomy: The dynamics of collective action in Argentina. Technol. Soc. 2013, 35, 79–92. [Google Scholar] [CrossRef]
- Barney, J.N.; Mann, J.J.; Kyser, G.B.; DiTomaso, J.M. Assessing habitat susceptibility and resistance to invasion by the bioenergy crops switchgrass and Miscanthus × giganteus in California. Biomass Bioenergy 2012, 40, 143–154. [Google Scholar] [CrossRef]
- Bartolini, F.; Viaggi, D. An analysis of policy scenario effects on the adoption of energy production on the farm: A case study in Emilia-Romagna (Italy). Energy Policy 2012, 51, 454–464. [Google Scholar] [CrossRef]
- Becker, D.R.; Skog, K.; Hellman, A.; Halvorsen, K.E.; Mace, T. An outlook for sustainable forest bioenergy production in the Lake States. Energy Policy 2009, 37, 5687–5693. [Google Scholar] [CrossRef]
- Benning, C.; Pichersky, E. Harnessing plant biomass for biofuels and biomaterials. Plant J. 2008, 54, 533–535. [Google Scholar] [CrossRef]
- Bergmann, J.C.; Tupinambá, D.D.; Costa, O.Y.A.; Almeida, J.R.M.; Barreto, C.C.; Quirino, B.F. Biodiesel production in Brazil and alternative biomass feedstocks. Renew. Sustain. Energy Rev. 2013, 21, 411–420. [Google Scholar]
- Binder, J.B.; Cefali, A.V.; Blank, J.J.; Raines, R.T. Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy Environ. Sci. 2010, 3, 765–771. [Google Scholar] [CrossRef]
- Boehlje, M.; Bröring, S. The increasing multifunctionality of agricultural raw materials: Three dilemmas for innovation and adoption. Int. Food Agribus. Manag. Rev. 2011, 14, 1–16. [Google Scholar]
- Bramsiepe, C.; Sievers, S.; Seifert, T.; Stefanidis, G.D.; Vlachos, D.G.; Schnitzer, H.; Muster, B.; Brunner, C.; Sanders, J.P.M.; Bruins, M.E.; et al. Low-cost small scale processing technologies for production applications in various environments—Mass produced factories. Chem. Eng. Process. 2012, 51, 32–52. [Google Scholar] [CrossRef]
- Brehmer, B.; Struik, P.C.; Sanders, J. Using an energetic and exergetic life cycle analysis to assess the best applications of legumes within a biobased economy. Biomass Bioenergy 2008, 32, 1175–1186. [Google Scholar] [CrossRef]
- Brehmer, B.; Sanders, J. Assessing the current Brazilian sugarcane industry and directing developments for maximum fossil fuel mitigation for the international petrochemical market. Biofuel. Bioprod. Bior. 2009, 3, 347–360. [Google Scholar]
- Bruins, M.E.; Sanders, J.P.M. Small-scale processing of biomass for biorefinery. Biofuel. Bioprod. Bior. 2012, 6, 135–145. [Google Scholar] [CrossRef]
- Brunori, G. Biomass, biovalue and sustainability: Some thoughts on the definition of the bioeconomy. EuroChoices 2013, 12, 48–52. [Google Scholar] [CrossRef]
- Centi, G.; Lanzafame, P.; Perathoner, S. Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal. Today 2011, 167, 14–30. [Google Scholar] [CrossRef]
- Charlton, A.; Elias, R.; Fish, S.; Fowler, P.; Gallagher, J. The biorefining opportunities in Wales: Understanding the scope for building a sustainable, biorenewable economy using plant biomass. Chem. Eng. Res. Des. 2009, 87, 1147–1161. [Google Scholar] [CrossRef]
- Chen, S. Industrial biosystems engineering and biorefinery systems. Chin. J. Biotechnol. 2008, 24, 940–945. [Google Scholar] [CrossRef]
- Cichocka, D.; Claxton, J.; Economidis, I.; Högel, J.; Venturi, P.; Aguilar, A. European Union research and innovation perspectives on biotechnology. J. Biotechnol. 2011, 156, 382–391. [Google Scholar] [CrossRef]
