Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Data
Dwelling | Thicknesss (m) | Thermal transmittance U (W/m2K) | Surface mass Ms (kg/m2) | Attenuation factor Fd (-) | Phase shift factor ϕ (h) | Periodic thermal transmittance ψ (W/m2K) |
---|---|---|---|---|---|---|
d1 | 0.46 | 0.32 | 346.9 | 0.135 | 13.7 | 0.043 |
d2 | 0.46 | 0.32 | 346.9 | 0.135 | 13.7 | 0.043 |
d3 | 0.46 | 0.32 | 346.9 | 0.135 | 13.7 | 0.043 |
d4 | 0.47 | 0.29 | 330.7 | 0.114 | 14.7 | 0.033 |
d5 | 0.43 | 0.29 | 373.9 | 0.028 | 20.4 | 0.008 |
d6 | 0.53 | 0.26 | 365 | 0.071 | 17.3 | 0.019 |
d7 | 0.5 | 0.28 | 450 | 0.062 | 17.4 | 0.017 |
d8 | 0.43 | 0.39 | 374 | 0.08 | 17.5 | 0.031 |
d9 | 0.43 | 0.39 | 374 | 0.08 | 17.5 | 0.031 |
d10 | 0.43 | 0.44 | 414 | 0.113 | 16.3 | 0.049 |
d11 | 0.45 | 0.43 | 355 | 0.145 | 15 | 0.063 |
d12 | 0.45 | 0.43 | 355 | 0.145 | 15 | 0.063 |
d13 | 0.42 | 0.23 | 300 | 0.077 | 16.5 | 0.018 |
d14 | 0.42 | 0.23 | 300 | 0.077 | 16.5 | 0.018 |
d15 | 0.5 | 0.27 | 312 | 0.102 | 15.4 | 0.028 |
d16 | 0.5 | 0.27 | 312 | 0.102 | 15.4 | 0.028 |
d17 | 0.5 | 0.27 | 312 | 0.102 | 15.4 | 0.028 |
2.2. Artificial Neural Network Pattern
2.3. Input Data
Training parameter | Minimum value | Maximum value | u.m. |
---|---|---|---|
day | 1 | 31 | - |
month | 1 | 12 | - |
f | 0 | 1 | - |
hour | 0 | 23 | h |
Rdifh | 0 | 117.6 | W/m2 |
Rdirh | 0 | 833.5 | W/m2 |
Rgh | 0 | 940.4 | W/m2 |
θ | 0 | 3.9 | rad |
outdoor air temperature | 8 | 44.57 | °C |
s | 0.42 | 0.53 | m |
U | 0.231 | 0.437 | W/m2K |
Ms | 300 | 450 | kg/m2 |
fd | 0.028 | 0.145 | - |
φ | 13.67 | 20.37 | h |
ψ | 0.008 | 0.063 | W/m2K |
Ag | 1.30 | 6.74 | m2 |
Ag/Ao | 0.14 | 0.31 | % |
Uf | 1.9 | 2.2 | W/m2K |
Ug | 1.3 | 2.8 | W/m2K |
Af | 9.19 | 32.08 | m2 |
indoor air temperature | 21.32 | 28.85 | °C |
3. Results
3.1. Training of the Artificial Neural Network
Dwellings | Mean error (°C) | Standard deviation (°C) | ||||
---|---|---|---|---|---|---|
Training | Validation | Test | Training | Validation | Test | |
d1 | −0.034 | 0.164 | −0.010 | ±0.296 | ±0.351 | ±0.437 |
d2 | 0.010 | −0.030 | −0.071 | ±0.094 | ±0.113 | ±0.206 |
d3 | 0.022 | 0.284 | −0.322 | ±0.322 | ±0.421 | ±0.590 |
d4 | −0.056 | 0.064 | 0.004 | ±0.187 | ±0.249 | ±0.431 |
d5 | 0.035 | −0.078 | 0.029 | ±0.192 | ±0.135 | ±0.205 |
d6 | 0.084 | −0.057 | −0.125 | ±0.283 | ±0.210 | ±0.431 |
d7 | 0.063 | −0.139 | −0.199 | ±0.274 | ±0.302 | ±0.305 |
d8 | −0.006 | 0.069 | 0.063 | ±0.229 | ±0.162 | ±0.456 |
d9 | −0.049 | 0.007 | 0.280 | ±0.226 | ±0.241 | ±0.514 |
d10 | −0.049 | 0.366 | −0.151 | ±0.458 | ±0.564 | ±0.410 |
d11 | 0.025 | 0.097 | −0.055 | ±0.420 | ±0.494 | ±0.495 |
d12 | −0.088 | 0.294 | 0.051 | ±0.787 | ±0.276 | ±0.693 |
d14 | 0.054 | 0.063 | −0.153 | ±0.309 | ±0.283 | ±0.409 |
Control parameters | Values |
---|---|
Average error (°C) | 0.007 |
Standard deviation | ±0.387 |
Rtraining | 0.9635 |
Rvalidation | 0.9685 |
Rtest | 0.9511 |
Rglobal | 0.9625 |
3.2. Simulations of Innovative Solution Systems
- DGG: double glazing with granular aerogel in interspace (Ug = 0.91 W/m2K);
- DGM: double glazing with monolithic aerogel in interspace (Ug = 0.63 W/m2K).
