Gaetano Vinaccia’s (1881–1971) Theoretical Work on the Relationship between Microclimate and Urban Design
Abstract
:1. Introduction
1.1. Illness in the Working Class
Le Corbusier and His Contemporary Sources on the Heliothermic Axis
1.2. Urban Climatology Research in Europe until World War II
1.3. The Debate in Italy
1.4. The Rational Vernacular
1.5. Climate and Design in Early Italian Manuals
2. Vinaccia: An Innovator or an Outdated Architect?
2.1. Vinaccia’s Most Important Publications
2.1.1. The Star-Shaped Building (1932–1936)
2.1.2. Sun Path in Architecture and Urbanism (1938)
2.1.3. Rationality of the Romans’ Castra (1939)
2.1.4. The City of Tomorrow (1943)
3. Innovation in Vinaccia’s Thought
- -
- The loss in sunshine duration in urban areas caused by the sky’s turbidity (air pollution and haziness). The importance of the sky’s clearness for a city’s healthiness had already been affirmed by Vitruvius. Following the Industrial Revolution, the desperate condition of the city’s pollution induced scientists to study the effects of pollutants on solar radiation, revealing the weakening of its intensity and the shortening of its daily duration. Quantitative studies on this topic were contained already in Kratzer’s Das Stadtklima, in 1937, and exhaustive studies were conducted later by physicists and meteorologists, as seen in the work of Chandler (1965) [42] and Landsberg (1981), and this work is continuing today. Contemporary research includes, for example, “the extinction coefficient” of Givoni [41] (p. 268) and the urban studies carried out by both Tsangrassoulis on solar short-wave radiation and by Santamouris on the city’s thermal balance, which are contained in Energy and Climate in the Urban Built Environment [43].
- -
- The effect of latitude on the total amount of solar radiation received on building surfaces due to the different sun paths. As stated before, Vinaccia’s studies focused for a long time on sun path and solar radiation. These produced useful measurements and tools, mainly collected in his text Sun Path in Architecture and Urbanism (1938). Today, the study of local sun paths and the tilt angle of sunrays are among the first procedures in the environmental design. Nevertheless, architects and planners have at their disposal sun charts, which show both the sun’s height and azimuth graphically, and collection of meteorological data about the intensity of solar radiation in the function of the location [44,45].
- -
- The consequence of both topography and the orientation of surfaces for a building’s microclimate. It is interesting to highlight Vinaccia’s knowledge of design’s “good practices”, which originate from local weather and orographic conditions. The author was already aware, during the 1940s, of the environmental factors that cause fog and increase moisture in the urban area, such as the proximity to water surfaces (sea, lake, river, etc.) and the thermo-hygrometric conditions of the ground. He knew very well the effects of topography both on the formation of the “cold side’s rain” and “hot side’s rain” on slopes, and the wind’s speed and alterations of direction (the Venturi effect). These, and many more types of information, were used by Vinaccia to move urban and architectural design in the direction of a more “environmentally-aware” shape. Among the solutions, he identified the south-facing slope of a hill as a suitable location for ensuring the building’s healthiness. This position takes advantage of the direct solar radiation and better natural ventilation, avoiding the mutual shadows of buildings and the stagnation of fog and moisture. Most of Vinaccia’s statements hold true even now, and can be found in most of the later research. Examples can be seen in Oke’s Boundary Layer Climate (1978) and Givoni’s Climate Consideration in Building and Urban Design (1998), both reference books for most current scholars, which restate, almost 40 years later, most of Vinaccia’s points with a scientifically in-depth analysis. The microclimatic advantages of building on the south-facing slope of a mountain are also confirmed by several contemporary authors, who suggest this location, especially for temperate climate.
3.1. Three Tools for Architects
3.1.1. The Appropriate Settlement Location
3.1.2. The Accurate Choice of Building Morphology
3.1.3. The Correct Use of Materials and Exterior Textures in Buildings
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Chiri, G.; Giovagnorio, I. Microclimate and Forma Urbis. The Topicality of Gaetano Vinaccia’s Theoretical Work (1881–1971). In Recent Advances in Urban Planning, Sustainable Development and Green Energy, Proceedings of the 5th International Conference on Urban Sustainability, Cultural Sustainability, Green Development, Green Structures and Clean Cars (USCUDAR'14), Florence, Italy, 22–24 November 2014.