- De Jong, E.; Higson, A.; Walsh, P.; Wellisch, M. Product developments in the bio-based chemicals arena. Biofuel. Bioprod. Bior. 2012, 6, 606–624. [Google Scholar]
- Dubois, J.-L. Requirements for the development of a bioeconomy for chemicals. Curr. Opin. Environ. Sustain. 2011, 3, 11–14. [Google Scholar] [CrossRef]
- Dusselier, M.; van Wouwe, P.; Dewaele, A.; Makshina, E.; Sels, B.F. Lactic acid as a platform chemical in the biobased economy: The role of chemocatalysis. Energy Environ. Sci. 2013, 6, 1415–1442. [Google Scholar] [CrossRef]
- Ferdinands, K.; Virtue, J.; Johnson, S.B.; Setterfield, S.A. “Bio-insecurities”: Managing demand for potentially invasive plants in the bioeconomy. Curr. Opin. Environ. Sustain. 2011, 3, 43–49. [Google Scholar] [CrossRef]
- FitzPatrick, M.; Champagne, P.; Cunningham, M.F.; Whitney, R.A. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 2010, 101, 8915–8922. [Google Scholar] [CrossRef]
- Galvez, A.; Sinicco, T.; Cayuela, M.L.; Mingorance, M.D.; Fornasier, F.; Mondini, C. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric. Ecosyst. Environ. 2012, 160, 3–14. [Google Scholar] [CrossRef]
- Hardy, R.W.F. The Bio-based Economy; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002; pp. 11–16. [Google Scholar]
- Hatti-Kaul, R. Biorefineries—A path to sustainability? Crop Sci. 2010, 50, S152–S156. [Google Scholar] [CrossRef]
- Hoefnagels, R.; Banse, M.; Dornburg, V.; Faaij, A. Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands. Energy Policy 2013, 59, 727–744. [Google Scholar] [CrossRef]
- Huang, H. Plant diversity and conservation in China: Planning a strategic bioresource for a sustainable future. Bot. J. Linn. Soc. 2011, 166, 282–300. [Google Scholar] [CrossRef]
- Jenkins, T. Toward a biobased economy: Examples from the UK. Biofuel. Bioprod. Bior. 2008, 2, 133–143. [Google Scholar] [CrossRef]
- Jordan, N.; Boody, G.; Broussard, W.; Glover, J.D.; Keeney, D.; McCown, B.H.; McIsaac, G.; Muller, M.; Murray, H.; Neal, J.; et al. Sustainable development of the agricultural bio-economy. Science 2007, 316, 1570–1571. [Google Scholar] [CrossRef]
- Junginger, M.; Bolkesjø, T.; Bradley, D.; Dolzan, P.; Faaij, A.; Heinimö, J.; Hektor, B.; Leistad, Ø.; Ling, E.; Perry, M.; et al. Developments in international bioenergy trade. Biomass Bioenergy 2008, 32, 717–729. [Google Scholar] [CrossRef]
- Keegan, D.; Kretschmer, B.; Elbersen, B.; Panoutsou, C. Cascading use: A systematic approach to biomass beyond the energy sector. Biofuel. Bioprod. Bior. 2013, 7, 193–206. [Google Scholar] [CrossRef]
- Keijsers, E.R.P.; Yılmaz, G.; van Dam, J.E.G. The cellulose resource matrix. Carbohydr. Polymer. 2013, 93, 9–21. [Google Scholar] [CrossRef]
- Kgathi, D.L.; Mfundisi, K.B.; Mmopelwa, G.; Mosepele, K. Potential impacts of biofuel development on food security in Botswana: A contribution to energy policy. Energy Policy 2012, 43, 70–79. [Google Scholar] [CrossRef]
- Kircher, M. The transition to a bio-economy: National perspectives. Biofuel. Bioprod. Bior. 2012, 6, 240–245. [Google Scholar] [CrossRef]
- Kitchen, L.; Marsden, T. Constructing sustainable communities: A theoretical exploration of the bio-economy and eco-economy paradigms. Local Environ. 2011, 16, 753–769. [Google Scholar] [CrossRef]
