Changing Food Consumption Patterns and Impact on Water Resources in the Fragile Grassland of Northern China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Area Description
Land Use | Hulun Buir (ha) | Xilin Gol (ha) | Ordos (ha) | |
---|---|---|---|---|
Evenk Banner | Zhengxiangbai Banner | Dongsheng District | Ejin Horo Banner | |
Grassland | 1,063,013 (56.8%) | 585,700 (94.0%) | 203,000 (67.4%) | 435,593 (60.7%) |
Arable land | 16,436 (0.9%) | 13,867 (2.2%) | 7865 (2.6%) | 31,891 (4.4%) |
Of which: grain | 9245 (0.5%) | 7066 (1.1%) | 5735 (1.9%) | 21,621 (3.0%) |
fruit-vegetable | 269 (0.0%) | 2667 (0.4%) | 103 (0.0%) | 3841 (0.5%) |
Forest | 647,160 (34.6%) | 9087 (1.5%) | 81,670 (27.1%) | 238,000 (33.1%) |
Others * | 143,386 (7.7%) | 14,246 (2.3%) | 8654 (2.9%) | 12,471 (1.7%) |
Total | 1,869,995 | 622,900 | 301,189 | 717,955 |
2.2. Research Design, Questionnaire and Data Collection
2.3. Calculation of Water Consumption
2.3.1. Specific Water Requirement per Food (Crop or Meat) Type
2.3.2. Pressure of Total Water Consumption on Their Land
3. Results and Discussions
3.1. Background Information of the Respondents
Study Area | Hulun Buir (N = 66) | Xilin Gol (N = 71) | Ordos (N = 72) | Total (N = 209) | |
---|---|---|---|---|---|
Family size | 3.2 | 3.2 | 3.4 | 3.3 | |
Average age | 43.2 | 54.6 | 55.3 | 51.4 | |
Average education level | 7.8 | 6.3 | 4.7 | 6.3 | |
Land use | A1 (%) | A1 (%) | A1 (%) | A1 (%) | |
Farmland | 0.0 (0) | 0.1 (1) | 0.4 (9) | 0.2 (1) | |
Grassland | 24.4 (100) | 9.4 (94) | 2.6 (63) | 11.5 (94) | |
Forest | 0 (0) | 0.4 (4) | 1.1 (28) | 0.5 (4) | |
Total land area | 24.4(100) | 9.9 (100) | 4.1 (100) | 12.2 (100) | |
Income | A2 (%) | A2 (%) | A2 (%) | A2 (%) | |
Crop production | 97 (1) | 2656 (14) | 500 (1) | 1082 (6) | |
Livestock | 13,438 (72) | 7188 (38) | 1765 (3) | 7109 (38) | |
Non-agriculture 1 | 5250 (28) | 8844 (47) | 17,425 (96) | 10,705 (57) | |
Total income | 18,784 (100) | 18,688 (100) | 19,690 (100) | 18,896 (100) |
3.2. Spatial and Temporal Variation of Food Consumption
Research Area | Hulun Buir | Xilin Gol | Ordos | |||
---|---|---|---|---|---|---|
Year | 1995/2010 | t-test | 1995/2010 | t-test | 1995/2010 | t-test |
Staple food 1 | 152.2/183.2 | * | 188.8/184.4 | * | 161.2/111.8 | *** |
Oil and Beans | 16.9/25.1 | ** | 20.4/26.6 | * | 19.2/22.5 | * |
Potato | 55.9/70.9 | ** | 50.9/50.6 | * | 202.2/168.4 | ** |
Vegetable-Fruit | 45.8/86.5 | *** | 44.4/75.7 | ** | 56.7/159.6 | *** |
Egg-milk | 90.2/108.5 | * | 119.5/107.6 | ** | 22.1/38.2 | *** |
Mutton-Beef | 75.7/97.2 | ** | 82.8/65.5 | ** | 51.6/35.7 | *** |
Other meat 2 | 20.4/30.1 | ** | 11.8/13.9 | * | 45.6/54.7 | ** |