- Frampton, K. Storia dell’Architettura Moderna, 2nd ed.; Zanichelli: Bologna, Italy, 1986. [Google Scholar]
- Engels, F. The Condition of the Working Class in England; Otto Wigand: Leipzig, Germany, 1887. [Google Scholar]
- Aymonino, C. L’Abitazione Razionale, Atti dei Congressi CIAM 1929-1930, 4th ed.; Marsilio: Venezia, Italy, 1970. [Google Scholar]
- Gideon, S. Spazio, Tempo Architettura, 2nd ed.; Hoepli: Milan, Italy, 1987. [Google Scholar]
- Heiligenthal, R.F. Deutsche Städtebau, 1st ed.; Carl Winter: Heidelberg, Germany, 1921. [Google Scholar]
- Hilberseimer, L. Großstadtarchitektur, L’Archtiettura della Grande Città; Clean: Naples, Italy, 1998. [Google Scholar]
- Neufert, E. Bauentwurfslehre, 1st ed.; Bauwelt-Verlag: Berlin, Germany, 1936. [Google Scholar]
- Le Corbusier. Urbaniste; Crès: Paris, France, 1925. [Google Scholar]
- Le Corbusier. La Ville Radieuse: element d’une doctrine d’urbanisme pour l’equipment de la Civilization Machinist; De L’Architecture D’Aujourd’Hui: Boulogne-sur-Seine, France, 1935. [Google Scholar]
- Montavon, M.; Steemers, K.; Cheng, V.; Compagnon, R. La Ville Radieuse by Le Corbusier, once again a case study. In Proceedings of the PLEA2006—The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006; pp. 701–706.
- Rey, A.A.; Pidoux, J.; Barde, C. La Science des Plans de Villes; © Dunod: Paris, France, 1928. [Google Scholar]
- Montavon, M. Optimisation of Urban Form by Evaluation of the Solar Potential. Ph.D. Thesis, Ecole Polytechnique Federale, Lausanne, France, 2010. [Google Scholar]
- Harzallah, A.; Siret, D.; Monin, E.; Bouyer, J. Controverses autour de l’axe héliothermique: L’apport de la simulation physique à l’analyse des théories urbaines. Available online: http://inha.revues.org/2509 (accessed on 19 December 2014). (In French)
- Vinaccia, G. La Città di Domani. Come il Clima Plasma la Forma Urbana e l’Architettura: La Sanità e l’Igiene Cittadina, Volume 1; Fratelli Palombi Editori: Rome, Italy, 1943; p. 61. [Google Scholar]
- MacKillop, F. A compact history of actors, events and concepts of urban climatology and design. Available online: https://hal-upec-upem.archives-ouvertes.fr/file/index/docid/566194/filename/Data_sets_personal_version.pdf (accessed on 18 February 2011).
- Urban microclimatology takes into account a mesoclimate dimension, characterized by a small area of several square kilometres in size, in which the city determines specific microclimatic phenomena.