- Krigstin, S.; Hayashi, K.; Tchórzewski, J.; Wetzel, S. Current inventory and modelling of sawmill residues in Eastern Canada. Forest. Chron. 2012, 88, 626–635. [Google Scholar] [CrossRef]
- Landeweerd, L.; Surette, M.; van Driel, C. From petrochemistry to biotech: A European perspective on the bio-based economy. Interface Focus 2011, 1, 189–195. [Google Scholar] [CrossRef]
- Langeveld, J.W.A.; Dixon, J.; Jaworski, J.F. Development perspectives of the biobased economy: A review. Crop Sci. 2010, 50, S-142–S-151. [Google Scholar]
- Lehtonen, O.; Okkonen, L. Regional socio-economic impacts of decentralised bioeconomy: A case of Suutela wooden village, Finland. Environ. Dev. Sustain. 2013, 15, 245–256. [Google Scholar] [CrossRef]
- Levidow, L.; Birch, K.; Papaioannou, T. Divergent paradigms of European agro-food innovation: The knowledge-based bio-economy (KBBE) as an R&D agenda. Sci. Technol. Human Values 2012, 38, 94–125. [Google Scholar] [CrossRef]
- Liu, S. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnol. Adv. 2010, 28, 563–582. [Google Scholar] [CrossRef]
- Liu, S.; Lu, H.; Hu, R.; Shupe, A.; Lin, L.; Liang, B. A sustainable woody biomass biorefinery. Biotechnol. Adv. 2012, 30, 785–810. [Google Scholar] [CrossRef]
- Lorenz, P.; Zinke, H. White biotechnology: Differences in US and EU approaches? Trends Biotechnol. 2005, 23, 570–574. [Google Scholar] [CrossRef]
- Marsden, T. Sustainable place-making for sustainability science: The contested case of agri-food and urban—Rural relations. Sustain. Sci. 2013, 8, 213–226. [Google Scholar] [CrossRef]
- Mathews, J.A. Biofuels, climate change and industrial development: Can the tropical South build 2000 biorefineries in the next decade? Biofuel. Bioprod. Bior. 2008, 2, 103–125. [Google Scholar] [CrossRef]
- Mathews, J.A. From the petroeconomy to the bioeconomy: Integrating bioenergy production with agricultural demands. Biofuel. Bioprod. Bior. 2009, 3, 613–632. [Google Scholar] [CrossRef]
- Müller, M.M.; Kügler, J.H.; Henkel, M.; Gerlitzki, M.; Hörmann, B.; Pöhnlein, M.; Syldatk, C.; Hausmann, R. Rhamnolipids—Next generation surfactants? J. Biotechnol. 2012, 162, 366–380. [Google Scholar] [CrossRef]
- Murray, P.M.; Moane, S.; Collins, C.; Beletskaya, T.; Thomas, O.P.; Duarte, A.W.F.; Nobre, F.S.; Owoyemi, I.O.; Pagnocca, F.C.; Sette, L.D.; et al. Sustainable production of biologically active molecules of marine based origin. New Biotechnol. 2013, 30, 839–850. [Google Scholar] [CrossRef]
- Navia, R.; Mohanty, A.K. Resources and waste management in a bio-based economy. Waste Manag. Res. 2012, 30, 215–216. [Google Scholar] [CrossRef]
- Nuss, P.; Gardner, K.H. Attributional life cycle assessment (ALCA) of polyitaconic acid production from northeast US softwood biomass. Int. J. Life Cycle Ass. 2013, 18, 603–612. [Google Scholar] [CrossRef]
- Osseweijer, P.; Landeweerd, L.; Pierce, R. Genomics in Industry: Issues of a bio-based economy. Genomics Soc. Policy 2010, 6, 26–39. [Google Scholar] [CrossRef]
- Paula, L.; Birrer, F. Including public perspectives in industrial biotechnology and the biobased economy. J. Agric. Environ. Ethics 2006, 19, 253–267. [Google Scholar] [CrossRef]
- Ponte, S. From fishery to fork: Food safety and sustainability in the “virtual” knowledge-based bio-economy (KBBE). Sci. Cult. 2009, 18, 483–495. [Google Scholar] [CrossRef]
