Measuring Resilience to Natural Hazards: Towards Sustainable Hazard Mitigation
Abstract
:1. Introduction
2. The Concept of Resilience to Natural Hazards and Disasters
2.1. Resilience and Its Linkage to Persistence and Dynamism of Systems
2.2. Linkages among Vulnerability, Resilience, and Adaptive Capacity
2.3. Community Resilience
3. Research Methodology
3.1. Study Area: Geography and Local Government System
3.2. Resilience Index Creation Using Confirmatory Factor Analysis
3.2.1. Critique on the Existing Methodologies
3.2.2. Operationalization
Resilience Dimension a | Indicator a | Description | Source |
---|---|---|---|
Biophysical resilience | SLOPE | Average degree of slope of land (°, degree) | Digital Topographic Map, National Geographic Information Institute |
ELEVATION | Average elevation of land (meter) | Digital Topographic Map, National Geographic Information Institute | |
WATERLAND | Percentage of river or stream areas (%) | Land Cover Map, Ministry of Environment | |
LOWLAND | Percentage of land 10 meters below sea level (%) | Digital topographic map, National Geographic Information Institute | |
INTENSITY | Daily precipitation intensity (0.1 mm/day) | Annual Climatological Report, Korea Meteorological Administration | |
Built-environment resilience | RESIDENTIAL | Percentage of residential area (%) | Land Cover Map, Ministry of Environment |
INDUSTRIAL | Percentage of industrial area (%) | Land Cover Map, Ministry of Environment | |
COMMERCIAL | Percentage of commercial area (%) | Land Cover Map, Ministry of Environment | |
DENSITY | Population density (1000 people/ km2 land area) | Korea Statistical Information Service, Statistics Korea | |
DILAPIDATED | Percentage of housing that is permitted before 1985 (%) | Korea Statistical Information Service, Statistics Korea | |
FACILITIES | Percentage of area with facilities and installations for disaster prevention (%) | Korea Statistical Information Service, Statistics Korea | |
Socioeconomic resilience | POPULATION | Census population (1000 people) | 2010 Population and Housing Census, Statistics Korea |
FIR | Financial independence ratio (%) b | Korea Statistical Information Service, Statistics Korea | |
TAXREVENUE | Local tax revenue (million dollars) c | Korea Statistical Information Service, Statistics Korea | |
ACTIVELABOR | Percentage of economically active population (%) | Korea Statistical Information Service, Statistics Korea | |
ELDERLY | Percentage of populations whose ages are over 65. | 2010 Population and Housing Census, Statistics Korea |
(1) Biophysical Resilience
Metro | SLOPE | ELEVATION | WATERLAND | LOWLAND | INTENSITY |
---|---|---|---|---|---|
Busan (n = 18) | 11.474 | 110.728 | 6.198 | 3.304 | 169.086 |
Changwon (n = 4) | 14.870 | 127.329 | 4.894 | 3.682 | 162.657 |
Daegu (n = 15) | 12.701 | 175.580 | 1.796 | 1.608 | 120.391 |
Daejeon (n = 14) | 14.015 | 176.527 | 2.931 | 1.454 | 107.947 |
Gwangju (n = 9) | 11.217 | 129.664 | 2.247 | 4.623 | 134.491 |