- Landsberg, H.E. The Urban Climate; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Benndorf, H.; Brausnitz, W. Apparat zur Demostration der Verteilung von Licht un Shatten bei Beleuchtung von Gebauden durch die Sonne. Archive für Hygiene und Bakteriologie 1926, 66, 384–389. [Google Scholar]
- Schmauss, A. Meteorologische Grundsätze im Haus- und Städtebau. Bayerisches Industrie-und Gewerbeblatt 1914, 46, 181–183. [Google Scholar]
- Kassner, C. Die meteorologischen Grundlagen des Städtebaues. Städtebauliche Vorträge 1910, 6, 5–26. [Google Scholar]
- Plessner, H. Die Sonnenbaulehre des Dr. Bernhardt Christoph Faust: Ein Beitrag zur Geschichte der Hygiene des Städtebaus. Ph.D. Thesis, Technische Hochschule, Berlin, Germany, 1933. [Google Scholar]
- Faust, B.C. Andeutungen über das Bauen der Häuser und Städte zur Sonne; Hahn’sche Hofbuchhandlung: Hannover, Germany, 1829. [Google Scholar]
- Tafuri, M.; DalCo, F. Architettura Contemporanea; Electa: Milan, Italy, 1988. [Google Scholar]
- De Seta, C. La Cultura Architettonica in Italia tra le due Guerre; Laterza: Roma-Bari, Italy, 1978; p. 131. [Google Scholar]
- Manieri, E.M. La situazione italiana al 1935 e Giuseppe Samonà. In La casa popolare degli anni’30 (Samonà, G.); Polis Collection: Venezia, Italy, 1972; p. 20. [Google Scholar]
- Samonà, G. La Casa Popolare, 1st ed.; EPSA: Napoli, Italy, 1935. [Google Scholar]
- Spengler, O. Der Untergang des Abendlandes, 1st ed.; Braumüller: Wien, Austria, 1918. [Google Scholar]
- Bertagnin, M. L’esposizione “L’architettura rurale nel bacino del mediterraneo alla VI triennale di Milano”. In La salubrità dell’abitare; EdicomEdizioni: Trieste, Italy, 2002; p. 88. [Google Scholar]
- Pietrogrande, E. La casa eugenica e le malattie connesse all’abitazione nei manuali di Diotallevi e Marescotti. In La salubrità dell’abitare; EdicomEdizioni: Trieste, Italy, 2002; pp. 77–84. [Google Scholar]
- Silvi, C. Solar Building Practices and Urban Planning in the Work of Gaetano Vinaccia (1889–1971). In Proceedings of the 2nd International Solar Cities Congress, Oxford, UK, 3–6 April 2006.
- Vinaccia, G. La casa a pianta stellare ottagonale. Case d’Oggi 1936, 2, 23–27. [Google Scholar]
- Vinaccia, G. Paralleli urbanistici. Confronto della casa a stella con i vari tipi di case in uso. Case d’Oggi 1936, 9, 25–28. [Google Scholar]
- Vinaccia, G. Progetto di casa economica. L’Architettura Italiana 1932, 10, 115–117. [Google Scholar]
- Vitruvio. De Architettura; Einaudi: Torino, Italy, 1997. [Google Scholar]
- Vinaccia, G. Il Corso del Sole in Urbanistica ed in Edilizia. Contributo alla Razionalizzazione dell’Architettura; Hoepli, U., Ed.; Náufragos: Milano, Italy, 1938; pp. 3–4. [Google Scholar]
- Brooks, F.A. Solar energy and its use for heating water in California. In Il Corso del Sole in Urbanistica ed in Edilizia. Contributo alla Razionalizzazione dell’Architettura; Hoepli, U., Ed.; Náufragos: Milano, Italy, 1938; p. 298. [Google Scholar]
- Vinaccia, G. Il Problema dell’Orientamento Nell'urbanistica Dell'antica Roma; Istituto di Studi Romani: Roma, Italy, 1939. [Google Scholar]
- Rudosfky, B. Architecture without Architects; MOMA: New York, NY, USA, 1964. [Google Scholar]
- Olgyay, V. Design with Climate: Bioclimatic Approach to Architectural Regionalism; Princeton University Press: Princeton, NJ, USA, 1963. [Google Scholar]
- Givoni, B. Climate Consideration in Building and Urban Design; Van Nostrand Reinhold: New York, NY, USA, 1998. [Google Scholar]
- Chandler, T.J. The Climate of London; Hutchinson: London, UK, 1965. [Google Scholar]
- Santamouris, M. Energy and Climate in Urban Built Environment; James&James Ltd.: London, UK, 2001; pp. 110–136. [Google Scholar]
- Serra, F.R.; Coch, R.H. L’energia nel progetto di architettura; CittàStudiEdizioni: Torino, Italy, 1997; p. 171. [Google Scholar]
- Rogora, A. Progettazione Bioclimatica per l’Architettura Mediterranea; Wolters Kluwer: Milano, Italy, 2012. [Google Scholar]
- Steemers, K. Environmental Research in Architecture. Scroope 2010, 20, 15–19. [Google Scholar]
- Azami, A. Sustainability Lessons Learnt from Traditional Buildings. In Recent Advance in Energy, Environment and Development, Proceedings of the 7th International Conference on Energy and Development, Environment and Biomedicine (EDEB’13), Cambridge, MA, USA, 30 January–1 February 2013; WSEAS Press: Athens, Greece, 2013. [Google Scholar]
- Oliver, P. Dwellings. The Vernacular House World Wide; Phaidon Press: London, UK, 2003. [Google Scholar]
- Vellinga, M.; Foruzanmehr, A. Vernacular Architecture: Questions of comfort and practicability. Build. Res. Inf. 2011, 39, 274–285. [Google Scholar] [CrossRef]
- Fernandes, J.; Matheus, R. Arquitectura Vernacular: Un lição de sostenibilidade. In Proceedings of Sustenibilidade na Reabilitação Urbana—O Novo Paradigma do Mercato do Construçao, Lisbon, Portugal, 29–30 September 2011.