- Preisig, H.A.; Wittgens, B. Thinking towards synergistic green refineries. Energy Procedia 2012, 20, 59–67. [Google Scholar] [CrossRef]
- Puddister, D.; Dominy, S.W.J.; Baker, J.A.; Morris, D.M.; Maure, J.; Rice, J.A.; Jones, T.A.; Majumdar, I.; Hazlett, P.W.; Titus, B.D.; et al. Opportunities and challenges for Ontarioʼs forest bioeconomy. Forest. Chron. 2011, 87, 468–477. [Google Scholar] [CrossRef]
- Raghu, S.; Spencer, J.L.; Davis, A.S.; Wiedenmann, R.N. Ecological considerations in the sustainable development of terrestrial biofuel crops. Curr. Opin. Environ. Sustain. 2011, 3, 15–23. [Google Scholar] [CrossRef]
- Richardson, B. From a fossil-fuel to a biobased economy: The politics of industrial biotechnology. Environ. Plann. C Govern. Policy 2012, 30, 282–296. [Google Scholar] [CrossRef]
- Rossi, A.M.; Hinrichs, C.C. Hope and skepticism: Farmer and local community views on the socio-economic benefits of agricultural bioenergy. Biomass Bioenergy 2011, 35, 1418–1428. [Google Scholar] [CrossRef]
- Gen Klaas, M.R.; Schöne, H. Direct, high-yield conversions of cellulose into biofuel and platform chemicals-on the way to a sustainable biobased economy. ChemSusChem 2009, 2, 127–128. [Google Scholar] [CrossRef]
- Sanders, J.; van der Hoeven, D. Opportunities for a bio-based economy in the Netherlands. Energies 2008, 1, 105–119. [Google Scholar] [CrossRef]
- Schmid, O.; Padel, S.; Levidow, L. The bio-economy concept and knowledge base in a public goods and farmer perspective. Bio Based Appl. Econ. 2012, 1, 47–63. [Google Scholar]
- Sheppard, A.W.; Gillespie, I.; Hirsch, M.; Begley, C. Biosecurity and sustainability within the growing global bioeconomy. Curr. Opin. Environ. Sustain. 2011, 3, 4–10. [Google Scholar] [CrossRef]
- Sheppard, A.W.; Raghu, S.; Begley, C.; Genovesi, P.; de Barro, P.; Tasker, A.; Roberts, B. Biosecurity as an integral part of the new bioeconomy: A path to a more sustainable future. Curr. Opin. Environ. Sustain. 2011, 3, 105–111. [Google Scholar] [CrossRef]
- Sheppard, A.W.; Raghu, S.; Begley, C.; Richardson, D.M. Biosecurity in the new bioeconomy. Curr. Opin. Environ. Sustain. 2011, 3, 1–3. [Google Scholar] [CrossRef]
- Smyth, S.J.; Falck-Zepeda, J.B.; Gray, R.S.; Nassem, A.; Paarlberg, R.; Phillips, P.W.B.; Pray, C.E.; Savastano, S.; Scandizzo, P.; Scatasta, S.; et al. Policy recommendations from the 13th ICABR conference on the emerging bioeconomy. AgBioForum 2010, 13, 98–103. [Google Scholar]
- Smyth, S.J.; Aerni, P.; Castle, D.; Demont, M.; Falck-Zepeda, J.B.; Paarlberg, R.; Phillips, P.W.B.; Pray, C.E.; Savastano, S.; Wesseler, J.H.H.; et al. Sustainability and the bioeconomy: Synthesis of key themes from the 15th ICABR conference. AgBioForum 2011, 14, 180–186. [Google Scholar]
- Spiertz, H. Avenues to meet food security. The role of agronomy on solving complexity in food production and resource use. Eur. J. Agron. 2012, 43, 1–8. [Google Scholar] [CrossRef]
- Sultana, A.; Kumar, A. Ranking of biomass pellets by integration of economic, environmental and technical factors. Biomass Bioenergy 2012, 39, 344–355. [Google Scholar] [CrossRef]
- Tanksale, A.; Beltramini, J.N.; Lu, G.M. A review of catalytic hydrogen production processes from biomass. Renew. Sustain. Energy Rev. 2010, 14, 166–182. [Google Scholar] [CrossRef]
- Templer, R.; van der Wielen, L. Biorenewables, the bio-based economy and sustainability. Interface Focus 2011, 1, 187–188. [Google Scholar] [CrossRef]