Dwellings | Mean temperature (°C) | Standard deviation | ||||
---|---|---|---|---|---|---|
Existing glazing | DGG | DGM | Existing glazing | DGG | DGM | |
d1 | 21.9 | 22.2 | 22.2 | ±0.4 | ±0.3 | ±0.3 |
d2 | 24.3 | 22.8 | 22.7 | ±0.2 | ±0.5 | ±0.5 |
d3 | 25.2 | 24.0 | 23.8 | ±0.5 | ±0.3 | ±0.3 |
d4 | 25.4 | 22.8 | 22.6 | ±0.5 | ±0.3 | ±0.2 |
d5 | 25.1 | 24.1 | 23.8 | ±0.2 | ±0.3 | ±0.4 |
d6 | 24.1 | 22.5 | 22.4 | ±0.5 | ±0.3 | ±0.3 |
d7 | 24.3 | 23.0 | 22.8 | ±0.9 | ±0.6 | ±0.5 |
d8 | 27.2 | 25.4 | 25.1 | ±0.4 | ±0.3 | ±0.3 |
d9 | 24.2 | 22.6 | 22.5 | ±0.9 | ±0.8 | ±0.7 |
d10 | 25.9 | 22.2 | 22.1 | ±1.0 | ±0.6 | ±0.5 |
d11 | 24.2 | 23.4 | 23.0 | ±0.5 | ±0.3 | ±0.3 |
d12 | 23.6 | 23.1 | 22.9 | ±1.2 | ±0.7 | ±0.6 |
d14 | 23.7 | 23.3 | 23.1 | ±0.5 | ±0.3 | ±0.3 |
4. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Energy Performance of Buildings Directive (EPBD). Energy Performance of Buildings Directive 2010/31/CE of the European Parliament and of the Council on the Energy Performance of Buildings; EPBD: Strasbourg, France, 19 May 2010. [Google Scholar]
- Odyssee-Mure. Available online: http://www.odyssee-mure.eu/publications/br/energy-efficiency-trends-in-Europe.html (accessed on 1 January 2013).
- Pisello, A.L.; Cotana, F. The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring. Energ. Buildings 2014, 69, 154–164. [Google Scholar] [CrossRef]
- Rossi, F.; Pisello, A.L.; Nicolini, A.; Filipponi, M.; Palombo, M. Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model. Appl. Energ. 2014, 114, 621–631. [Google Scholar] [CrossRef]
- Pisello, A.L.; Bobker, M.; Cotana, F. A building energy efficiency optimization method by evaluating the effective thermal zones occupancy. Energies 2012, 5, 5257–5278. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Palladino, D. Evolutive Housing System: Refurbishment with new technologies and unsteady simulations of energy performance. Energ. Buildings 2014, 74, 173–181. [Google Scholar] [CrossRef]
- Pandey, S.; Hindoliya, D.A.; Mod, R. Artificial neural networks for predicting indoor temperature using roof passive cooling techniques in buildings in different climatic conditions. Appl. Soft Comput. 2012, 12, 1214–1226. [Google Scholar] [CrossRef]
- Mustafaraj, G.; Chena, J.; Lowry, G. Thermal behaviour prediction utilizing artificial neural networks for an open office. Appl. Math. Model. 2010, 34, 3216–3230. [Google Scholar] [CrossRef]
- Moon, J.W.; Lee, J.H.; Yoon, Y.; Kim, S. Determining optimum control of double skin envelope for indoor thermal environment based on artificial neural network. Energ. Buildings 2014, 69, 175–183. [Google Scholar] [CrossRef]
- Gossard, D.; Lartigue, B.; Thellier, F. Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energ. Buildings 2013, 67, 253–260. [Google Scholar] [CrossRef]
- Magnier, L.; Haghighat, F. Multiobjective optimization of building design using TRNSYS simulations; genetic algorithm; and Artificial Neural Network. Build. Environ. 2010, 45, 739–746. [Google Scholar] [CrossRef]
- Ruano, A.E.; Crispim, E.M.; Conceicao, E.Z.E.; Lucio, M. Prediction of building’s temperature using neural networks models. Energ. Buildings 2006, 38, 682–694. [Google Scholar] [CrossRef]
- Moon, J.W.; Kim, J.J. ANN-based thermal control models for residential buildings. Build. Environ. 2010, 45, 1612–1625. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Ruano, A.E.; Silva, S.; Conceicao, E.Z.E. Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energ. Buildings 2012, 55, 238–251. [Google Scholar] [CrossRef]