Total (kg/year) | 457.1/601.4 | ** | 518.6/524.4 | * | 558.6/590.9 | ** |
3.3. Water Consumption per Household
3.3.1. Direct (Domestic) Water Consumption Pattern
3.3.2. Indirect Water Consumption from Food (Crop) Consumption
Type of Foods | SWD (m3/kg) | Windirect (m3/capita/year) | |||||||
---|---|---|---|---|---|---|---|---|---|
Hulun Buir 1 | Xilin Gol 2 | Ordos 3 | Hulun Buir | Xilin Gol | Ordos | ||||
1995/2010 | Changes in % 6 | 1995/2010 | Changes in % 6 | 1995/2010 | Changes in % 6 | ||||
Staple food 1 | 1.0–3.2 | 1.4–3.2 | 1.5–3.6 | 213.1/256.5 | 20.4 | 339.8/331.9 | −2.3 | 322.4/223.6 | −30.6 |
Oil and Beans | 1.7–4.2 | 3.2–6.2 | 1.0–5.8 | 60.8/90.4 | 48.5 | 77.5/101.1 | 30.5 | 74.9/87.8 | 17.2 |
Potato | 0.8 | 0.2 | 1.1 | 44.7/56.7 | 26.8 | 10.2/10.1 | −1.0 | 222.4/185.24 | −16.7 |
Vegetable-Fruit | 0.1–0.8 | 0.1/1.4 | 0.3–1.3 | 9/20.5 | 127.8 | 16.1/40.7 | 152.8 | 33.6/88.5 | 163.4 |
Egg-Milk | 1.8–3.8 | 2.2–2.7 | 2.2–2.9 | 177.8/218.5 | 22.9 | 268/246.2 | −8.1 | 54.3/91.7 | 68.9 |
Mutton-Beef | 15.1–17.2 | 18–20 | 18–20 | 1198.9/1580.9 | 31.9 | 1623/1273.6 | −21.5 | 960.6/667.6 | −30.4 |
Other meats 5 | 1.9–3.8 | 3.1–5 | 3.7–5 | 54.4/83.8 | 54.0 | 43/50.7 | 17.9 | 170.3/209.4 | 23.0 |
Indirect water consumption from food production item | 1758.8/2307.3 | 31.2 | 2377.6/2054.3 | −13.6 | 1838.5/1553.8 | −15.5 |
3.4. Water Consumption Pressure for Grassland Ecosystems
3.5. Advantage, Uncertainties and Future Improvements
4. Conclusions and Suggestions to Management
Acknowledgments
Author Contributions
Conflicts of Interest
References
- MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Yan, H.; Zhan, J.; Liu, B.; Yuan, Y. Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008. Sustainability 2014, 6, 6250–6266. [Google Scholar] [CrossRef]
- Zhao, Y.; Peth, S.; Horn, R.; Kummelbein, J.; Ketzer, B.; Gao, Y.; Doerner, J.; Bernhofer, C.; Peng, X. Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia grassland. Soil Tillage Res. 2010, 109, 75–86. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Xie, G.; Xiao, Yu. Water conservation of forest ecosystem in Beijing and its value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar] [CrossRef]
- Molden, D.; Frenken, K.; Barker, R.; de Fraiture, C.; Mati, B.; Svendsen, M.; Sadoff, C.; Finlayson, C.M. Trends in Water and Agricultural Development Pages 57–89 in Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; International Water Management Institute: London, UK; Earthscan: Colombo, Srilanka, 2007. [Google Scholar]
- World Agriculture. Towards 2015/2030. An FAO Perspective; FAO; InBruinsma, J. (Eds.) Earthscan Publications: London, UK, 2003.