- Caltabiano, I. The traditional architecture in Sicily: The rural area around the volcano Etna. In Proceedings of the PLEA2006—The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006.
- Coch, R.H. Bioclimatism in vernacular architecture. Renew. Sustain. Energy Rev. 1998, 2, 67–87. [Google Scholar] [CrossRef]
- Gallo, C. Architettura Bioclimatica, 1st ed.; Instituto Nazionale Di Architettura: Roma, Italy, 1998. [Google Scholar]
- Los, S.; Cornoldi, A. Energia e Habitat; Muzzio, F., Ed.; la Libreria dei Passi Perduti: Padova, Italy, 1980. [Google Scholar]
- Martin, L.; March, L. Urban Space and Structures; Cambridge University Press: Cambridge, UK, 1975. [Google Scholar]
- Ratti, C.; Raydan, D.; Steemers, K. Building form and environmental performance: Archetypes, analysis and an arid climate. Energy Build. 2003, 35, 49–59. [Google Scholar] [CrossRef]
- Berghauser, P.M.; Haupt, P. Space Matrix: Space, Density and Urban Form; NAi Publisher: Rotterdam, The Netherlands, 2010. [Google Scholar]
- Reale, L. Densità, Città, Residenza. Tecniche di Densificazione e Strategie Anti-sprawl; Gangemi: Roma, Italy, 2008. [Google Scholar]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Space between Buildings; Earthscan: London, UK, 2011; p. 93. [Google Scholar]
- Robinson, D. Computer Modelling for Sustainable Urban Design: Physical Principles, Methods and Applications; Earthscan: London, UK, 2011. [Google Scholar]
- Beckers, B.; Beckers, P. Radiative Simulation Methods. In Solar Energy at Urban Scale; ISTE, John Wiley and Sons: London, UK, 2012. [Google Scholar]
- Badea, G. Software Possibilities for 3D Representations—Urban Management Using 3D Models. In Recent Advances in Geodesy and Geomatics Engineering, Proceedings of the 1st European Conference of Geodesy & Geomatics Engineering (GENG'13), Antalya, Turkey, 8–10 October 2013.
- Lim, C.H.; Saadatian, O.; Yusof Sulaiman, M.; Mat, S.; Sopian, K.; Razali Mahyuddin, M.; Ng, K.G. Using computational Fluid Dynamics (CFD) method in analysing different design configurations of Venturi-shaped wind-induced natural ventilation towers. In Latest Trends in Renewable Energy and Environmental Informatics, Proceedings of the 7th International Conference on Renewable Energy Sources (RES’13), Kuala Lumpur, Malaysia, 2–4 April 2013.