- Buratti, C.; Barbanera, M.; Palladino, D. An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks. Appl. Energ. 2014, 120, 125–132. [Google Scholar] [CrossRef]
- Li, K.; Sua, H.; Chua, J. Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study. Energ. Buildings 2011, 43, 2893–2899. [Google Scholar] [CrossRef]
- Ekonomou, L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35, 512–517. [Google Scholar] [CrossRef]
- Tso, G.K.F.; Yau, K.K.W. Predicting electricity energy consumption: A comparison of regression analysis; decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Yokoyama, R.; Wakui, T.; Satake, R. Prediction of energy demands using neural network with model identification by global optimization. Energ. Convers. Manag. 2009, 50, 319–327. [Google Scholar] [CrossRef]
- Kialashaki, A.; Reisel, J.R. Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks. Appl. Energ. 2013, 108, 271–280. [Google Scholar] [CrossRef]
- Geem, Z.W.; Roper, W.E. Energy demand estimation of South Korea using artificial neural network. Energ. Pol. 2009, 37, 4049–4054. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.; Sohrabkhani, S. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energ. Pol. 2008, 36, 2637–2644. [Google Scholar] [CrossRef]
- Neto, H.A.; Fiorelli, F.A.S. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energ. Buildings 2008, 40, 2169–2176. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E. Experimental performance evaluation of aerogel glazing systems. Appl. Energ. 2012, 97, 430–437. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E. Glazing systems with silica aerogel for energy savings in buildings. Appl. Energ. 2012, 98, 396–403. [Google Scholar] [CrossRef]
- Moretti, E.; Zinzi, M.; Belloni, E. Polycarbonate panels for buildings: experimental investigation of thermal and optical performance. Energ. Buildings 2014, 70, 23–35. [Google Scholar] [CrossRef]
- Asdrubali, F.; Buratti, C.; Cotana, F.; Baldinelli, G.; Goretti, M.; Moretti, E.; Baldassarri, C.; Belloni, E.; Bianchi, F.; Rotili, A.; et al. Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations. Energies 2013, 6, 6525–6547. [Google Scholar] [CrossRef]
- Lin, C.T.; Lee, G.C.S. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Demuth, H.B.; Beale, M.H.; Hagan, T.M. Neural Network Toolbox: User’s Guide; MathWorks, Inc.: Natick, MA, USA, 2013. [Google Scholar]
- Dayhoff, J.E. Neural Network Architectures: An Introduction; Van Nostrand Reinhold: New York, NY, USA, 1990. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Buratti, C.; Lascaro, E.; Palladino, D.; Vergoni, M. Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions. Sustainability 2014, 6, 5339-5353. https://doi.org/10.3390/su6085339
Buratti C, Lascaro E, Palladino D, Vergoni M. Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions. Sustainability. 2014; 6(8):5339-5353. https://doi.org/10.3390/su6085339
Chicago/Turabian StyleBuratti, Cinzia, Elisa Lascaro, Domenico Palladino, and Marco Vergoni. 2014. "Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions" Sustainability 6, no. 8: 5339-5353. https://doi.org/10.3390/su6085339
APA StyleBuratti, C., Lascaro, E., Palladino, D., & Vergoni, M. (2014). Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions. Sustainability, 6(8), 5339-5353. https://doi.org/10.3390/su6085339