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water. SHARING the Planet’s Freshwater Resources; Blackwell Publishing: London, UK, 2008. [Google Scholar]
- WWF. Allocating Scarce Water. A WWF Primer on Water Allocation, Water Rights and Water Markets; WWF-UK: Godalming, UK, 2007. [Google Scholar]
- MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Cavaliere, A.; Ricci, E.C.; Solesin, M.; Banterle, A. Can Health and Environmental Concerns Meet in Food Choices? Sustainability 2014, 6, 9494–9509. [Google Scholar] [CrossRef]
- Zhen, L.; Ochirbat, B.; Lv, Y.; Wei, Y.J.; Liu, X.L.; Yao, Z.J.; Li, F. Comparing patterns of ecosystem service consumption and perceptions of range management between ethnic herders in Inner Mongolia and Mongolia. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Nonhebel, S. Analysis consumption patterns and their effects on land required for food. Ecol. Econ. 2002, 42, 185–199. [Google Scholar] [CrossRef]
- Xiao, L.; Ren, G.Z.; Zhao, X.G.; Xiao, Q.Y. Analysis on the Spatial and Temporal Variety of Virtual Water of Agricultural Products in Shaanxi. J. Arid Land Resour. Environ. 2007, 21, 104–108. [Google Scholar]
- Bessembinder, J.J.E.; Leffelaar, P.A.; Dhindwal, A.S.; Ponsioen, T. Which crop and which drop, and the scope for improvement of water productivity. Agric. Water Manag. 2005, 73, 113–130. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.M.G. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Yu, F.F.; Price, K.P.; Ellis, J.; Shi, P. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens. Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, O.J.; Huang, J.; Gao, Y.; Han, X. Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Funct. Ecol. 2006, 20, 753–762. [Google Scholar] [CrossRef]
- Schiborra, A.; Gierus, M.; Wan, H.W.; Bai, Y.F.; Taube, F. Short-term responses of a Stipa grandis/Leymus chinensis community to frequent defoliation in the semi-arid grasslands of Inner Mongolia, China. Agric. Ecosyst. Environ. 2009, 132, 82–90. [Google Scholar] [CrossRef]
- Kang, L.; Han, X.; Zhang, Z.; Sun, O.J. Grassland ecosystems in China: Review of current knowledge and research advancement. Philos. Trans. R. Soc. 2007, 362, 997–1008. [Google Scholar] [CrossRef]
- Li, C.; Hao, X.; Zhao, M.; Han, G.; Willms, W.D. Influence of historic sheep grazing on vegetation and soil properties of a Desert Steppe in Inner Mongolia. Agric. Ecosyst. Environ. 2008, 128, 109–116. [Google Scholar] [CrossRef]
- Ji, S.J.; Geng, Y.; Li, D.F.; Wang, G.H. Plant coverage is more important than species richness in enhancing above-ground biomass in a premature grassland, northern China. Agric. Ecosyst. Environ. 2009, 129, 491–496. [Google Scholar] [CrossRef]
- Koning, H.J.; Podhora, A.; Helming, K.; Zhen, L.; Wang, C.; Wübbeke, J.; Baumeister, T.; Du, B.; Yan, H. Confronting international research topics with stakeholders on multifunctional land use: the case of Inner Mongolia, China. iForest Biogeosci. For. 2014, 7, 403–413. [Google Scholar] [CrossRef]
- Xiao, L.B.; Fang, X.Q.; Ye, Y. Reclamation and revolt: Social responses in eastern Inner Mongolia to flood/drought-induced refugees from the north China plain 1644–1911. J. Arid Environ. 2013, 88, 9–16. [Google Scholar] [CrossRef]
- IMSY. Inner Mongolia Statistic Yearbook; China Statistic Press: Inner Mongolia, China, 1987. [Google Scholar]
- IMSY. Inner Mongolia Statistic Yearbook; China Statistic Press: Inner Mongolia, China, 2014. [Google Scholar]
- Weber, K.E.; Tiwari, I.P. Research and Survey Format Design: an Introduction; Asian Institute of Technology: Bangkok, Thailand, 1992. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Pearson Allyn and Bacon: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Zimmer, D.; Renault, D. Virtual water in food production and global trade: Review of methodological issues and preliminary results. In Virtual Water Trade (No.12); Hoekstra, A.Y., Ed.; IHE: Delft, The Netherland, 2003. [Google Scholar]