Gyeonggi (n = 31) | 10.032 | 116.311 | 2.970 | 16.522 | 146.625 |
Incheon (n = 10) | 4.888 | 30.102 | 5.022 | 9.881 | 154.613 |
Seoul (n = 25) | 6.164 | 61.565 | 5.461 | 16.297 | 162.013 |
Total (n = 126) | 10.061 | 112.859 | 3.954 | 9.355 | 145.742 |
(2) Built-Environment Resilience
Metro | RESIDENTIAL | INDUSTRIAL | COMMERCIAL | DENSITY | DILAPIDATED | FACILITIES |
---|---|---|---|---|---|---|
Busan (n = 18) | 21.597 | 2.724 | 3.674 | 18.311 | 25.821 | 0.036 |
Changwon (n = 4) | 5.213 | 2.964 | 0.743 | 8.146 | 22.843 | 0.022 |
Daegu (n = 15) | 12.426 | 2.991 | 2.942 | 9.214 | 29.262 | 0.028 |
Daejeon (n = 14) | 5.660 | 0.995 | 0.970 | 6.997 | 25.224 | 0.071 |
Gwangju (n = 9) | 8.346 | 1.313 | 1.247 | 9.021 | 31.863 | 0.013 |
Gyeonggi (n = 31) | 9.033 | 3.201 | 1.650 | 10.869 | 12.098 | 0.142 |
Incheon (n = 10) | 17.935 | 9.087 | 3.078 | 13.580 | 18.593 | 0.505 |
Seoul (n = 25) | 30.429 | 1.027 | 9.006 | 27.100 | 18.485 | 0.301 |
Total (n = 126) | 15.638 | 2.756 | 3.533 | 14.522 | 21.096 | 0.153 |
(3) Socioeconomic Resilience
Metro | POPULATION | FIR | TAXREVENUE | ACTIVELABOR | ELDERLY |
---|---|---|---|---|---|
Busan (n = 18) | 229.276 | 24.078 | 161.546 | 73.769 | 12.297 |
Changwon (n = 4) | 276.705 | 40.425 | 305.089 | 71.073 | 11.754 |
Daegu (n = 15) | 201.595 | 21.433 | 121.640 | 68.428 | 17.891 |
Daejeon (n = 14) | 155.034 | 21.579 | 99.546 | 67.588 | 16.813 |
Gwangju (n = =9) | 187.158 | 16.856 | 108.824 | 66.465 | 18.030 |
Gyeonggi (n = 31) | 361.163 | 48.832 | 403.360 | 71.537 | 10.673 |
Incheon (n = 10) | 263.204 | 29.190 | 190.263 | 72.138 | 12.313 |
Seoul (n = 25) | 385.259 | 48.884 | 416.488 | 76.150 | 10.022 |
Total (n = 126) | 282.319 | 34.906 | 263.054 | 71.633 | 13.007 |
(4) Specification, Estimation, and Modification
3.3. Cluster Analysis
4. Results
4.1. Reliability, Validity, and Fitness
Factor | Indicator | Unstandardized | Standardized | ||||
---|---|---|---|---|---|---|---|
Coef. | S.E. | p | Coef. | S.E. | p | ||
Biophysical resilience | SLOPE | 1 (constrained) | 0.928 | 0.024 | 0.000 | ||
ELEVATION | 16.431 | 0.951 | 0.000 | 0.988 | 0.022 | 0.000 | |
WATERLAND | −0.318 | 0.090 | 0.000 | −0.312 | 0.082 | 0.000 | |
LOWLAND | −0.543 | 0.290 | 0.061 | −0.168 | 0.089 | 0.059 | |
INTENSITY | −1.611 | 0.496 | 0.001 | −0.286 | 0.083 | 0.001 | |
Built-environment resilience | RESIDENTIAL | 1 (constrained) | 0.868 | 0.032 | 0.000 | ||
INDUSTRIAL | 0.035 | 0.038 | 0.351 | 0.089 | 0.095 | 0.350 | |
COMMERCIAL | 0.249 | 0.033 | 0.000 | 0.609 | 0.063 | 0.000 | |
DENSITY | 0.820 | 0.066 | 0.000 | 0.908 | 0.029 | 0.000 | |
DILAPIDATED | −0.297 | 0.118 | 0.012 | −0.249 | 0.093 | 0.007 | |
FACILITIES | 0.009 | 0.003 | 0.007 | 0.250 | 0.089 | 0.005 | |
Socioeconomic resilience | POPULATION | 1 (constrained) | 0.600 | 0.069 | 0.000 | ||
FIR | 0.065 | 0.014 | 0.000 | 0.465 | 0.080 | 0.000 | |
TAXREVENUE | 0.949 | 0.219 | 0.000 | 0.418 | 0.084 | 0.000 | |
ACTIVELABOR | 0.042 | 0.006 | 0.000 | 0.985 | 0.020 | 0.000 | |
