GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains
Abstract
:1. Introduction
2. Methods and Materials
2.1. The Study System
Parameters | Light Continuous (LC) | Heavy Continuous (HC) | Multi-Paddock (MP) |
---|---|---|---|
Total number of cattle | 750 | 1446 | 1446 |
cows | 299 | 576 | 576 |
1st year heifers | 53 | 102 | 102 |
2nd year heifers | 53 | 102 | 102 |
calves | 332 | 640 | 640 |
bulls | 13 | 26 | 26 |
Typical Animal Mass (TAM) | |||
cows | 500 kg [1.11 AU] | 500 kg | 500 kg |
1st year heifers | 408 kg [0.91 AU] | 408 kg | 408 kg |
2nd year heifers | 487 kg [1.08 AU] | 487 kg | 487 kg |
calves | 130 kg [0.29 AU] | 130 kg | 130 kg |
bulls | 900 kg [2.00 AU] | 900 kg | 900 kg |
Total AUs | 560 | 1080 | 1080 |
Total hectare | 4000 ha | 4000 ha | 4000 ha |
Stocking rate (AU 100 ha−1) | 14 | 27 | 27 |
Pregnancy rate | 90% | 90% | 90% |
Calving rate | 86% | 86% | 86% |
Weaning rate | 82% | 82% | 82% |
Breeding Season | April to August | April to August | April to August |
Birth | Next January to May | Next January to May | Next January to May |
Weaning | Next September to November | Next September to November | Next September to November |
Weaning age | 7 months | 7 months | 7 months |
Supplemental hay | Rarely used, except for severe drought years | Rarely used, except for severe drought years | Rarely used, except for severe drought years |
Supplemental protein (cotton seed meal) | 2 pounds cow−1·day−1 for 120 days | 2 pounds cow−1·day−1 for 120 days | 2 pounds cow−1·day−1 for 120 days |
Energy use | |||
diesel | 6.07 gallons/ha | 6.07 gallons/ha | 6.07 gallons/ha |
gasoline | 0.74 gallons/ha | 0.74 gallons/ha | 0.74 gallons/ha |
LP gas | 1.62 gallons/ha | 1.62 gallons/ha | 1.62 gallons/ha |
electric | 59.24 kWh/ha | 59.24 kWh/ha | 59.24 kWh/ha |
Fertilizer use | |||
N | 0 | 0 | 0 |
P | 0 | 0 | 0 |
2.2. GHG Emissions
2.2.1. Enteric CH4
2.2.2. Manure CH4
2.2.3. Manure N2O
2.2.4. Protein Supplement
2.2.5. Energy Use CO2
2.2.6. GHG Emissions—Sensitivity Analysis
2.3. Carbon Sequestration of Rangeland
2.3.1. Soil Organic Carbon (SOC) Stock
2.3.2. Carbon Sequestration
3. Results and Discussion
3.1. GHG Emissions
GHG Emission (kg·CO2e·calf−1·year−1) | LC | HC | MP Baseline | MP Alternative 1 | MP Alternative 2 | MP Alternative 3 |
---|---|---|---|---|---|---|
Enteric CH4 emission | 6392.45 | 6392.45 | 6392.45 | 3771.23 | 4002.77 | 6022.06 |
Manure CH4 emission | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 | 155.84 |
Manure N2O emission | 1275.71 | 1275.71 | 1275.71 | 1275.71 | 1275.71 | 1275.71 |
Protein Supplement | 195.60 | 195.60 | 195.60 | 195.60 | 195.60 | 195.60 |
Energy Use CO2 | 115.31 | 115.31 | 115.31 | 115.31 | 115.31 | 115.31 |
Total Emission | 8034.90 | 8034.90 | 8034.90 | 5413.69 | 5645.22 | 7664.52 |
Total Emission (kg·CE·calf −1·year−1) | 2189.76 | 2189.76 | 2189.76 | 1476.46 | 1539.61 | 2090.32 |
Total Emission (kg·CE·ha−1·year−1) | 181.75 | 350.52 | 350.52 | 236.23 | 246.34 | 334.45 |
3.2. Carbon Sequestration
GHG Sequestration | LC | HC | MP |
---|---|---|---|
Soil bulk density (Mg·m−3) | |||
0–15 cm | 0.98 a | 1.06 a | 0.91 a |
15–30 cm | 1.13 | 1.22 | 1.05 |
30–60cm | 1.18 | 1.28 | 1.10 |
SOM (%) | |||
0–15 cm | 5.24 a | 3.76 a | 5.72 a |
15–30 cm | 3.55 a | 2.45 a | 4.00 a |
30–60cm | 2.09 a | 1.49 a | 2.48 a |
SOM (Mg·ha−1) | |||
0–15 cm | 77.0 | 59.8 | 78.1 |
15–30 cm | 60.1 | 44.8 | 62.8 |
30–60cm | 74.2 | 57.2 | 81.8 |