- Li, L.; Wu, X. Analysis and Policy on Virtual Water Condition of Agricultural Products in Heilongjiang Province. Sci. Econ. Soc. 2008, 26, 41–46. [Google Scholar]
- Xu, Z.; Long, A.; Zhang, Z. Virtual water consumption calculation and analysis of Gansu Province in 2000. Acta Geogr. Sin. 2003, 58, 861–869. [Google Scholar]
- NSBC. The Fifth Census in China; National Bureau of Statistics: Beijing, China, 2006. [Google Scholar]
- Chen, J.; Huang, D.; Shiyomi, M.; Hori, Y.; Yamamura, Y. Spatial heterogeneity and diversity of vegetation at the landscape level in Inner Mongolia, China, with special reference to water resources. Landsc. Urban Plan. 2007, 82, 222–232. [Google Scholar] [CrossRef]
- Nuñez, D.; Nahuelhual, L.; Oyarzún, C. Forests and water: The value of native temperate forests in supplying water for human consumption. Ecol. Econ. 2006, 58, 606–616. [Google Scholar] [CrossRef]
- Dudley, N.; Stolton, S. Running pure: The importance of forest protected areas to drinking water. In Alliance for Forest Conservation and Sustainable Use; World Bank/World Wildlife Fund: London, UK, 2003. [Google Scholar]
- Li, K.; Liu, X.; Song, L.; Gong, Y.; Lu, C.; Yue, P.; Tian, C.; Zhang, F. Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia. 2015, 177, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.G.; Xu, Y.; Jia, G.; Fu, C. Climate change impact and adaptation in Inner Mongolia. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 342018. [Google Scholar] [CrossRef]
- Du, B.; Zhen, L.; de Groot, R.; Goulden, C.E.; Long, X.; Cao, X.; Wu, R.; Sun, C. Changing patterns of basic household consumption in the Inner Mongolian grasslands: A case study of policy-oriented adaptive changes in the use of grasslands. Rangel. J. 2014, 36, 505–517. [Google Scholar] [CrossRef]
- Renault, D.; Wallender, W. Nutritional water productivity and diets. Agric. Water Manag. 2000, 45, 275–296. [Google Scholar] [CrossRef]
- FAO. Supply and Utilization Accounts of FAOSTAT, FAOSTAT Data Base; Food and Agriculture Organization: Rome, Italy, 2009. [Google Scholar]
- Grigg, D. The nutrition transitionin Western Europe. J. Hist. Geogr. 1995, 22, 247–261. [Google Scholar] [CrossRef]
- Popkin, B.M. The dynamics of the dietary transition in the developing world. In The Nutrition Transition: Diet and Disease in the Developing World, Food Science and Technology International Series; Caballero, B., Popkin, B.M., Eds.; Academic Press: London, UK, 2002; pp. 111–129. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, B.; Zhen, L.; De Groot, R.; Long, X.; Cao, X.; Wu, R.; Sun, C.; Wang, C. Changing Food Consumption Patterns and Impact on Water Resources in the Fragile Grassland of Northern China. Sustainability 2015, 7, 5628-5647. https://doi.org/10.3390/su7055628
Du B, Zhen L, De Groot R, Long X, Cao X, Wu R, Sun C, Wang C. Changing Food Consumption Patterns and Impact on Water Resources in the Fragile Grassland of Northern China. Sustainability. 2015; 7(5):5628-5647. https://doi.org/10.3390/su7055628
Chicago/Turabian StyleDu, Bingzhen, Lin Zhen, Rudolf De Groot, Xin Long, Xiaochang Cao, Ruizi Wu, Chuanzhun Sun, and Chao Wang. 2015. "Changing Food Consumption Patterns and Impact on Water Resources in the Fragile Grassland of Northern China" Sustainability 7, no. 5: 5628-5647. https://doi.org/10.3390/su7055628
APA StyleDu, B., Zhen, L., De Groot, R., Long, X., Cao, X., Wu, R., Sun, C., & Wang, C. (2015). Changing Food Consumption Patterns and Impact on Water Resources in the Fragile Grassland of Northern China. Sustainability, 7(5), 5628-5647. https://doi.org/10.3390/su7055628