ELDERLY | −0.048 | 0.007 | 0.000 | −0.907 | 0.022 | 0.000 | |
Factor Covariance | |||||||
cov(Biophysical,Built-environment) | −31.277 | 6.607 | 0.000 | −0.592 | 0.073 | 0.000 | |
cov(Biophysical,Socioecononomic) | −344.444 | 82.067 | 0.000 | −0.583 | 0.063 | 0.000 | |
cov(Built-environment,Socioeconomic) | 1098.698 | 219.684 | 0.000 | 0.775 | 0.052 | 0.000 | |
Modification Indices | M.I. | ||||||
cov(e.RESIDENTIAL,e.DILAPIDATED) | 40.041 | ||||||
cov(e.RESIDENTIAL,e.ELDERLY) | 28.798 | ||||||
cov(e.INDUSTRIAL,e.FACILITIES) | 38.713 | ||||||
cov(e.DILAPIDATED,e.ELDERLY) | 66.021 | ||||||
cov(e.POPULATION,e.TAXREVENUE) | 38.567 | ||||||
cov(e.FIR,e.TAXREVENUE) | 65.652 |
Factor | Indicator | Unstandardized | Standardized | C.R. | ||||
---|---|---|---|---|---|---|---|---|
Coef. | S.E. | p | Coef. | S.E. | p | |||
Biophysical resilience | SLOPE | 1 (constrained) | 0.934 | 0.023 | 0.000 | 0.708 | ||
ELEVATION | 16.217 | 0.934 | 0.000 | 0.981 | 0.022 | 0.000 | ||
WATERLAND | −0.313 | 0.090 | 0.000 | −0.309 | 0.083 | 0.000 | ||
LOWLAND | −0.555 | 0.288 | 0.054 | −0.173 | 0.089 | 0.052 | ||
INTENSITY | −1.587 | 0.497 | 0.001 | −0.283 | 0.084 | 0.001 | ||
Built-environment resilience | RESIDENTIAL | 1 (constrained) | 0.860 | 0.033 | 0.000 | 0.779 | ||
INDUSTRIAL | 0.054 | 0.038 | 0.162 | 0.129 | 0.091 | 0.158 | ||
COMMERCIAL | 0.245 | 0.035 | 0.000 | 0.573 | 0.063 | 0.000 | ||
DENSITY | 0.844 | 0.066 | 0.000 | 0.893 | 0.024 | 0.000 | ||
DILAPIDATED | −0.634 | 0.136 | 0.000 | −0.480 | 0.070 | 0.000 | ||
FACILITIES | 0.010 | 0.003 | 0.004 | 0.256 | 0.086 | 0.003 | ||
Socioeconomic resilience | POPULATION | 1 (constrained) | 0.570 | 0.062 | 0.000 | 0.813 | ||
FIR | 0.064 | 0.014 | 0.000 | 0.438 | 0.074 | 0.000 | ||
TAXREVENUE | 0.928 | 0.172 | 0.000 | 0.413 | 0.074 | 0.000 | ||
ACTIVELABOR | 0.045 | 0.006 | 0.000 | 0.999 | 0.011 | 0.000 | ||
ELDERLY | −0.049 | 0.007 | 0.000 | −0.892 | 0.021 | 0.000 | ||
Factor Covariance | ||||||||
cov(Biophysical,Built-environment) | −31.136 | 6.172 | 0.000 | −0.613 | 0.065 | 0.000 | ||
cov(Biophysical,Socioecononomic) | −326.661 | 76.378 | 0.000 | −0.578 | 0.064 | 0.000 | ||
cov(Built-environment,Socioeconomic) | 1041.721 | 207.143 | 0.000 | 0.810 | 0.036 | 0.000 | ||
Error Covariance | ||||||||
cov(e.RESIDENTIAL,e.DILAPIDATED) | 61.495 | 10.253 | 0.000 | 0.775 | 0.085 | 0.000 | ||
cov(e.RESIDENTIAL,e.ELDERLY) | 10.648 | 2.369 | 0.000 | 0.565 | 0.101 | 0.000 | ||
cov(e.INDUSTRIAL,e.FACILITIES) | 0.951 | 0.178 | 0.000 | 0.544 | 0.063 | 0.000 | ||
cov(e.DILAPIDATED,e.ELDERLY) | 29.465 | 4.301 | 0.000 | 0.800 | 0.046 | 0.000 | ||
cov(e.POPULATION,e.TAXREVENUE) | 17,633.250 | 3322.914 | 0.000 | 0.417 | 0.061 | 0.000 | ||
cov(e.FIR,e.TAXREVENUE) | 2555.555 | 393.756 | 0.000 | 0.661 | 0.050 | 0.000 |
4.2. Dimensions of Resilience to Natural Hazards
4.3. Clusters of Local Governments
4.3.1. Determining the Optimal Number of Clusters
Criteria | Ward’s | Complete | Single | Average | Median | Centroid |