- Hawke, D. The Environmental Tradition: Studies in the Architecture of Environment; E & FN Spon: London, UK, 1996; p. 36. [Google Scholar]
- Gupta, V. Solar radiation ANC urban design for hot climates. Environ. Plan. B 1984, 11, 435–464. [Google Scholar] [CrossRef]
- Gupta, V. Thermal Efficiency of Building Clusters: An Index for Non Air Conditioned Buildings in Hot Climates. In Energy and Urban Built Form; Butterworths: Cambridge, UK, 1987. [Google Scholar]
- Knowles, R. Energy and Form: Ecological Approach to Urban Growth; MIT Press: Cambridge, UK, 1974. [Google Scholar]
- Knowles, R. Sun Rhythm Form; MIT Press: Cambridge, UK, 1985. [Google Scholar]
- Owens, S. Energy, Planning and Urban Form, 1st ed.; Pion Limited: London, UK, 1986; p. 42. [Google Scholar]
- Designing Open Spaces in the Urban Environment: A Bioclimatic Approach. Available online: http://www.cres.gr/kape/education/1.design_guidelines_en.pdf (accessed on 27 April 2005).
- Steemers, K.; Steane, M.A. Environmental Diversity in Architecture; Spon Press: London, UK, 2004. [Google Scholar]
- Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J.C.H. Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef]
- Compagnon, R. Solar and daylight availability in the urban fabric. Energy Build. 2004, 36, 321–328. [Google Scholar] [CrossRef]
- Meier, I.A.; Pearlmutter, D.; Etzion, Y. On the Microclimatic Behavior of Two Semi-Enclosed Attached Courtyards in a Hot Dry Region. Build. Environ. 1995, 30, 563–572. [Google Scholar] [CrossRef]
- Muhaisein, A.S. Shading simulation of the courtyard form in different climatic regions. Build. Environ. 2006, 41, 1731–1741. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A.; Sailor, D.J. Heat in courtyards: A validated and calibrated parametric study of heat mitigation strategies for urban courtyards in the Netherlands. Solar Energy 2014, 103, 108–124. [Google Scholar] [CrossRef]
- Giridharan, R.; Kolokotroni, M. Urban heat island characteristics in London during winter. Solar Energy 2009, 83, 1668–1682. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climate; Methuen Ltd.: London, UK, 1978; pp. 136–144. [Google Scholar]
- Costa, L.; Loures, L. The relevance of urban parks to achieve sustainable development in metropolitan areas. In Proceedings of the 1st International Conference on Sustainable Cities, Urban Sustainability and Transportation (SCUST'12), Faro, Portugal, 2–4 May 2012; pp. 129–134.
- Niachou, K.; Livada, I.; Santamouris, M. Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions—Part I: Air and surface temperatures. Build. Environ. 2008, 43, 1383–1392. [Google Scholar] [CrossRef]
- Tsouchlaraki, A.; Achilleos, G.; Nasioula, Z.; Nikolidakis, A. Designing and creating a database for the environmental quality of urban roads, using GIS. In Wseas Transactions On Environment and Development, Proceedings of the 7th WSEAS International Conference on Environment, Ecosystems And Development (EED’09), Puerto De La Cruz, Canary Islands, Spain, 14–16 December 2009; pp. 109–113.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiri, G.; Giovagnorio, I. Gaetano Vinaccia’s (1881–1971) Theoretical Work on the Relationship between Microclimate and Urban Design. Sustainability 2015, 7, 4448-4473. https://doi.org/10.3390/su7044448
Chiri G, Giovagnorio I. Gaetano Vinaccia’s (1881–1971) Theoretical Work on the Relationship between Microclimate and Urban Design. Sustainability. 2015; 7(4):4448-4473. https://doi.org/10.3390/su7044448
Chicago/Turabian StyleChiri, Giovanni, and Ilaria Giovagnorio. 2015. "Gaetano Vinaccia’s (1881–1971) Theoretical Work on the Relationship between Microclimate and Urban Design" Sustainability 7, no. 4: 4448-4473. https://doi.org/10.3390/su7044448
APA StyleChiri, G., & Giovagnorio, I. (2015). Gaetano Vinaccia’s (1881–1971) Theoretical Work on the Relationship between Microclimate and Urban Design. Sustainability, 7(4), 4448-4473. https://doi.org/10.3390/su7044448