- Ten Bos, R.; van Dam, J.E.G. Sustainability, polysaccharide science, and bio-economy. Carbohydr. Polym. 2013, 93, 3–8. [Google Scholar] [CrossRef]
- Tsiropoulos, I.; Cok, B.; Patel, M.K. Energy and greenhouse gas assessment of European glucose production from corn—A multiple allocation approach for a key ingredient of the bio-based economy. J. Clean. Prod. 2013, 43, 182–190. [Google Scholar] [CrossRef]
- Vaaje-Kolstad, G.; Westereng, B.; Horn, S.J.; Liu, Z.; Zhai, H.; Sørlie, M.; Eijsink, V.G.H. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330, 219–222. [Google Scholar] [CrossRef]
- Van Dam, J.E.G.; de Klerk-Engels, B.; Struik, P.C.; Rabbinge, R. Securing renewable resource supplies for changing market demands in a bio-based economy. Ind. Crop. Prod. 2005, 21, 129–144. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Christiaens, P.; Tack, F.M.G. Fate of macronutrients in water treatment of digestate using vibrating reversed osmosis. Water Air Soil Pollut. 2012, 223, 1593–1603. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Ghekiere, G.; Accoe, F.; Tack, F.M.G. Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: A field experiment. Biomass Bioenergy 2013, 55, 175–189. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef]
- Vanholme, B.; Desmet, T.; Ronsse, F.; Rabaey, K.; van Breusegem, F.; de Mey, M.; Soetaert, W.; Boerjan, W. Towards a carbon-negative sustainable bio-based economy. Front. Plant Sci. 2013, 4, 1–17. [Google Scholar]
- Vitasari, C.R.; Meindersma, G.W.; de Haan, A.B. Water extraction of pyrolysis oil: The first step for the recovery of renewable chemicals. Bioresour. Technol. 2011, 102, 7204–7210. [Google Scholar] [CrossRef]
- Voll, A.; Marquardt, W. Benchmarking of next-generation biofuels from a process perspective. Biofuel. Bioprod. Bior. 2012, 6, 292–301. [Google Scholar] [CrossRef]
- Wesseler, J.; Aerni, P. Sustainability and the bioeconomy. AgBioForum 2011, 14, 94–96. [Google Scholar]
- Zhang, J.; Babtie, A.; Stephanopoulos, G. Metabolic engineering: Enabling technology of a bio-based economy. Curr. Opin. Chem. Eng. 2012, 1, 355–362. [Google Scholar] [CrossRef]
- Zilberman, D.; Kim, E. The lessons of fermentation for the new bio-economy. AgBioForum 2011, 14, 97–103. [Google Scholar]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef]
- Craig, R.K.; Ruhl, J.B. Governing for sustainable coasts: Complexity, climate change, and coastal ecosystem protection. Sustainability 2010, 2, 1361–1388. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pfau, S.F.; Hagens, J.E.; Dankbaar, B.; Smits, A.J.M. Visions of Sustainability in Bioeconomy Research. Sustainability 2014, 6, 1222-1249. https://doi.org/10.3390/su6031222
Pfau SF, Hagens JE, Dankbaar B, Smits AJM. Visions of Sustainability in Bioeconomy Research. Sustainability. 2014; 6(3):1222-1249. https://doi.org/10.3390/su6031222
Chicago/Turabian StylePfau, Swinda F., Janneke E. Hagens, Ben Dankbaar, and Antoine J. M. Smits. 2014. "Visions of Sustainability in Bioeconomy Research" Sustainability 6, no. 3: 1222-1249. https://doi.org/10.3390/su6031222
APA StylePfau, S. F., Hagens, J. E., Dankbaar, B., & Smits, A. J. M. (2014). Visions of Sustainability in Bioeconomy Research. Sustainability, 6(3), 1222-1249. https://doi.org/10.3390/su6031222