---|---|---|---|---|---|---|
KL | 7 | 5 | 6 | 2 | 4 | 7 |
CH | 5 | 5 | 14 | 2 | 2 | 7 |
Hartigan | 5 | 5 | 13 | 5 | 3 | 3 |
CCC | 15 | 15 | 2 | 13 | 11 | 7 |
Scott | 3 | 3 | 14 | 5 | 10 | 7 |
Marriot | 4 | 3 | 14 | 5 | 10 | 7 |
Trcovw | 3 | 3 | 14 | 3 | 4 | 4 |
Tracew | 3 | 3 | 14 | 5 | 4 | 4 |
Friedman | 10 | 3 | 14 | 13 | 10 | 7 |
Rubin | 5 | 5 | 14 | 13 | 10 | 7 |
C-index | 11 | 2 | 5 | 2 | 2 | 9 |
DB | 5 | 7 | 2 | 9 | 3 | 3 |
Silhouette | 2 | 2 | 2 | 2 | 2 | 2 |
Duda | 2 | 2 | 2 | 2 | 2 | 2 |
Pseudot2 | 2 | 2 | 2 | 2 | 2 | 2 |
Beale | 2 | 2 | 2 | 2 | 2 | 2 |
Ratkowsky | 2 | 2 | 14 | 2 | 2 | 2 |
Ball | 3 | 3 | 3 | 3 | 3 | 3 |
Ptbiserial | 3 | 3 | 14 | 3 | 3 | 3 |
Frey | 1 | 1 | 2 | 1 | NA | 6 |
McClain | 2 | 3 | 2 | 2 | 2 | 2 |
Dunn | 15 | 9 | 2 | 13 | 4 | 6 |
Hubert | 0 | 0 | 0 | 0 | 0 | 0 |
SD-index | 5 | 7 | 5 | 7 | 3 | 3 |
Dindex | 0 | 0 | 0 | 0 | 0 | 0 |
SDbw | 15 | 14 | 15 | 15 | 15 | 15 |
Results | 6 proposed 2. | 8 proposed 3. | 9 proposed 2. | 9 proposed 2. | 8 proposed 2. | 7 proposed 7. |
5 proposed 5. | 6 proposed 2. | 9 proposed 14. | 4 proposed 5. | 5 proposed 3. | 6 proposed 2. |
4.3.2. Interpreting the Clusters of Local Governments
Factor | Partial SS | df | MS | F | p | R-squared | Adj R-squared |
---|---|---|---|---|---|---|---|
Biophysical | 107.834 | 5 | 21.567 | 150.770 | 0.000 | 0.863 | 0.857 |
Built-environment | 108.681 | 5 | 21.736 | 159.840 | 0.000 | 0.870 | 0.864 |
Socioeconomic | 104.090 | 5 | 20.818 | 119.470 | 0.000 | 0.833 | 0.826 |
Factor | Wilks’ Lambda a | F | p |
---|---|---|---|
Biophysical & Built-environment | 0.0346 | 104.12 | 0.000 |
Biophysical & Socioeconomic | 0.0353 | 102.94 | 0.000 |
Built-environment & Socioeconomic | 0.0560 | 76.79 | 0.000 |
Biophysical, Built-environment, & Socioeconomic | 0.0146 | 78.90 | 0.000 |
Indicator | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 |
---|---|---|---|---|---|---|
SLOPE | 11.331 | 6.582 | 3.551 | 7.405 | 15.301 | 16.915 |
ELEVATION | 119.079 | 58.558 | 32.107 | 68.484 | 185.588 | 229.918 |
RESIDENTIAL | 17.783 | 24.183 | 31.427 | 4.970 | 6.237 | 1.971 |
DENSITY | 19.830 | 20.014 | 24.735 | 3.613 | 8.826 | 2.096 |
DILAPIDATED | 17.488 | 17.585 | 18.390 | 22.182 | 19.586 | 36.905 |
FIR | 34.114 | 38.590 | 44.430 | 37.638 | 32.750 | 18.281 |
TAXREVENUE | 297.648 | 306.399 | 381.370 | 238.763 | 226.585 | 50.531 |
ACTIVELABOR | 74.763 | 74.430 | 75.869 | 68.034 | 71.188 | 60.583 |
ELDERLY | 10.043 | 9.826 | 9.629 | 15.272 | 11.579 | 26.912 |
5. Discussion: Implications for Sustainable Hazard Mitigation
5.1. Resilience Dimensions
5.2. Trade-off between Biophysical Resilience and Human Activities
5.3. Establishment of Flexible Governance System
6. Conclusions and Recommendations for Future Research
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guha-Sapir, D.; Hoyois, P.; Below, R. Annual Disaster Statistical Review 2013: The Numbers and Trends; CRED: Brussels, Belgium, 2014. [Google Scholar]