SOM (0 to 60 cm, Mg·ha−1) | 211.3 | 161.9 | 222.7 |
SOC (0 to 60 cm, Mg·ha−1) | 122.6 | 93.9 | 129.2 |
C Emission/Sequestration (kg·CE·ha−1·year−1) | 10-Year | 15-Year | 20-Year |
---|---|---|---|
C Sequestration | |||
HC→MP | 3530.0 | 2353.3 | 1765.0 |
HC→LC | 2870.0 | 1913.3 | 1435.0 |
LC→MP | 660.0 | 440.0 | 330.0 |
C Emission | |||
HC→MP | 350.52 | 350.52 | 350.52 |
HC→LC | 181.75 | 181.75 | 181.75 |
LC→MP | 350.52 | 350.52 | 350.52 |
Net C Emission | |||
HC→MP | −3179.5 | −2002.8 | −1414.5 |
HC→LC | −2688.3 | −1731.6 | −1253.3 |
LC→MP | −309.5 | −89.5 | 20.5 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Flachowsky, G.; Kamphues, J. Carbon footprints for food of animal origin: What are the most preferable criteria to measure animal yields? Animal 2012, 2, 108–126. [Google Scholar]
- Janzen, H.H. What place for livestock on a re-greening earth? Anim. Feed Sci. Tech. 2010, 166–167, 783–796. [Google Scholar] [CrossRef]
- Zilverberg, C.J.; Johnson, P.; Weinheimer, J.; Allen, V.G. Energy and carbon costs of selected cow-calf systems. Rangel. Ecol. Manag. 2011, 64, 573–584. [Google Scholar] [CrossRef]
- McBride, W.D.; Mathews, K., Jr. The diverse structure and organization of U.S. beef cow-calf farms. Avaialble online: http://www.ers.usda.gov/publications/eib-economic-information-bulletin/eib73.aspx (accessed on 30 September 2015).
- Delgado, J.A.; Groffman, P.M.; Nearing, M.A.; Goddard, T.; Reicosky, D.; Lal, R.; Kitchen, N.R.; Rice, C.W.; Towery, D.; Salon, P. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 118A–129A. [Google Scholar] [CrossRef]
- Gerrish, J. Management-Intensive Grazing, the Grassroots of Grass Farming; Green Park Press: Ridgeland, MS, USA, 2004. [Google Scholar]
- Stinner, D.H.; Stinner, B.R.; Martsolf, E. Biodiversity as an organizing principle in agroecosystem management: Case studies of holistic resource management practitioners in the USA. Agric. Ecosyst. Environ. 1997, 62, 199–213. [Google Scholar] [CrossRef]
- Teague, R.; Provenza, F.; Kreuter, U.; Steffens, T.; Barnes, M. Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? J. Environ. Manag. 2013, 128, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Teague, W.R.; Kreuter, U.P.; Grant, W.E.; Diaz-Solis, H.; Kothmann, M.M. Economic implications of maintaining rangeland ecosystem health in a semiarid savanna. Ecol. Econ. 2009, 68, 1417–1429. [Google Scholar] [CrossRef]
- Teague, W.R.; Grant, B.; Wang, H. Assessing optimal configurations of multi-paddock grazing strategies in tallgrass prairie using a simulation model. J. Environ. Manag. 2015, 150, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Lupo, C.D.; Clay, D.E.; Benning, J.L.; Stone, J.J. Life-cycle assessment of the beef cattle production system for the Northern Great Plains, USA. J. Environ. Qual. 2014, 42, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Liebig, M.A.; Gross, J.R.; Kronberg, S.L.; Phillips, R.L.; Hanson, J.D. Grazing management contributions to net global warming potential: A long-term evaluation in the Northern Great Plains. J. Environ. Qual. 2010, 39, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Schils, R.L.M.; Olesen, J.E.; del Prado, A.; Soussana, J.F. A review of a farm level modeling approach for mitigating greenhouse gas emissions from ruminant livestock systems. Livest. Sci. 2007, 112, 240–251. [Google Scholar]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Ogino, A.; Orito, H.; Shimada, K.; Hirooka, H. Evaluating environmental impacts of the Japanese beef cow–calf system by the life cycle assessment method. J. Anim. Sci. 2007, 78, 424–432. [Google Scholar] [CrossRef]
- Bagley, C.P.; Carpenter, J.C., Jr.; Feazel, J.I.; Hembry, F.G.; Huffman, D.C.; Koonce, K.L. Influence of calving season and stocking rate on beef cow-calf productivity. J. Anim. Sci. 1987, 64, 687–694. [Google Scholar]
- Arthington, J.D.; Bohlen, P.; Roka, F.M. Effect of Stocking Rate on Measures of Cow-Calf Productivity and Nutrient Load in Surface Water Runoff; University of Florida, IFAS Extension: Gainesville, FL, USA, 2003. [Google Scholar]
- Arthington, J.D.; Roka, F.M.; Mullahey, J.J.; Coleman, S.W.; Muchovej, R.M.; Lollis, L.O.; Hitchcock, D. Integrating ranch forage production, cattle performance, and economics in ranch management systems for southern Florida. Rangel. Ecol. Manag. 2007, 60, 12–18. [Google Scholar] [CrossRef]
- Scaglia, G.; Swecker, W.S., Jr.; Fontenot, J.P.; Fiske, D.; Fike, J.H.; Abaye, A.O.; Peterson, P.R.; Clapham, W.; Hall, J.B. Forage systems for cow-calf production in the Appalachian region. J. Anim. Sci. 2008, 86, 2032–2042. [Google Scholar] [CrossRef] [PubMed]
- Hoveland, C.S.; McCann, M.A.; Hill, N.S. Rotational vs continuous stocking of beef cows and calves on mixed endophyte free tall fescue-bermudagrass pasture. J. Prod. Agric. 1997, 10, 245–250. [Google Scholar] [CrossRef]
- McCann, M.A. Rotational vs. continuous grazing. In Proceedings of the Southeastern Sustainable Animal Waste Workshop; University Georgia: Tifton, GA, USA, 1997; pp. 277–280. [Google Scholar]
- Chestnut, A.B.; Fribourg, H.A.; Onks, D.O.; McLaren, J.B.; Gwinn, K.D.; Mueller, M.A. Performance of cows and calves with continuous or rotational stocking of endophyte-infested tall fescue-clover pastures. J. Prod. Agric. 1992, 5, 405–408. [Google Scholar] [CrossRef]
- Wyatt, W.E.; Venuto, B.C.; Gillespie, J.M.; Blouin, D.C.; Redfearn, D.D. Effects of year-round stocking rates and stocking methods on performance of cow-calf pairs grazing dallisgrass-common bermudagrass pastures overseeded with annual ryegrass. Prof. Anim. Sci. 2012, 28, 417–432. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngata, T., Tanabe, K., Eds.; National Greenhouse Gas Inventories Programme: Hayama, Japan, 2006. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Environmental Protection Agency (EPA). Unit Conversions, Emissions Factors, and Other Reference Data; 2004. Available online: http://www.epa.gov/cpd/pdf/brochure.pdf (accessed on 14 July 2015).
- Westberg, H.; Lamb, B.; Johnson, K.A.; Huyler, M. Inventory of methane emissions from U.S. cattle. J. Geophys. Res. 2001, 106, 633–642. [Google Scholar] [CrossRef]
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2010 EPA 430-R-12-001: Annex 3 Methodological Descriptions for Additional Source or Sink Categories; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- ICF Consulting. Methods for Estimating Greenhouse Gas Emissions from Manure Management. In Proceedings of the Greenhouse Gas Committee, Emission Inventory Improvement Program, U.S. EPA, Washington, DC, USA, September 1999.
- ICF Consulting. Methods for Estimating Greenhouse Gas Emissions from Agricultural Soils. In Proceedings of the Greenhouse Gas Committee, Emission Inventory Improvement Program, U.S. EPA, Washington, DC, USA, September 1999.