- ASEAN Agreement on Disaster Management and Emergency Response Vientiane, 26 July 2005. Available online: http://www.asean.org/news/item/asean-agreement-on-disaster-management-and-emergency-response-vientiane-26-july-2005-2 (accessed on 16 October 2015).
- Rabbon, P.D.; Zepp, L.J.; Olsen, J.R. Flood risk management in the context of United States governance. In Proceedings of International Policy-Oriented Discussions, International Flood Risk Management Approaches: From Theory to Practice, Washington, DC, USA, November 30–December 1 2010; Available online: http://www.nfrmp.us/IFRMA/ (accessed on 12 July 2015).
- Tabios, G.Q.I. Flood risk management in the Philippines: Governance and institutional framework. In Proceedings of International Policy-Oriented Discussions, International Flood Risk Management Approaches: From Theory to Practice, Washington, DC, USA, November 30–December 1 2010; Available online: http://www.nfrmp.us/IFRMA/ (accessed on 12 July 2015).
- Wei, Y.-M.; Jin, J.-L.; Wang, Q. Impacts of natural disasters and disasters risk management in China: The case of China’s experience in Wenchuan earthquake. In Resilience and Recovery in Asian Disasters; Sawada, Y., Oum, S., Eds.; Springer: Berlin, Germany, 2014; pp. 287–307. [Google Scholar]
- Bae, Y.; Joo, Y.-M.; Won, S.-Y. Decentralization and collaborative disaster governance: Evidence from South Korea. Habitat Int. 2015, in press. [Google Scholar]
- Bae, Y.; Kim, S. Civil society and local activism in South Korea’s local democratization. Democratization 2013, 20, 260–286. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ahearn, J.A.; Amadei, B.; Crawford, P.; Eide, E.A.; Galloway, G.E.; Goodchild, M.F.; Kunreuther, H.C.; Li-Vollmer, M.; Schoch-Spana, M. Disaster resilience: A national imperative. Environ. Sci. Policy Sustain. Dev. 2013, 55, 25–29. [Google Scholar] [CrossRef]
- Klein, R.J.; Nicholls, R.J.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Global Environ. Chang. B Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Manyena, S.B. The concept of resilience revisited. Disasters 2006, 30, 434–450. [Google Scholar] [CrossRef] [PubMed]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Global Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Yoon, D.; Kang, J.E.; Brody, S.D. A measurement of community disaster resilience in Korea. J. Environ. Plan. Manag. 2015. [Google Scholar] [CrossRef]
- Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Global Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Pelling, M. The Vulnerability of Cities: Natural Disasters and Social Resilience; Earthscan: London, UK, 2003; p. 48. [Google Scholar]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockström, J. Social-ecological resilience to coastal disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2001; pp. 40–41. [Google Scholar]
- Folke, C.; Carpenter, S.; Elmqvist, T.; Gunderson, L.; Holling, C.S.; Walker, B. Resilience and sustainable development: Building adaptive capacity in a world of transformations. AMBIO J. Hum. Environ. 2002, 31, 437–440. [Google Scholar] [CrossRef]