- Van Zeist, W.J.; Marinussen, M.; Broekema, R.; Groen, E.; Kool, A.; Dolman, M.; Blonk, H. LCI Data for the Calculation Tool Feedprint for Greenhouse Gas Emissions of Feed Production and Utilization—Crushing Industry; Blonk Consultants: Gouda, The Netherlands, 2012. [Google Scholar]
- Wang, T.; Park, S.C.; Bevers, S.; Teague, R.; Cho, J. Factors affecting cow-calf herd performance and greenhouse gas emissions. J. Agric. Resour. Econ. 2013, 38, 435–456. [Google Scholar]
- S&T Consultants Inc. National Cottonseed Products Association Petition for Renewable Fuel Pathway for Biodiesel Using Cottonseed Oil. Appendix A. Cottonseed Oil LCA Data. 2011. Available online: http://www.cottonseed.com/Whatsnew/Cottonseed%20-%20RFS2%20-%20Petition%20Appendices.pdf (accessed on 14 July 2015).
- National Cattlemen’s Beef Association. 2014 National Cattlemen Statistics. Available online: http://www.beefusa.org/beefindustrystatistics.aspx (accessed on 23 September 2015).
- Ryan, B.; Tiffany, D.G. Minnesota agricultural Energy Use and the Incidence of a Carbon Tax; Institute for Local Self Reliance: Minneapolis, MN, USA, 1998. [Google Scholar]
- Del Grosso, J.; Walsh, M.; Duffield, J. US Agriculture and Forestry Greenhouse Gas Inventory: 1990–2005; USDA Technical Bulletin: Washington, DC, USA, 2008.
- Heitschmidt, R.K.; Dowhower, S.L.; Walker, J.W. Some effects of a rotational grazing treatment on quantity and quality of available forage and amount of ground litter. J. Range Manag. 1987, 40, 318–321. [Google Scholar] [CrossRef]
- Potter, K.N.; Torbert, H.A.; Johnson, H.B.; Tischler, C.R. Carbon storage after long-term grass establishment on degraded soils. Soil Sci. 1999, 164, 718–725. [Google Scholar] [CrossRef]
- USDA Natural Resources Conservation Service (NRCS). Soil Quality Indicators. 2009. Available online: http://go.usa.gov/zUAH (accessed on 14 July 2015). [Google Scholar]
- Stephenson, K.; Bosch, D.; Groover, G. Carbon credit potential from intensive rotational grazing under carbon credit certification protocols. In Proceedings of the American Agricultural Economics Association Annual Meeting, Denver, CO, USA, 1–4 August 2004.
- Gascoigne, W.R.; Hoag, D.; Koontz, L.; Tangen, B.A.; Shaffer, T.L.; Gleason, R.A. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Region of the Dakotas, USA. Ecol. Econ. 2011, 70, 1715–1725. [Google Scholar] [CrossRef]
- Smith, P. Do grasslands act as a perpetual sink for carbon? GCB 2014, 20, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N.; Pirog, R.; Rasmussen, R. Comparative life cycle environmental impacts of three beef production strategies in the upper Midwestern United States. Agric. Syst. 2010, 103, 380–389. [Google Scholar] [CrossRef]
- DeRamus, H.A.; Clement, T.C.; Giampola, D.D.; Peter, C.D. Methane emissions on beef cattle on forages: Efficiency of grazing management systems. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [PubMed]
- Follett, R.F.; Reed, D.A. Soil carbon sequestration in grazing lands: Societal benefits and policy implications. Rangel. Ecol. Manag. 2010, 63, 4–15. [Google Scholar] [CrossRef]
- Soussana, J.F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, J.T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Soussana, J.F.; Allard, V.; Pilegaard, K. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric. Ecosyst. Environ. 2007, 121, 121–134. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Teague, W.R.; Park, S.C.; Bevers, S. GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains. Sustainability 2015, 7, 13500-13521. https://doi.org/10.3390/su71013500
Wang T, Teague WR, Park SC, Bevers S. GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains. Sustainability. 2015; 7(10):13500-13521. https://doi.org/10.3390/su71013500
Chicago/Turabian StyleWang, Tong, W. Richard Teague, Seong C. Park, and Stan Bevers. 2015. "GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains" Sustainability 7, no. 10: 13500-13521. https://doi.org/10.3390/su71013500
APA StyleWang, T., Teague, W. R., Park, S. C., & Bevers, S. (2015). GHG Mitigation Potential of Different Grazing Strategies in the United States Southern Great Plains. Sustainability, 7(10), 13500-13521. https://doi.org/10.3390/su71013500