- Birkmann, J.; Cardona, O.; Carreño, M.; Barbat, A.; Pelling, M.; Schneiderbauer, S.; Kienberger, S.; Keiler, M.; Alexander, D.; Zeil, P. Framing vulnerability, risk and societal responses: The move framework. Nat. Hazards 2013, 67, 193–211. [Google Scholar] [CrossRef]
- Burton, I.; Huq, S.; Lim, B.; Pilifosova, O.; Schipper, E.L. From impacts assessment to adaptation priorities: The shaping of adaptation policy. Clim. Policy 2002, 2, 145–159. [Google Scholar] [CrossRef]
- O’Brien, K.; Leichenko, R.; Kelkar, U.; Venema, H.; Aandahl, G.; Tompkins, H.; Javed, A.; Bhadwal, S.; Barg, S.; Nygaard, L. Mapping vulnerability to multiple stressors: Climate change and globalization in India. Glob. Environ. Chang. 2004, 14, 303–313. [Google Scholar] [CrossRef]
- Smit, B.; Burton, I.; Klein, R.J.; Street, R. The science of adaptation: A framework for assessment. Mitig. Adapt. Strateg. Global Chang. 1999, 4, 199–213. [Google Scholar] [CrossRef]
- King, D. Planning for hazard resilient communities. In Disaster Resilience: An Integrated Approach; Paton, D., Johnston, D., Eds.; Charles C Thomas: Springfield, IL, USA, 2006; pp. 288–304. [Google Scholar]
- Cutter, S.L. Vulnerability to environmental hazards. Prog. Hum. Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Berkes, F.; Ross, H. Community resilience: Toward an integrated approach. Soc. Nat. Resour. 2013, 26, 5–20. [Google Scholar] [CrossRef]
- Coles, E.; Buckle, P. Developing community resilience as a foundation for effective disaster recovery. Aust. J. Emerg. Manag. 2004, 19, 6–15. [Google Scholar]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2006; p. 85. [Google Scholar]
- Norris, F.H.; Stevens, S.P.; Pfefferbaum, B.; Wyche, K.F.; Pfefferbaum, R.L. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. Am. J. Commun. Psychol. 2008, 41, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Djalante, R.; Holley, C.; Thomalla, F. Adaptive governance and managing resilience to natural hazards. Int. J. Disaster Risk Sci. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Engle, N.L. Adaptive capacity and its assessment. Global Environ. Chang. 2011, 21, 647–656. [Google Scholar] [CrossRef]
- Aldrich, D.P. Building Resilience: Social Capital in Post-Disaster Recovery; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Asian Disaster Reduction Center (ADRC). Available online: http://www.adrc.asia/nationinformation.php?NationCode=410&Lang=en&NationNum=21 (accessed on 16 October 2015).
- Kim, W. Natural Disaster Management in Korea: An Analytic Study with Policy Implications; Natural Hazard Research Working Paper 88; Natural Hazards Center, University of Colorado at Boulder: Boulder, CO, USA, 1994. [Google Scholar]
- Central Intelligence Agency (CIA). The World Factbook. Available online: https://www.cia.gov/library/publications/the-world-factbook/geos/ks.html (accessed on 16 October 2015).
- United Nations. Republic of Korea Public Administration Country Profile; Division for Public Administration and Development Management (DPADM), Department of Economic and Social Affairs (DESA): New York, NY, USA, 2007. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). OECD Economic Survey Korea 2005; OECD Publishing: Paris, France, 2005. [Google Scholar]
- Brown, T.A.; Moore, M.T. Confirmatory factor analysis. In Handbook of Structural Equation Modeling; Hoyle, R.H., Ed.; The Guilford Press: New York, NY, USA, 2012; pp. 361–379. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; The Guilford Press: New York, NY, USA, 2010. [Google Scholar]
- Blunch, N. Introduction to Structural Equation Modeling Using IBM SPSS Statistics and AMOS, 2nd ed.; SAGE Publications Ltd.: London, UK, 2013. [Google Scholar]
- Hurley, A.E.; Scandura, T.A.; Schriesheim, C.A.; Brannick, M.T.; Seers, A.; Vandenberg, R.J.; Williams, L.J. Exploratory and confirmatory factor analysis: Guidelines, issues, and alternatives. J. Organ. Behav. 1997, 18, 667–683. [Google Scholar] [CrossRef]
- Burton, C.G. A validation of metrics for community resilience to natural hazards and disasters using the recovery from Hurricane Katrina as a case study. Ann. Assoc. Am. Geogr. 2015, 105, 67–86. [Google Scholar] [CrossRef]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster resilience indicators for benchmarking baseline conditions. J. Homel. Secur. Emerg. Manag. 2010, 7. Article 51. [Google Scholar] [CrossRef]
- Peacock, W.G.; Brody, S.; Seitz, W.; Merrell, W.; Vedlitz, A.; Zahran, S.; Harriss, R.; Stickney, R. Advancing Resilience of Coastal Localities: Developing, Implementing, and Sustaining the Use of Coastal Resilience Indicators: A Final Report; Hazard Reduction and Recovery Center: College Station, TX, USA, 2010. [Google Scholar]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Tate, E. Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- DiStefano, C.; Zhu, M.; Mindrila, D. Understanding and using factor scores: Considerations for the applied researcher. Pract. Assess. Res. Evaluation 2009, 14, 1–11. [Google Scholar]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Leichenko, R.M.; O’Brien, K.L. The dynamics of rural vulnerability to global change: The case of Southern Africa. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 1–18. [Google Scholar] [CrossRef]
- Tate, E.; Cutter, S.L.; Berry, M. Integrated multihazard mapping. Environ. Plan. B Plan. Des. 2010, 37, 646–663. [Google Scholar] [CrossRef]
- Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion hazard vulnerability of U.S. Coastal counties. J. Coast. Res. 2005, 215, 932–942. [Google Scholar] [CrossRef]
- Brenkert, A.L.; Malone, E.L. Modeling vulnerability and resilience to climate change: A case study of India and Indian states. Clim. Chang. 2005, 72, 57–102. [Google Scholar] [CrossRef]
- Torresan, S.; Critto, A.; Dalla Valle, M.; Harvey, N.; Marcomini, A. Assessing coastal vulnerability to climate change: Comparing segmentation at global and regional scales. Sustain. Sci. 2008, 3, 45–65. [Google Scholar] [CrossRef]
- Yin, H.; Li, B.; Guo, T.; Zhu, J. Measurement method and empirical research on systemic vulnerability of environmental sustainable development capability. Pol. J. Environ. Stud. 2014, 23, 243–253. [Google Scholar]
- Yoon, D.K. Disaster policies and emergency management in Korea. In Disaster and Development: Examining Global Issues and Cases; Naim Kapucu, K.T.L., Ed.; Springer: New York, NY, USA, 2014; pp. 149–164. [Google Scholar]
- Bartuska, T.J. The built environment: Definition and scope. In The Built Environment: A Collaborative Inquiry into Design and Planning, 2nd ed.; McClure, W.R., Bartuska, T.J., Eds.; Wiley: Chichster, UK, 2007; pp. 3–14. [Google Scholar]
- Choi, C.-I. Does urbanization indeed increase disaster damages?: Lessons from Gyeonggi province, South Korea. J. Environ. Policy 2010, 9, 3–27. (In Korean) [Google Scholar] [CrossRef]
- Vale, L.J.; Campanella, T.J. The Resilient City: How Modern Cities Recover from Disaster; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Shim, J.H.; Kim, J.E. An analysis on the interrelationship between land-use characteristics and damages caused by natural hazards. J. Korea Acad. Ind. Coop. Soc. 2012, 13, 4319–4325. (In Korean) [Google Scholar] [CrossRef]
- Sherrieb, K.; Norris, F.H.; Galea, S. Measuring capacities for community resilience. Soc. Indic. Res. 2010, 99, 227–247. [Google Scholar] [CrossRef]
- Rose, A.; Krausmann, E. An economic framework for the development of a resilience index for business recovery. Int. J. Dis. Risk Reduct. 2013, 5, 73–83. [Google Scholar] [CrossRef]
- Myers, C.A.; Slack, T.; Singelmann, J. Social vulnerability and migration in the wake of disaster: The case of Hurricanes Katrina and Rita. Popul. Environ. 2008, 29, 271–291. [Google Scholar] [CrossRef]
- Morrow, B.H. Community Resilience: A Social Justice Perspective; CARRI Research Report No. 4; Community & Regional Resilience Institute: Oak Ridge, TN, USA, 2008. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Industrial Policy and Territorial Development: Lessons from Korea; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Thurstone, L.L. The Vectors of Mind; University of Chicago Press: Chicago, IL, USA, 1935. [Google Scholar]
- Shahriar, F.; Montazeri, M.; Momeni, M.; Freidooni, A. Regionalization of the climatic areas of Qazvin province using multivariate statistical methods. Modern Appl. Sci. 2015, 9, 123–138. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. Nbclust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 382–388. [Google Scholar] [CrossRef]
- O’Rourke, N.; Hatcher, L. A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, 2nd ed.; SAS Institute: Cary, NC, USA, 2014. [Google Scholar]
- Hu, L.-T.; Bentler, P.M. Evaluating model fit. In Structural Equation Modeling. Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage: London, UK, 1995; pp. 76–99. [Google Scholar]
- Hu, L.-T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Reise, S.P.; Widaman, K.F.; Pugh, R.H. Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance. Psychol. Bull. 1993, 114, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Folke, C.; Alberti, M.; Redman, C.L.; Schneider, S.H.; Ostrom, E.; Pell, A.N.; Lubchenco, J. Coupled human and natural systems. AMBIO J. Hum. Environ. 2007, 36, 639–649. [Google Scholar] [CrossRef]
- Asselt, M.B.A.V.; Renn, O. Risk governance. J. Risk Res. 2011, 14, 431–449. [Google Scholar] [CrossRef]
- Jones, S.; Oven, K.J.; Manyena, B.; Aryal, K. Governance struggles and policy processes in disaster risk reduction: A case study from Nepal. Geoforum 2014, 57, 78–90. [Google Scholar] [CrossRef]
- Adger, W.N. Social capital, collective action, and adaptation to climate change. Econ. Geogr. 2003, 79, 387–404. [Google Scholar] [CrossRef]
- Hall, P. Cities of Tomorrow: An Intellectual History of Urban Planning and Design in the Twentieth Century, 3rd ed.; Wiley-Blackwell: Malden, MA, USA, 2002. [Google Scholar]
- Escaleras, M.; Register, C.A. Fiscal decentralization and natural hazard risks. Public Choice 2012, 151, 165–183. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, J.H.; Kim, C.-I. Measuring Resilience to Natural Hazards: Towards Sustainable Hazard Mitigation. Sustainability 2015, 7, 14153-14185. https://doi.org/10.3390/su71014153
Shim JH, Kim C-I. Measuring Resilience to Natural Hazards: Towards Sustainable Hazard Mitigation. Sustainability. 2015; 7(10):14153-14185. https://doi.org/10.3390/su71014153
Chicago/Turabian StyleShim, Jae Heon, and Chun-Il Kim. 2015. "Measuring Resilience to Natural Hazards: Towards Sustainable Hazard Mitigation" Sustainability 7, no. 10: 14153-14185. https://doi.org/10.3390/su71014153
APA StyleShim, J. H., & Kim, C. -I. (2015). Measuring Resilience to Natural Hazards: Towards Sustainable Hazard Mitigation. Sustainability, 7(10), 14153-14185. https://doi.org/10.3390/su71014153